Review Problems for Test I

Honors Calculus I

1) Let \(f(x) = \frac{1}{x}, \ g(x) = x^3 \) and \(h(x) = x^2 + 2 \). Find \(f \circ g \circ h \).

2) Express \(H(x) = \sin^4(\sqrt{x}) \) in the form \(f \circ g \circ h \).

3) Determine whether the following limits exist. If yes, evaluate.
 1. \(\lim_{t \to 2} \frac{t^2 + t - 6}{t^2 - 4} \);
 2. \(\lim_{h \to 0} \frac{(1+h)^4 - 1}{h} \);
 3. \(\lim_{x \to 2} \frac{|x-2|}{x-2} \);
 4. \(\lim_{x \to 0} \sqrt{x^2 + x^3} \sin \frac{2x}{x^4} \).

4) Prove each of the following statements using the \(\epsilon - \delta \) definition of a limit.
 1. \(\lim_{x \to 9} (4x + 11) = 19 \);
 2. \(\lim_{x \to 0} x^3 = 0 \).

5) Find the points at which \(f(x) \) is discontinuous
 \[f(x) = \begin{cases}
 2x - 2 & \text{if } x \leq -1 \\
 3x & \text{if } -1 < x < 1 \\
 2x + 1 & \text{if } x \geq 1
 \end{cases} \]

6) Find the constant \(c \) that makes \(g(x) \) continuous on \((-\infty, +\infty)\)
 \[g(x) = \begin{cases}
 x^2 - c^2 & \text{if } x < 4 \\
 cx + 20 & \text{if } x \geq 4
 \end{cases} \]

7) Prove that the equation
 \[x^5 - x^2 + 2x + 3 = 0 \]
 has at least one real root.

8) Find an equation of the tangent line to the curve at a given point.
1. \(y = 1/\sqrt{x} \), at \(P(4, \frac{1}{2}) \);

2. \(y = x^2 + 1 \), at \(P(1, 2) \).