Review Problems for Test 1

MATH 2443-006, Spring 04

1. Let \(f(x, y) = \sqrt{36 - 4x^2 - 9y^2} \)

 a) Describe and sketch the domain of \(f \).

 b) Since \(P(-1/2, 1) \) is in the domain, there is a level curve for \(f \) at \(C \) which passes through \(P \). Find the value \(C \).

2. Find the limit or show that it does not exist

 a) \(\lim_{(x,y) \to (0,0)} \frac{(x-y)^2}{x^2+y^2} \)

 b) \(\lim_{(x,y) \to (0,0)} \frac{x^3+y^3}{x^2+y^2} \)

3. Use linear approximation to approximate a suitable function \(f(x,y) \) and thereby estimate the following

 \((0.99e^{0.02})^8 \)

4. Consider the surface \(xyz = 30 \)

 a) Find the plane tangent to the surface at the point \((2, 3, 5) \)

 b) Give a parametric equation for the line normal to the surface at \((2, 3, 5) \)

5. Given \(z = e^r \cos \theta, \ r = st, \ \theta = \sqrt{s^2+t^2} \), find \(\frac{\partial z}{\partial s} \) and \(\frac{\partial z}{\partial t} \).

6. Find the maximum rate of change of \(f(x, y) = x^2y + y^2z \) at the point \(P(1, 2, -1) \) and the direction in which it occurs.

7. Compute the derivative of \(f(x, y, z) = e^x + yz \) at \(P(1, 1, 1) \) in the direction of \(\mathbf{v} = (1, -1, 1) \).

8. Find the local maximum and minimum values and saddle points of the function \(f(x, y) = 4xy + 2x^2y - xy^2 \).
9. Find the absolute maximum and minimum of \(f(x, y) = y\sqrt{x} - y^2 - x + 6y \) on the rectangle \(0 \leq x \leq 9, \ 0 \leq y \leq 5 \).

10. Find 3 positive numbers whose sum is 100 and whose product is a maximum.

11. Use Lagrange multipliers to find the maximum and minimum values of the function \(f(x, y) = x^2 + y^2 \) subject to the constraint \(x^4 + y^4 = 1 \).