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Abstract

We study the formulation of the problem to retrieve wind fields from
radar data. The considerations here view the radar locations as fixed with
retrieved wind fields as functions of scanning strategies. The scanning
strategies are formulated in terms of a scanning model that depends on
certain parameters. The objective here is to minimize a functional that is
defined in terms of the relative error between retrieved wind velocities and
an ensemble of test wind fields. A numerical study is presented illustrating
the theory developed.

1. Introduction.

The wind field retrieval problem seeks to estimate a three dimensional wind field
within a domain Ω from radar data consisting of measurements of radial veloci-
ties from n radar sites. Admissible wind fields belong to a suitable Hilbert space
consisting of functions from Ω into <3. The retrieval problem is formulated as
a minimization problem on the Hilbert space of admissible vector fields under
weakly constrained physical laws and regularization. The existence of a unique
solution to this problem is then a consequence of classical Hilbert space theory.
The problem, however, depends on parameters describing the radar measure-
ment model that must be specified in its formulation. The radar measurement
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model consists of the description of the location of the radar, the radar beam
geometry, the observational region for the radar, and the scanning strategy.
The solution of the retrieval problem depends on these parameters, and thus,
they may be considered as controls around which optimization problems may
be designed. In this study the location of the radars is considered fixed as well
as sweep angles, that is the scanning sector angles, of the radar. The param-
eters of interest are described in terms of an n − tuple of scanning directions
vectors where the radars are pointed. Our objective here is to consider the
determination of these parameters minimizing a general retrieval error defined
over ensembles of possible winds that capture uncertainty in estimates as the
wind fields evolve as functions of time.

The synthesis of three-dimensional vector wind wind fields from Doppler
radar data is an important part of mesoscale research and operational meteo-
rology, with particularly vital applications in hazard warning and nowcasting
(e.g., tornado detection and prediction), and in numerical weather prediction.
Techniques of single-Doppler velocity retrieval vary in complexity from the sim-
ple Velocity Azimuth Display (VAD), in which the imposed model is a wind
field that varies linearly with the spatial coordinates, to the full model adjoint
techniques in which the radial wind obtained from time integration of the com-
plete dynamical equation set of a numerical weather prediction model is fit to
radial wind observations over a window of time. Dual-Doppler wind retrieval
techniques may also be couched in an adjoint or other variational framework.
Key developments in the history of single- and multiple-Doppler wind retrievals,
and some of the remaining problems are summarized in Shapiro et al [11].

The considerations here are related to work in the meteorological community
on adaptive measurements, see [1] and references therein. There, measurement
procedures are determined to optimize certain criteria. The Kalman filter (ac-
tually the ensemble transform Kalman filter) is used to capture the evolution of
predictions. Operators within the filter depend on parameters that specify the
measurement process. Selection of parameters is base on criteria such as min-
imization of the estimate error variance. In this work we directly consider the
minimization of the estimation relative error. In subsequent work we consider
criteria based on ensemble Kalman filtering and ensemble transform Kalman
filters applied to radar scanning problems.

In Section 2 the general Hilbert space formulation that was originally pre-
sented in [14] is given in sufficient detail for application here. The retrieved
wind velocity is obtained as the solution of a variational boundary value prob-
lem that depend on scanning parameters. Properties of the retrieved velocity
as a function of the scanning parameters are examined, and it is shown that the
retrieved wind fields are differentiable with respect to the scanning directions.
In Section 3 an optimization procedure is formulated. As an event of interest
evolves in time, a scanning strategy is determined in terms of parameters mini-
mizing a relative error functional over an ensemble of possible perturbations to
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the current estimated wind field advancing the wind field to the next time in-
stant. The scanning parameter that optimizes relative error over the generated
ensemble is then used to collect data in the next step to obtain a new estimate
of the wind field. In Section 4, results of a numerical study are discussed for
an example with two radar tracking wind fields resulting from a moving vortex.
In this simple case the set of admissible scanning parameters consists of four
directions for each radar.

2. Retrieval of Wind Fields from Radar Data.

The retrieval of wind fields from radar data is posed as a minimization problem
seeking wind fields matching data under various constraining models. To pose
the problem of estimating wind field information from radar data requires the
specification of a retrieval functional that includes terms involving a data model
(radar measurement model), a physics-based model, and a regularization. The
model describing the relation between observed radar data and the vector-valued
function constituting the actual wind field defines a mapping whose output
is the radar data associated with that wind field. This mapping depends on
the specifics of the measurement process. The physics-based model is used to
constrain the wind field. It aids in the interpolation between radar sites in
a physically reasonable way. Finally, a regularization term is included in the
retrieval functional to assure that the associated minimization problem has a
unique solution.

To formulate the retrieval problem, let Ω denote an observational volume
that, for ease, is a rectangular volume of points x = (x, y, z)T in <3 such that

Ω = {x : 0 < x < Lx, 0 < y < Ly, 0 < z < Lz}

and with its base denoted by

Ω0 = {(x, y, 0)T : 0 < x < Lx, 0 < y < Ly}.

Assume there are n radar site locations x1, ...,xn in Ω0. Define the vector-valued
functions from Ω into <3 that are used to describe the wind field within Ω.

vs(x) = velocity of scattering particles in the sample volume Ω

v(x) = air velocity : v(x) = v1(x)i + v2(x)j + v3(x)k

with v = (v1, v2, v3)T a column vector unless otherwise indicated. Let

vt(x) = terminal velocity of the scatterers : vt(x) = Wt(x)k

where Wt < 0

(2.1) vs(x) = v(x) + vt(x).
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Define the vector-valued function emanating from the ith radar location xi and
pointing toward the point x ∈ Ω

(2.2) ri(x) = r(x,xi) =
x− xi

|x− xi| for x 6= xi and 0 for x = xi.

The radial velocity observed at the ith radar is then expressed in terms of the
dot product

(2.3) vr(x,xi) = ri(x) · vs.

The real-valued function
x 7→ vr(x,xi)

defined on Ω expresses the radial velocity corresponding to that observed at the
point x (assuming the point is within the coverage set associated with the ith
radar) from a radar located at the point xi. In this case the function vr(x,xi)
is to be compared with an observation vri(x).

To model the coverage of the ith radar, we define a function from Ω into <

x 7→ φi(x)

taking the value 1 over the coverage set of the ith radar and the value 0 in
the complement of the coverage set. The coverage set is determined as a sector
centered on a direction indicated by the unit vector

(2.4) µ(α) = [cos(α) sin(α) 0]T

where α ∈ [−π, π).

Remark 2.1. For the purposes of this work, a coverage function is defined
for each radar location xi for i = 1, ..., n in terms of a characteristic function
defined over a cylindrical set with a cross section consisting of a conical sector
C centered on the vector u(αi), of angular measure β, and of radius R

ΞC(x) = 1 if x ∈ C and = 0 otherwise.

Thus, of interest for a radar located at xi are sets

(2.5) Ci(α) = {x : |x− xi| ≤ R, r(x,xi) · µ(α) ≥ γ = cos(β)}

so that

(2.6) φi(x) = φi(x, α) = ΞCi(α)(x)

The set Ci(α) is the scanning set for the radar located at the point xi in the
direction of µ(α).
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Remark 2.2. In the present work we consider the coverage functions as defined
above. The locations xi, i = 1, ...n are fixed and the admissible set are the cov-
erage functions determined by the direction unit vectors u(αi) for αi ∈ [−π, π).

Remark 2.3. The observation from the radar at site xi is given by vr(x,xi) for
those x in Ci(α). The resulting radial velocities from simulated wind fields are
compared through the observation with vri in Ci(α) by integrating their differ-
ences over the set Ci(α). It is useful to introduce an observation as φi(x, α)vri

(x).

The second term included in the retrieval functional is associated with the
underlying physics-based model. In this work, the anelastic continuity equation
is introduced to constrain wind fields, cf. [6, 9, 10, 14]

(2.7) ∇ · (ρv) = 0

where ρ is the density. Because the applications considered in this work involve
relatively small altitudes, the density ρ is taken to be constant. Hence, we use
the divergence free condition

(2.8) ∇ · v = 0.

Finally, terms are included to assure that the retrieval problem has a unique
solution. Hence, a term equivalent to

∫

Ω

{|∇v1|2 + |∇v2|2 + |∇v3|2 + |v|2}dx

is included.

To pose the problem in a function space setting, let H = L2(Ω) and V =
H1(Ω). Also, we introduce the Hilbert space

(2.9)(i) H = L2(Ω,<3)

with the inner product

(2.9)(i) (u,v) =
∫

Ω

uT vdx

and norm

(2.9)(ii) ‖u‖H = (u,u)
1
2

along with the space

(2.10) V = H1(Ω,<3)

with inner product

(2.10)(i) (u,v)V =
∫

Ω

{∇u1 · ∇v1 +∇u2 · ∇v2 +∇u3 · ∇v3}+ uT vdx.
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and norm

(2.10)(ii) ‖v‖V = (v,v)
1
2
V .

To include a weak version of the divergence free condition (2.8), define the
bilinear form

(2.11) (u,v)1 =
∫

Ω

[∇ · u][∇ · v]dx.

on the Hilbert space V.

Remark 2.4. Note that a norm equivalent to (2.10), see [5], on V may be
obtained using the bilinear form

(2.12) ((u,v)) =
∫

Ω

{∇u1 · ∇v1 +∇u2 · ∇v2 +∇u3 · ∇v3}dx.

to which is added ∫

Ω

uT [φ2
0r0rT

0 ]vdx

where the subscript ”0” is an index for the point x0 that is the site of a radar
from which measurements are made. The quantity

(2.13) {((v,v)) + K0

∫

Ω

v(x)T [φ2
0r0rT

0 ]vdx} 1
2

where K0 is a positive number is a norm on V equivalent to that of (2.10)(ii).

The weak formulation of the retrieval problem is posed as a minimization
problem over the space V with the objective functional given by

V(v) =
ε

2
((v,v)) +

K

2
(v,v)1 +

(2.14) +
K1

2

∫

Ω

{
n∑

i=1

φ2
i (x)[vr(x,xi)− vri(x)]2}dx

where ε,K, and K1 are positive constants. The retrieval problem is thus

(2.15) Find u ∈ V such that V(u) = infimum {V(v) : v ∈ V}

Remark 2.5. Note that time is not explicitly included. In this formulation
the retrieval problem is solved over a sequence of times. It is assumed that the
radial velocity is known at each point x within a given radar’s scanning set at
each time.
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Our interest here will focus on the dependence of solutions of the retrieval
problem on the collection of radar scanning directions. Hence, we view the
vector

q = [α1 α2 . . . αn]

as a parameter to be determined. Define the functions

(2.16) Φ(q)(x) =
n∑

i=1

φi(x, αi)ri(x)rT
i (x),

the vector-valued functions

(2.17) F(q)(x) =
n∑

i=1

φi(x, αi)(rT
i vt(x) + vri

(x)ri)

and the constants

(2.18) C(q) =
∫

Ω

{
n∑

i=1

φi(x, αi)(ri(x)T vt(x)− vri(x))2}dx.

Note that F(q) depends on q, not only through φi and ri, but also vri.

It is also convenient to define the family of bilinear forms on H parameterized
by q given by

(2.19) (u,v)Φ(q) =
∫

Ω

u(x)T Φ(q)(x)v(x)dx.

With the above definitions, we may write the criterion V as

V(q)(v) =
ε

2
((v,v)) +

K

2
(v,v)1 +

K1

2
(v,v)Φ(q) −

(2.20) −K1(F(q),v)]
K1

2
C(q).

Existence of a unique solution to the minimization problem (2.15) follows from
the discussions in [14].

Proposition 2.6. There exists a unique solution to the minimization problem
(2.15).

For each parameter vector q there exists a unique solution. Thus, we set u(q) =
u where u is the solution of (2.15) for the parameter q. The solution of the
minimization problem (2.15) is characterized by the optimality conditions.
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Proposition 2.7. The Fréchet derivative of V with respect to u is given by

DV(q)(u)v = ε((u,v)) + K(u,v)1 + K1(u,v)Φ(q) −K1(F(q),v)

and the solution u = u(q) of the minimization problem (2.15) satisfies the
equation

(2.21) ε((u,v)) + K(u,v)1 + K1(u,v)Φ(q) = K1(F(q),v)

for all v ∈ V. When the data is associated with a ”true” wind field w so that
(F(q),v) = (w,v)Φ(q), we have

(2.22) ε((u,v)) + K(u,v)1 + K1(u,v)Φ(q) = K1(w,v)Φ(q)

Remark 2.8. The retrieved wind field satisfies the estimate

(2.23) ‖u(q)‖V ≤ Constant ‖F(q)‖H

where the ”Constant” depends on ε, K, and K1.

To obtain the retrieved wind field in an application requires an approxi-
mation of the solution of (2.21). Towards this end, we approximate (2.21) by
finite elements. The approximation of the retrieval problem numerically follows
the classical finite element arguments [8]. Approximations may be based on fi-
nite elements obtained as tensor products of piecewise linear splines defined on
partitions of the intervals (0, Lx), (0, Ly), and (0, Lz) into nx, ny, and nz subin-
tervals, respectively. Hence, setting mx = nx + 1,my = ny + 1, mz = nz + 1 to
represent the number of x, y, and z elements, respectively, the number of basis
elements for the 3 spatial dimensional problem is given by m = mx ×my ×mz.
We denote the basis elements as

b1(x), . . . , bm(x)

spanning a subspace, V m, of the space V. Define the column m vector-valued
function on Ω by

x 7→ b(x) = [b1(x), ..., bm(x)]T

and the 3× 3m matrix-valued function on Ω by

x 7→ B(x) =




b(x)T 0 0
0 b(x)T 0
0 0 b(x)T




where 0 represents an m-row vector of zeros. We also define the column m-
vectors c1, c2, and c3 as well as the 3m-column vector c̃ = [cT

1 , cT
2 , cT

3 ]T .

With the above definitions, we represent the components of the wind velocity
as

v1m(x) = b(x)T c1
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v2m(x) = b(x)T c2

and
v3m(x) = b(x)T c3.

Let Vm = V m×V m×V m designate the analogous subspace of V. The approx-
imating wind velocity vector vm is expressed as

vm(x) = [v1m(x) v2m(x) v3m(x)]T = B(x)c̃.

To facilitate the expression of the approximating equations, define the 3m×
3m matrices

G0 =
∫

Ω

B(x)T B(x)dx

G1 =
∫

Ω

[∇T B(x)]T [∇T B(x)]dx.

Further, define the m×m matrix g2 by setting entries

(g2)ij =
∫

Ω

∇bi(x) · ∇bj(x)dx

for i, j = 1, ...,m. Let the 3m× 3m matrices be given by

G2 =




g2 0 0
0 g2 0
0 0 g2


 .

G(q) =
∫

Ω

B(x)T Φ(q)B(x)dx.

Finally, define the 3m column vector

F̃ (q) = {
∫

Ω

F(q)(x)T B(x)dx}T .

With these definitions the objective functional evaluated at the finite element
approximations of the wind velocity is given by

(2.24) V(q)(c̃) = V(q)(vm) =
1
2
c̃T [εG2+KG1+K1G(q)]c̃ − K1F̃ (q)T c̃+C(q).

Remark 2.9. The finite dimensional minimization problem looks for a function
of the form

um = um(q) = B(x)c̃ = B(x)c̃(q)

in Vm minimizing the functional V(q) over Vm.

The derivative of this functional gives the system

(2.25) ε((um,v)) + K(um,v)1 + K1(um,v)Φ(q) =
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= K1(F(q),v)

for all v ∈ Vm. In terms of matrices the solution vector c̃ satisfies

(2.26) [εG2 + KG1 + K1G(q)]c̃ = K1F̃ (q)

Error between u and um is estimated by taking the difference of (2.21) and
(2.25) so that

ε((u− um,v)) + K(u− um,v)1 + K1(u− um,v)Φ(q) = 0

for any v ∈ Vm. Thus, we find that

ε((u− um,u− um)) + K(u− um,u− um)1 + K1(u− um,u− um)Φ(q) =

= ε((u− um,u− v)) + K(u− um,u− v)1 + K1(u− um,u− v)Φ(q)

and
‖u− um‖2V ≤ Constant‖u− um‖V ‖u− v‖V

so that

(2.27) ‖u− um‖V ≤ Constant ‖u− v‖V

for any v ∈ Vm.

Remark 2.10 The rate of convergence thus depends on the regularity of the
solution u.

Finally, we approximate w = B(x)ω̃ and note the finite dimensional approx-
imating system of equations of (2.22) is given by

(2.28) (εG2 + KG1 + K1G(q))c̃(q) = K1G(q)ω̃

3. Optimal Retrieval based on an Ensemble Rel-
ative Error Criterion.

In Section 2 the retrieval problem is formulated as a minimization problem
estimating a three dimensional wind field from radar data conditioned with
physics-based side constraints. The solution of the retrieval problem (2.15)
depends on the scanning region for each radar site. For a network consisting of
n radars located at points x1, x2, ..., xn, the collection of scanning directions may
be expressed as an n vector q = (α1, α2, ..., αn) of real numbers αi ∈ [−π, π).
The objective here is to study the properties of the retrieved wind fields with
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respect to radar scanning directions. These properties are then extended to
retrieval operators that describe the mapping taking a given wind field to its
corresponding retrieved wind field. Given an ensemble of meteorological events,
a relative error function is defined that compares retrieved wind fields with the
associated test fields in the ensemble. The relative retrieval error is a function
of the scanning parameters used in specifying the observation operator. It is
possible then to determine those scanning parameters that minimize the relative
error functional.

We begin by establishing differentiability with respect to the direction angle
parameters. Towards this end, let the function x 7→ g(x) be a continuous real-
valued function defined on Ω. For a single parameter α, define the real-valued
function F : < 7→ < in terms of the integral given by

F(α) =
∫

Ω

Ξ(x, α)g(x)dx

where Ξ(·, α) is the indicator function of the set

C(α) = {x : x2
1 + x2

2 ≤ R2,
x
|x| · µ(α) ≥ cos(β)}

and x = [x1x2x3]T Thus,

F(α) =
∫

C(α)

g(x)dx.

Introducing polar coordinates, we see that

F(α) =
∫ α+β

α−β

∫ Lz

0

∫ R

0

ĝ(r, θ, z)rdrdzdθ

where ĝ(r, θ, z) = g(rcos(θ), rsin(θ), z). It follows immediately that

d

dα
F(α) =

∫ Lz

0

∫ R

0

[ĝ(r, α + β, z)− ĝ(r, α− β, z)]rdrdz.

For the case of n radar sites, we write

F(u,v)(α1, ..., αn) = (u,v)Φ(q)

=
∫

Ω

u(x)T [
n∑

i=1

φi(x, αi)ri(x)rT
i (x]v(x)dx.

Setting
gl(x) = φl(x, αl)u(x)T [rl(x)rT

l (x)]v(x),

we see that

F(u,v)(α1, ..., αn) =
n∑

i=1

∫

Ω

gi(x)dx

11



and we have the following.

Proposition 3.1. For each u and v ∈ V the function (α1, ..., αn) 7→ F(u,v)(α1, ..., αn)
is differentiable and the partial derivatives of F(u,v) with respect to αl is given
by

∂

∂αl
F(α1, ..., αn) =

∫ Lz

0

∫ R

0

[gl(r, αl + β, z)− gl(r, αl − β, z)]rdrdz

The differentiability of u(q) follows.

Theorem 3.2. The solution u(q) of (2.22) is Fréchet differentiable with respect
to q and satisfies

(3.1) ε((Du(q)q′,v)) + K(Du(q)q′,v)1 + K1(Du(q)q′,v)Φ(q) =

= K1[DF(w,v)(q)q′ − DF(u(q),v)(q)q′]

where F(w,v)(q) = (w,v)Φ(q)

We also note that the finite dimensional version satisfies

Corollary 3.3. The derivative Dc̃(q)(q′) of the solution c̃(q), of equation (2.26)
satisfies the equation

(3.2) [εG2 + KG1 + K1G(q)]Dc̃(q)q′ = K1[DG(q)q′][ω̃ − c̃(q)]

The Fréchet differentiability result of Theorem 3.2, of course, implies the
continuous dependence of retrieved wind fields on the scanning angle vector q
subject to continuous dependence of the observations vr [4]. The result depends
on the character of the observations. In [14] to measure the effectiveness of a
retrieval algorithm, procedures are tested against a variety of possible observed
data. Data are constructed using an observation operator and a hypothesized
wind field. Given a hypothetical three dimensional wind field w0 ∈ V, we define
the vector-valued function F(q) to be

F(q)(x) = Φ(q)(x)[w0(x) + vt(x)]

where Φ(q)(x) is given by equation (2.16). Setting w = w0 + vt it follows
that for any v ∈ V and

(F(q),v) = (w,v)Φ(q),

obtaining equation (2.22). Continuity properties of the mapping q 7→ u(q) are
given in the following results.

Proposition 3.4. Let w be an element of V and let the sequence of vectors
{qk}∞k=1 converge componentwise to the vector q as k → ∞, then the sequence
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{u(qk)}∞k=1 of solutions to the associated retrieval problems converges to u(q)
in V.

The solution u(q) = u of (2.22) defines a bounded linear operator that we
refer to as the retrieval operator and designate as R(q) : V 7→ V by

(3.3) R(q)w = u(q).

Convergence stated in terms of the retrieval operator is given by the following.

Proposition 3.5. Suppose qk −→ q as k −→ ∞ in the sense that the entries
of qk converge to the entries of q. Then for each w ∈ V

R(qk)w −→ R(q)w

in V. For the finite dimensional case (2.28), we have

(3.4) c̃(q) = K1[εG2 + KG1 + K1G(q)]−1G(q)ω̃

For the finite dimensional formulation, define the retrieval operator

Rm(q)ω̃ = c̃(q)

and the finite dimensional approximation to the retrieved solution is then given
by

(3.5) um(q)(x) = B(x)c̃(q) = B(x)Rm(q)ω̃.

To optimize the retrieval procedure, an objective functional is defined with
which to compare different scanning vectors. In this work we consider the rel-
ative retrieval error. To define the relative retrieval error, suppose a parameter
q ∈ Q. Also, assume a wind field w ∈ V. The retrieved wind field discussed
above is expressed as u = u(q) = R(q)w. The relative error is given by

(3.6) J(q) =
‖R(q)w −w‖2

‖w‖2

with the finite dimensional relative error expressed as

(3.7) Jm(q) =
(Rm(q)ω̃ − ω̃)T G0(Rm(q)ω̃ − ω̃)T

ω̃G0ω̃T

Let Qad be an admissible subset of parameters in Q. For the given a wind field
w in V, optimizing the retrieval procedure for w seeks to determine a parameter
qo from from within the set Qad to minimize the relative retrieval error J(q).
The problem is more succinctly stated as follows.
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Suppose w ∈ V and Qad is a compact subset of Q.

(3.8) Find qo ∈ Qad such that

J(qo) = infimum{J(q) : q ∈ Qad}.
From the continuous dependence on q, we have the following.

Theorem 3.8. For each w ∈ V there exists a a solution to problem (3.8).

Proof. From Proposition 3.5, given w ∈ H the mapping q 7→ R(q)w is contin-
uous from Qad into V. Thus, the function q 7→ J(q) is a continuous real valued
nonnegative function from Qad into <. Since Qad is compact, the existence of a
minimizer follows immediately.

The solution qo clearly depends on the test wind field w. Thus, the radar
scanning vector can be chosen to be optimal with respect to a prescribed subclass
of wind fields. Suppose then that W = {wn : n = 1, ..., N} is a collection of
wind fields. Let pn, n = 1, ..., N be weights such pn > 0, and

∑N
n=1 pn = 1. We

consider then the optimization problem based on the functional

(3.9) J(q) =
N∑

n=1

pn
‖R(q)wn −wn‖2H

‖wn‖2H
.

Existence of a solution then follows from Proposition 3.7.

The proof of convergence of solutions of the finite dimensional approximating
problems is analogous to that in [14]. Let

Jm(q) =
N∑

i=1

pi
‖um(q)−wi‖2H

‖wi‖2V
and let qm be such that

Jm(qm) = inf{Jm(q) : q ∈ Qad}

Note that the sequence qm has cluster points since Qad is compact.

Theorem 3.9. Every cluster point qo of the sequence of parameters qm is a
solution of (3.8).

Proof. Let qm −→ qo, then qo ∈ Qad. Then um(qm) is bounded in V from the a
priori estimates. From weak compactness, it follows that there is a subsequence,
again um(qm), that converges weakly in V to u. That u = u(qo) follows from
the variational condition (2.25), the compact embedding of V in L4(Ω,<3), [2],
and uniqueness. Further, convergence of the sequence um(qm) −→ u(qo) weakly
in V and strongly in H follows.
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Let q̃ be an arbitrary element in Qad. From the optimality of qm, it follows
that

Jm(qm) ≤ Jm(q̃).

From the above convergence properties it follows then that

J(qo) ≤ J(q̃).

Since q̃ is an arbitrary element of Qad and qo belongs to Qad, it follows that qo

is a minimizer.

The selection of the class W can be used to emphasize certain significant
wind fields that are deemed to be most likely, see [14]. Alternatively, W might be
chosen randomly. In any case it is useful to think of W as a test set of significant
wind fields of interest. In the radar scanning problem, consider W to be chosen
to capture uncertainty in wind fields propagated in a time stepping model from
previous estimated wind fields. Hence, we assume a prediction model of the
form

(3.10) w = FM (wo)

where FM : <3 7→ <3 is continuously differentiable. Typically, wo represents
a current estimate of wind fields. The model then predicts the wind field at a
subsequent time to be w, and thus, is a function of wo. For implementation, we
replace equation (3.10) with a discrete version

(3.11) ω̃ = FM (ω̃o)

where
w = B(x)ω̃

and
wo = B(x)ω̃o.

The Fré chet derivative is then given by

(3.12) Dω̃(ω̃o)ω̃′ = DFM (ω̃o)w̃′.

Set
S(q) = [R(q)− I]T G0[R(q)− I]

and consider perturbations δ̃k for k = 1, ..., N of ω̃o. Possible functionals are
given by

(3.13) J(q) =
N∑

k=1

pk
FM (ω̃o + δ̃k)T S(q)FM (ω̃o + δ̃k)

FM (ω̃o + δ̃k)T G0FM (ω̃o + δ̃k)

and

(3.14) J0(q) =
N∑

k=1

pk
[FM (ω̃o) + DFM (ω̃o)δk]T S(q)[FM (ω̃o) + DFM (ω̃o)δk]
[FM (ω̃o) + DFM (ω̃o)δk]T G0[FM (ω̃o) + DFM (ω̃o)δk]

In the next section we consider the functional (3.13) for a simple wind field model
describing a vortex moving across the observation region with two radars.
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5. Numerical Study.

We propose the following general algorithmic procedure for scanning optimiza-
tion.

1. Input estimated wind field.

2. Generate an ensemble of perturbed wind fields about the estimated.

3. Advance the model for each perturbed wind field to obtain an ensemble
of predicted fields.

4. Generate an admissible scan parameter.

5. Calculate a retrieved wind field based on that scan parameter for each of
the ensemble of perturbed wind fields.

6. Calculate a relative error between the retrieved and the model wind fields
over the ensemble of perturbations.

7. Select scan parameter minimizing the relative error functional.

8. Use the selected scan parameter to make actual radar measurements.

9. Based on the radar measurements estimate wind fields.

10. Return to 1. and repeat the procedure.

To start the procedure the initial estimated wind field may be taken to be the
zero wind field. Thus, the ensemble of random fields obtained as perturbations
of the zero wind field is used to start the procedure. With an ensemble of
randomly generated fields, any direction is as good as any other direction for
scanning. Thus, in the initial stages sitting and spinning of the radar can be
considered to be optimal. In this instance one may observe that the relative
error is a constant function of the scanning vector. When the functional is no
longer constant an optimal scanning direction may be determined. It is then
used to as the direction in which the radars are pointed to actually collect
data. The retrieved wind field based on that scanning vector is the estimated
wind field to be used in the beginning of the next iteration. Perturbations of
that estimate are advanced using the model to construct the ensemble of likely
wind fields. The procedure repeats determining the scanning direction that is
optimal with respect to that ensemble. Although it is stated that the optimal
scanning parameters are used, in the example present here the optimization is
with respect to small admissible set of sixteen directions, four possible directions
for each radar site. Optimization with respect to larger and more complicated
admissible sets of scanning vectors will be considered in subsequent work.

16



To construct an example, we begin by specifying a wind field evolving with
time that models a vortex event moving across the observational region. The
resulting wind field serves as ”truth” to be observed with various scanning
strategies. It is necessary to specify the path as a function of time along with a
vector field modelling the vortex. This is superimposed on a background that
for this example is zero. The center of the generated test vortex is given by

(4.1) x0(t) = [10t, 10t + 10, 0]T

The wind field at time t is obtained by

(4.2) u(x, t) = [− ∂ψ

∂x2
,

∂ψ

∂x1
, 0]

where

(4.3) ψ(x, t) = −exp[(
|x− x0(t)|

R
− 1)−1]

In the example the time parameter takes integer values t = 0, 1, ..., 15. For the
purpose of the numerical experiment we use the model

(4.4) u(x, t + dt) = u(x, t) + dt
∂u(x, t)

∂t

In terms of the model function define

(4.5) FM (u(x, t)) = u(x, t) + dt
∂u(x, t)

∂t

As described in the above procedure, we start with an initial estimate of wind
velocity being zero over the observational domain. To capture uncertainty in the
estimate and the direction of propagation the estimate is randomly perturbed
along with the partial derivative to obtain an ensemble of possible wind fields at
the next step. For a given scanning vector, a retrieved estimate is obtained for
each member of the ensemble. The resulting collection of retrieved wind field is
compared with the ensemble members by means of the relative retrieval error
functional. Hence, the relative retrieval error is a function of the given scanning
vector. An optimal scanning vector is determined by selecting that scanning
vector minimizing the relative retrieval functional. In the present example, the
admissible set consists of only 16 direction vectors, 4 for each radar site. It is
possible to conduct minimization by exhaustively searching the admissible set
at each step.

In Figures 1 through 15 are portrayed the scanning location and coverage
of each radar is indicated by the shaded region. Also, the vortex location and
wind directions are easily noted. The vectors that are out of line with the
vortex vectors are estimated wind vectors. It can be seen that wind vectors
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are estimated even outside of the coverage regions if some portion of the vortex
intersects the coverage region. This is due to the weak inclusion of the divergence
condition. If there is no intersection with the coverage region, the estimate is
zero, and the radar coverage is random. In this example, the coverage anticipates
the next location of the vortex and adjusts the coverage appropriately. The
exception is in Figure 12. In Figure 13 adjustment is made that seems more
reasonable.
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Figure 1: Time = 1
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Figure 2: Time = 2
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Figure 3: Time = 3
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Figure 4: Time = 4
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Figure 5: Time = 5
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Figure 6: Time = 6
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Figure 7: Time = 7
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Figure 8: Time = 8
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Figure 9: Time = 9
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Figure 10: Time = 10
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Figure 11: Time = 11
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Figure 12: Time = 12
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Figure 13: Time = 13
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Figure 14: Time = 14
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Figure 15: Time = 15
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