1. If H is a finite index subgroup in a group G, prove that there is a subgroup N of G contained in H and of finite index in G such that $aNa^{-1} = N$ for all $a \in G$.

2. If N is a normal subgroup of a group G, N is finite, H is a subgroup of G of finite index and the index $[G : H]$ and the order $|N|$ are relatively prime, prove that $N \subset H$.

3. Let $\alpha = (12)(34)$ and $\beta = (24)$. Show that the group generated by α and β is isomorphic to D_4.

4. For each bilinear symmetric function $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ below given by its matrix in the standard basis determine the dimension of the kernel and the maximal dimension of a subspace on which the function is positive definite.

- a) \[
\begin{pmatrix}
1 & 2 \\
2 & -1
\end{pmatrix}
\]
- b) \[
\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix}
\]
- c) \[
\begin{pmatrix}
1 & -3 \\
-3 & 2
\end{pmatrix}
\]

5. Consider $V = \mathbb{C}$ as a vector space of dimension 2 over \mathbb{R}.

- a) Show that $\alpha : \mathbb{C} \times \mathbb{C} \to \mathbb{R}$ given by $\alpha(z, w) = Re(z\bar{w})$ is a positive definite bilinear symmetric function.
- b) Let $z \in \mathbb{C}$ and $L_z : \mathbb{C} \to \mathbb{C}$ be the map $w \to zw$. What is the matrix of L_z with respect to the basis $(1, i)$ of \mathbb{C} over \mathbb{R}?
- c) For which complex numbers z do we have $\alpha(L_z(w_1), L_z(w_2)) = \alpha(w_1, w_2)$ for any $w_1, w_2 \in \mathbb{C}$?