1) Find the derivatives of the following functions:

1. \(y = \frac{x \sin x}{\cos x} \);
2. \(g(\theta) = \frac{\tan \theta - 1}{\sec \theta} \);
3. \(h(t) = \tan(\sin t + \cos t) \);
4. \(f(t) = \sqrt{1 + \tan t} \)

2) Find all the points on the graph of \(f(x) = 2 \sin x + (\sin x)^2 \), where the tangent line is horizontal.

3) Find \(\frac{dy}{dx} \) and \(\frac{d^2y}{dx^2} \) by implicit differentiation:

1. \(4 \cos x \sin y = 1 \);
2. \(x^2 - xy^2 = 5y \)

4) Find

1. \(D^{100} \sin 2x \);
2. \(D^n \left(\frac{1}{x} \right) \)

5) A particle moves along a straight line with the displacement function \(s(t) = 20 \sin(5t + 3) \)

1. find the velocity and acceleration of the particle;
2. find the acceleration after 1 second;
3. when is the speed maximal?

6) A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a speed 2 ft/sec, how fast is the angle between the top of the ladder and the wall changing when the angle is \(\pi/4 \) rad?

7) Use linear approximation to estimate \((2.01)^6\).