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1. Introduction

The Steinberg Tensor Product Theorem is a fundamental result in the modular
representation theory of algebraic groups. The purpose of the present article is
to formulate and prove the analogous theorem for the supergroup GL(m|n). This
result was first mentioned without proof in [2]. We emphasize that our approach
closely parallels the analogous result for the supergroup Q(n) proven by Brundan
and Kleshchev [1], which in turn follows the approach of Cline, Parshall, and Scott
[3].

The preliminaries are outlined in section 2. They are an abbreviated form of
what can be found in [2] and [7]. Sections 3 and 4 contain the new results of the
present article with the main theorem being the following version of the Steinberg
Tensor Product Theorem.

Before stating the result, we require some notation. We direct the reader
to section 2 for precise statements of definitions. Throughout, let k be a fixed
ground field of characteristic p > 0 which is algebraically closed. All objects under
discussion are defined over k. Let T be the maximal torus of GL(m|n) consisting
of diagonal matrices. We identify the character group X(T ) = Hom(T, Gm) with
the free abelian group on generators ε1, . . . , εm+n, where εi picks out the ith entry
of a diagonal matrix. We call the set

X+(T ) :=

{
λ =

m+n∑
i=1

λiεi ∈ X(T ) : λ1 ≥ · · · ≥ λm and λm+1 ≥ · · · ≥ λm+n

}
,

the set of dominant weights. The irreducible GL(m|n)-supermodules are parame-
terized by highest weight by the set X+(T ) and we write L(λ) for the irreducible
supermodule of highest weight λ ∈ X+(T ). A weight is p-restricted if it is dominant
and λi − λi+1 < p for i = 1, . . . ,m − 1 and i = m + 1, . . . ,m + n − 1. Denote the
set of p-restricted weights by X+

p (T ).
Let F : GL(m|n) → GL(m) × GL(n) be the Frobenius morphism given by

raising entries to the pth power. Given a GL(m) × GL(n)-supermodule M we
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can view it as a GL(m|n)-supermodule via inflation through F. We call this the
Frobenius twist of M and denote by F ∗M.

Theorem 1.1 (Steinberg Tensor Product Theorem). For λ ∈ X+
p (T ) and µ ∈

X+(T ),
L(λ + pµ) ∼= L(λ)⊗ F ∗L′(µ),

where L′(µ) denotes the irreducible GL(m)×GL(n)-supermodule of highest weight
µ.

Acknowledgements. This work was done as part of the author’s Ph.D. thesis at
the University of Oregon [8]. The author is grateful for the guidence and patience
of his advisor, Jonathan Brundan.

2. Definitions and Basic Results

In this section we outline the basic definitions and results we require. For an
account of the basic language of superalgebras and supergroups adopted here, we
refer the reader to [1], [2], and [7]; see also [4], [5], [9, ch.I] and [10, ch.3, §§1–2,
ch.4, §1].

2.1. The supergroup GL(m|n). We use the language of supergroup schemes
to define GL(m|n). Our approach parallels that of [4]. Throughout, let k be an
algebraically closed field of characteristic p > 0. All objects (superalgebras, super-
groups, . . . ) will be defined over k. A superspace is a Z2-graded k-vector space.
If V is a superspace and v ∈ V is a homogeneous vector, then we write v ∈ Z2

for the degree of v. A commutative superalgebra is a Z2-graded associative algebra
A = A0̄ ⊕ A1̄ with ab = (−1)āb̄ba for all homogeneous a, b ∈ A. If p = 2 we also
assume that a2 = 0 for all a ∈ A1̄. A morphism of superalgebras is a homomor-
phism of graded algebras; that is, it is an algebra homomorphism which preserves
the Z2-grading.

The supergroup G = GL(m|n) is the functor from the category of commutative
superalgebras to the category of groups defined on a commutative superalgebra A
by letting G(A) be the group of all invertible (m + n) × (m + n) matrices of the
form

(2.1) g =
(

W X
Y Z

)
where W is an m×m matrix with entries in A0̄, X is an m×n matrix with entries
in A1̄, Y is an n×m with entries in A1̄, and Z is an n× n matrix with entries in
A0. If f : A → B is a superalgebra homomorphism, then G(f) : G(A) → G(B) is
the group homomorphism defined by applying f to the matrix entries.

Let Mat be the affine superscheme with Mat(A) consisting of all (not neces-
sarily invertible) (m+n)×(m+n) matrices of the above form. For 1 ≤ i, j ≤ m+n,
let Ti,j be the morphism defined by having Ti,j : Mat(A) → A map a matrix to
its ij-entry. Then the coordinate ring k[Mat] is the free commutative superalgebra
on the generators Ti,j (1 ≤ i, j ≤ m + n) with Ti,j having parity ī + j̄, where we
write i = 0̄ for i = 1, . . . ,m and i = 1̄ for i = m + 1, . . . ,m + n. By [9, I.7.2], a
matrix g ∈ Mat(A) of the form (2.1) is invertible if and only if detW det Z ∈ A×,
where here det denotes the usual matrix determinant. Hence, G is the principal
open subset of Mat defined by the function det : g 7→ detW det Z. In particular,
the coordinate ring k[G] is the localization of k[Mat] at det.
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Just as for group schemes [4, I.2.3], the coordinate ring k[G] has the naturally
induced structure of a Hopf superalgebra. Explicitly, the comultiplication and
counit are the unique superalgebra maps satisfying

∆(Ti,j) =
m+n∑
h=1

Ti,h ⊗ Th,j ,(2.2)

ε(Ti,j) = δi,j(2.3)

for all 1 ≤ i, j ≤ m + n.
By definition a representation of G means a natural transformation ρ : G →

GL(M) for some vector superspace M , where GL(M) is the supergroup with
GL(M)(A) being equal to the group of all even automorphisms of the A-supermodule
M ⊗A, for each commutative superalgebra A. Equivalently, as with group schemes
[4, I.2.8], M is a right k[G]-cosupermodule. That is, there is a Z2-grading preserv-
ing structure map η : M → M ⊗ k[G] satisfying the usual comodule axioms. We
will usually refer to such an M as a G-supermodule.

If ρ : G → GL(M) and ρ′ : G → GL(M ′) are two representations of G, then
a morphism of representations is a linear map f : M → M ′ such that for any
commutative superalgebra A we have ρ′(g)(f(m)) = f(ρ(g)(m)) for all g ∈ G(A)
and all m ∈ M ⊗A. In the language of k[G]-cosupermodules, if η : M → M ⊗ k[G]
and η′ : M ′ → M ′⊗k[G] are the cosupermodule structure maps, then f : M → M ′

is a morphism if f ⊗ 1 ◦ η = η′ ◦ f.
We denote by G-mod the category of all G-supermodules. We emphasize that

we allow all morphisms and not just graded (i.e. even) morphisms. However, note
that for superspaces M and M ′ the space Homk(M,M ′) is naturally Z2-graded
by declaring f ∈ Homk(M,M ′)r if f(Ms) ⊆ M ′

s+r for all s ∈ Z2. This gives a
Z2-grading on HomG(M,M ′) ⊆ Homk(M,M ′). We remark that G-mod is not an
abelian category. However, the underlying even category of G-mod, consisting of the
same objects as G-mod but only the even morphisms, is an abelian category. This,
along with the parity change functor Π, which, roughly speaking, interchanges the
Z2-grading of a supermodule, allows one to make use of the tools of homological
algebra.

The underlying purely even group Gev of G is by definition the functor from
superalgebras to groups given by Gev(A) = G(A0̄). Thus, Gev(A) consists of all
invertible matrices of the form (2.1) with X = Y = 0, so Gev

∼= GL(m) × GL(n).
Let T be the usual maximal torus of Gev consisting of diagonal matrices. The
character group X(T ) = Hom(T, Gm) as defined in [4, I.2.4] can then be identified
with the free abelian group on generators ε1, . . . , εm+n, where εi is the function
which picks out the ith diagonal entry of a diagonal matrix. Let B denote the
subgroup of G given by letting B(A) equal the set of all of all upper triangular
invertible matrices of the form (2.1). We call this the standard Borel subgroup. Note
that the underlying purely even subgroup, Bev, is given by the upper triangular
matrices in Gev.

The root system of G is the set Φ = {εi − εj : 1 ≤ i, j ≤ m + n, i 6= j}. There
are even and odd roots, the parity of the root εi − εj being ī + j̄. Our choice of
Borel subgroup, B, defines a set,

(2.4) Φ+ = {εi − εj : 1 ≤ i < j ≤ m + n},
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of positive roots. The simple roots then are εi − εi+1 where i = 1, . . . ,m + n − 1.
The corresponding dominance order on X(T ) is denoted ≤, defined by λ ≤ µ if
µ− λ can be written as the sum of positive roots.

2.2. The Superalgebra of Distributions. Just as for algebraic groups [4,
I.7.7] one can abstractly define the superalgebra of distributions Dist(G) of G. We
sketch how this is done. Let I be the kernel of the counit ε : k[G] → k, a superideal
of k[G]. For r ≥ 0, let

Distr(G) = {x ∈ k[G]∗ : x(Ir+1) = 0} ∼= (k[G]/Ir+1)∗,

Dist(G) =
⋃
r≥0

Distr(G).

There is a multiplication on k[G]∗ dual to the comultiplication on k[G], defined by
(xy)(f) = (x⊗̄y)(∆(f)) for x, y ∈ k[G]∗ and f ∈ k[G]. Note here (and elsewhere) we
are implicitly using the superalgebra rule of signs: (x⊗̄y)(f ⊗ g) = (−1)ȳf̄x(f)y(g)
where y and f are assumed to be homogeneous. The general case is obtained via
linearity. In fact, Dist(G) is a subsuperalgebra of k[G]∗ (see [2]).

In the case when G = GL(m|n), however, we can describe Dist(G) explic-
itly as the reduction modulo p of the universal enveloping superalgebra of the Lie
superalgebra gl(m|n, C). We now describe how this can be done.

Recall that gl(m|n, C) is the Lie superalgebra given by letting gl(m|n, C) be
the set of all (m + n)× (m + n) matricies over C. If for 1 ≤ i, j ≤ m + n we write
ei,j for the ij matrix unit, then the ei,j provide a homogeous basis with the degree
of ei,j defined to be i + j. The bracket is given by

(2.5) [ei,j , ek,l] = δj,kei,l − (−1)(i+j)(k+l)δi,lek,j

By the PBW theorem for Lie superalgebras (see [5]) we have that the universal
enveloping superalgebra of gl(m|n, C), UC, has basis consisting of all monomials∏

1≤i,j≤m+n
ī+j̄=0̄

e
ai,j

i,j

∏
1≤i,j≤m+n

ī+j̄=1̄

e
di,j

i,j

where ai,j ∈ Z≥0, di,j ∈ {0, 1}, and the product is taken in any fixed order. We
shall write hi = ei,i for short.

Define the Kostant Z-form UZ to be the Z-subalgebra of UC generated by
elements ei,j (1 ≤ i, j ≤ m + n, ī + j̄ = 1̄), e

(r)
i,j (1 ≤ i, j ≤ m + n, i 6= j, ī + j̄ =

0̄, r ≥ 1), and
(
hi

r

)
(1 ≤ i ≤ m + n, r ≥ 1). Here, e

(r)
i,j := er

i,j/(r!) and
(
hi

r

)
:=

hi(hi − 1) · · · (hi − r + 1)/(r!). Following the proof of [11, Th.2], one verifies the
following lemma.

Lemma 2.1. The superalgebra UZ is a free Z-module with basis given by the set
of all monomials of the form∏

1≤i,j≤m+n
i 6=j,̄i+j̄=0̄

e
(ai,j)
i,j

∏
1≤i≤m+n

(
hi

ri

) ∏
1≤i,j≤m+n

ī+j̄=1̄

e
di,j

i,j

for all ai,j , ri ∈ Z≥0 and di,j ∈ {0, 1}, where the product is taken in any fixed order.
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The enveloping superalgebra UC is a Hopf superalgebra in a canonical way,
hence UZ is a Hopf superalgebra over Z. Consequently, k⊗Z UZ is naturally a Hopf
superalgebra over k. It is known, for example by [2, Thm. 3.2], that

Dist(G) ∼= k ⊗Z UZ

as Hopf superalgebras. We identify these Hopf superalgebras and will abuse no-
tation by using the same symbols e

(r)
i,j ,

(
hi

r

)
, etc. for the canonical images of these

elements of UZ in Dist(G). Note that the monomials given in Lemma 2.1 form a
homogeneous basis of Dist(G).

It is also easy to describe the superalgebras of distributions of our various
natural subgroups of G as subalgebras of Dist(G). For example, Dist(T ) is the
subalgebra generated by all

(
hi

r

)
(1 ≤ i ≤ m+n, r ≥ 1), Dist(Bev) is the subalgebra

generated by Dist(T ) and all e
(r)
i,j (1 ≤ i, j ≤ m + n, i < j, ī + j̄ = 0̄, r ≥ 1),

and Dist(B) is the subalgebra generated by Dist(Bev) and all ei,j (1 ≤ i, j ≤
m + n, ī + j̄ = 1̄, i < j).

Let us describe the category of Dist(G)-supermodules. The objects are all
left Dist(G)-modules which are Z2-graded: that is, k-superspaces, M, satisfying
Dist(G)rMs ⊆ Mr+s for r, s ∈ Z2. A morphism of Dist(G)-supermodules is a lin-
ear map f : M → M ′ satisfying f(xm) = (−1)f xxf(m) for all m ∈ M and all
x ∈ Dist(G). Note that this definition makes sense as stated only for homogeneous
elements; it should be interpreted via linearity in the general case. We emphasize
that morphisms are not necessarily even. However, the Hom-spaces are naturally
Z2-graded and our remarks about the category G-mod made in the previous sub-
section apply here as well.

For λ =
∑m+n

i=1 λiεi ∈ X(T ) and a Dist(G)-supermodule M , define the λ-weight
space of M to be

(2.6) Mλ =
{

m ∈ M :
(

hi

r

)
m =

(
λi

r

)
m for all 1 ≤ i ≤ m + n, r ≥ 1

}
.

We call a Dist(G)-supermodule M integrable if it is locally finite over Dist(G) and
satisfies M =

∑
λ∈X(T ) Mλ.

If M is a G-supermodule then we can view M as a Dist(G)-supermodule as
follows. Given a G-supermodule M with structure map η : M → M ⊗ k[G], we can
view M as a Dist(G)-supermodule by xm = (1⊗̄x ◦ η)(m). In fact, in this way we
obtain a functor from G-mod to the category of Dist(G)-supermodules. Moreover,
the notion of weight space defined above for Dist(G)-supermodules coincides with
the usual notion of weight space of M with respect to the torus T. It is then
straightforward to verify that the G-supermodule M is integrable when viewed as
a Dist(G)-supermodule. We prove the following theorem in [2, Corollary 3.5].

Theorem 2.2. The category G-mod is isomorphic to the full subcategory of
integrable Dist(G)-supermodules via the aforementioned functor.

In view of this result, we will not distinguish between G-supermodules and
integrable Dist(G)-supermodules in what follows.

2.3. Classification of irreducible GL(m|n)-supermodules. Now we de-
scribe the classification of the irreducible representations of G by their highest
weights. It seems to be more convenient to work first in the category Op : the
full subcategory of all Dist(G)-supermodules M such that M =

⊕
λ∈X(T ) Mλ and
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M is locally finite over Dist(B). This is an analogue of Bernstein, Gelfand and
Gelfand’s category O in classical Lie theory. We remark that Theorem 2.2 implies
that G-mod can be viewed as a full subcategory of Op. From now on we will assume
all Dist(G)-supermodules under discussion are objects in Op.

For λ ∈ X(T ), we have the Verma supermodule

M(λ) := Dist(G)⊗Dist(B) kλ,

where kλ denotes k viewed as a Dist(B)-supermodule of weight λ concentrated in
degree 0̄. Note that by Lemma 2.1 it follows that M(λ) is an object in Op. We say
that a homogeneous vector v in a Dist(G)-supermodule M is a primitive vector of
weight λ if Dist(B)v ∼= kλ as a Dist(B)-supermodule. Familiar arguments show
that M(λ) is universal among all supermodules of Op which are generated by a
primitive vector of weight λ and M(λ) has a unique maximal subsupermodule,
hence an irreducible quotient which we denote by L(λ). Taken together these imply
that {L(λ) : λ ∈ X(T )} gives a complete set of pairwise non-isomorphic irreducibles
in Op. In this way, we get a parametrization of the irreducible objects in Op by
their highest weights with respect to the ordering ≤.

Now we pass from Op to G-mod. Recall that

X+(T ) =

{
λ =

m+n∑
i=1

λiεi ∈ X(T ) : λ1 ≥ · · · ≥ λm, λm+1 ≥ · · · ≥ λm+n

}
denotes the set of all dominant integral weights. The proof of the following lemma
is due to Kac [6] (see also [2]).

Lemma 2.3. Given any λ ∈ X(T ), L(λ) is finite dimensional if and only if
λ ∈ X+(T ). In particular, the supermodules {L(λ)}λ∈X+(T ) form a complete set of
pairwise non-isomorphic irreducible supermodules in G-mod.

3. Frobenius Kernels

For r ≥ 1, we define the Frobenius morphism F r : G → Gev by having F r :
G(A) → Gev(A) raise each matrix entry to the prth power for any commutative
superalgebra A. Note that for a ∈ A1, apr

= 0 so the morphism makes sense.
Let Gr denote the kernel of F r, the rth Frobenius kernel, a normal subgroup of G.
Similarly, let Gev,r denote the kernel of F r|Gev , Br denote the kernel of F r|B , etc.

Lemma 3.1. F r : G → Gev is a quotient of G by Gr in the category of super-
schemes. That is, for any morphism f : G → S of superschemes which is constant
on Gr(A)-cosets of G(A) for all commutative superalgebras A, there is a unique
morphism f̃ : Gev → S such that f = f̃ ◦ F r.

Proof. Let π : G → Gev be the superscheme morphism defined by projection.
That is, if g ∈ G(A) is as in (2.1), then π acts as the identity on the entries of W
and Z, and sends the entries of X and Y to zero. Let f : G → S be a morphism
of superschemes which is constant on Gr(A)-cosets. For any element g ∈ G(A)
written as in (2.1) we have(

Im XZ−1

Y W−1 In

)−1 (
W X
Y Z

)
=

(
W 0
0 Z

)
,

where Ik denotes the k×k identity matrix. That is, hg = π(g) for some h ∈ Gr(A).
Thus f = f |Gev ◦ π. However from the purely even theory (see [4, I.9.5]), F r|Gev
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is a quotient of Gev by Gev,r. Consequently, since f |Gev is constant on Gev,r-cosets
of Gev, there is a unique morphism f̃ : Gev → S such that f |Gev = f̃ ◦ F r|Gev .
Therefore f = f |Gev ◦ π = f̃ ◦ F r|Gev ◦ π = f̃ ◦ F r. �

Observe that k[Gr] ∼= k[G]/Ir where Ir is the ideal generated by {T pr

i,j , T pr

k,k−1 :
1 ≤ i, j, k ≤ m+n, i 6= j}. Consequently, a basis for k[Gr] is given by the monomials
in T

ai,j

i,j for 1 ≤ i, j ≤ m+n, where ai,j ∈ {0, 1, . . . , pr−1} if i+j = 0 and ai,j ∈ {0, 1}
if i+ j = 1, with the product taken in any fixed order. In particular, the dimension
of k[Gr] is finite so by definition Gr is a finite algebraic supergroup. Moreover the
pr-th power of any element of I := Ker(ε : k[Gr] → k) lies in Ir so I is nilpotent.
That is, Gr is infinitesimal and, consequently, Dist(Gr) can be identified with the
Hopf superalgebra dual of k[Gr]. It follows as in [4, I.8.1-6] that the category of Gr-
supermodules is isomorphic to the category of Dist(Gr)-supermodules. Also, under
this identification we can take as our basis for Dist(Gr) ⊂ Dist(G) the ordered
PBW monomials

(3.1)
∏

1≤i,j≤m+n
i<j

e
(aj,i)
j,i

∏
1≤k≤m+n

(
hk

dk

) ∏
1≤i,j≤m+n

i<j

e
(ai,j)
i,j ,

where ai,j , dk ∈ {0, . . . , pr−1} for 1 ≤ i, j, k ≤ m+n when i+j = 0, and ai,j ∈ {0, 1}
when i + j = 1. Similarly we can describe bases for Dist(Br), etc. From this we
observe the following lemma.

Lemma 3.2. Dist(Gr) is a free right Dist(Br)-supermodule with basis given by
the ordered monomials ∏

1≤i,j≤m+n
i<j

e
(aj,i)
j,i ,

where ai,j ∈ {0, . . . , pr − 1} when i + j = 0, and ai,j ∈ {0, 1} when i + j = 1.

Having identified the representations of Gr and Br with Dist(Gr)-supermodules
and Dist(Br)-supermodules, respectively, we have the induction functor given by

indGr

Br
M = Dist(Gr)⊗Dist(Br) M.

From Lemma 3.2 we see this is an exact functor which is left adjoint to restric-
tion. Given λ ∈ X(T ), let kλ denote k viewed as a Tr-supermodule of weight λ
concentrated in degree 0̄. The classical theory [4, II.3.7] gives the following lemma.

Lemma 3.3. The set {kλ : λ ∈ X(T )} is a complete family of irreducible Tr-
supermodules. Moreover, kλ

∼= kµ if and only if λ− µ ∈ prX(T ).

Furthermore, {kλ : λ ∈ X(T )} provides a complete set of irreducible Br-
supermodules via inflation. For λ ∈ X(T ), define

Zr(λ) = indGr

Br
kλ.

Let Lr(λ) denote the Gr-head of Zr(λ).

Proposition 3.4. {Lr(λ) : λ ∈ X(T )} is a complete set of irreducible Gr-
supermodules. Furthermore, Lr(λ) ∼= Lr(µ) if and only if λ− µ ∈ prX(T ).
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Proof. Let U− denote the unipotent radical of the lower Borel; that is, U−(A)
is the subgroup of G(A) given by lower triangular matricies with ones along the
diagional. Then by definition U−

r is the kernel of F r restricted to U−.
Observe that by Lemma 3.2 we have that Zr(λ) ∼= Dist(U−

r ) as U−
r -supermodules.

Consequently we have

dimk HomU−r
(Zr(λ), k) = dimk HomU−r

(Dist(U−
r ), k) = 1.

Thus Zr(λ) has an irreducible U−
r -head and it then follows that Zr(λ) has an

irreducible Gr-head. That is, Lr(λ) is irreducible.
Now if L is an irreducible Gr-supermodule then we can choose λ ∈ X(T ) so that

HomBr
(kλ, L) 6= 0. By Frobenius reciprocity L is isomorphic to a quotient of Zr(λ),

hence L ∼= Lr(λ). Finally, from the classification of the irreducible supermodules
of Br we see that Lr(λ) ∼= Lr(µ) if and only if λ− µ ∈ prX(T ). �

4. The Steinberg Tensor Product Theorem

We are now able to prove the Steinberg Tensor Product Theorem for GL(m|n).

Lemma 4.1. Let L be an irreducible G-supermodule. Then L is completely
reducible as a G1-supermodule.

Proof. Let L1 be an irreducible supermodule in the G1-socle of L. Since
G1 is a normal subgroup of G each translate, gL1, by an element g ∈ G(k) is an
irreducible G1-subsupermodule of L. Thus

M :=
∑

g∈G(k)

gL1

is a completely reducible G1-subsupermodule of L. It suffices, then, to prove M =
L. Since L is irreducible it suffices to to show M is Dist(G)-stable. Clearly M
is G(k)-stable. Since G(k) = Gev(k) is dense in Gev, M is necessarily a Gev-
supermodule by [4, I.6.16, I.2.12(5)]. That is, M is Dist(G1) and Dist(Gev)-stable.
However Dist(G) is generated by Dist(G1) and Dist(Gev), so M is Dist(G)-stable.

�

Lemma 4.2. Let λ ∈ X+(T ). Then Dist(G1)L(λ)λ is a G1-subsupermodule of
L(λ) isomorphic to L1(λ).

Proof. As a B-supermodule L(λ)λ
∼= kλ, so they are isomorphic as B1-

supermodules as well. Thus there is a B1-supermodule homomorphism kλ → L(λ)
with image L(λ)λ. By Frobenius reciprocity we have a nonzero G1-supermodule ho-
momorphism Z1(λ) → L(λ) with image Dist(G1)L(λ)λ. By Lemma 4.1 Dist(G1)L(λ)λ

is completely reducible as a G1-supermodule while Z1(λ) has irreducible G1(λ)-
head, L1(λ). Consequently Dist(G1)L(λ)λ is an irreducible G1-supermodule iso-
morphic to L1(λ). �

Recall that we say a weight λ ∈ X+(T ) is p-restricted if it is dominant and
λi−λi+1 < p for i = 1, . . . ,m− 1 and i = m + 1, . . . ,m + n− 1 and that we denote
the set of p-restricted weights by X+

p (T ).

Lemma 4.3. For λ ∈ X+
p (T ), the irreducible G-supermodule L(λ) is irreducible

as a G1-supermodule and L(λ) ∼= L1(λ) as G1-supermodules.
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Proof. Throughout the proof we write eα for ei,j where εi − εj = α is a root.
Given a monomial of the PBW basis e

(s1)
α1 · · · e(sk)

αk for roots α1, . . . , αk, we define
the total degree of the monomial to be the nonnegative integer s1 + · · ·+ sk.

Let M = Dist(G1)L(λ)λ. By Lemma 4.2 M is isomorphic to L1(λ). Con-
sequently it suffices to show M = L(λ). We do this by showing M is Dist(G)
invariant—hence equal to L(λ) by irreducibility.

First we make several reductions. Note that Dist(G) is generated by Dist(G1)
and Dist(Gev) and M is clearly Dist(G1)-stable, so it suffices to check that it is
Dist(Gev)-stable. Since Dist(Gev) is generated by Dist(Bev) and

A :=
{

e
(r)
−α : r ∈ Z>0, α an even simple root

}
,

it suffices to show M is invariant under the action of Dist(Bev) and the elements
of A. However, Bev normalizes G1 and L(λ)λ is a Bev-subsupermodule of L(λ) so
M is Dist(Bev)-stable. Therefore we have reduced the problem to proving that M
is invariant under the action of the elements of A.

Fix 0 6= vλ ∈ L(λ)λ. By Lemma 3.2 M is spanned by vectors of the form Xvλ

where X is a monomial in the e
(s)
−β ’s for β a positive root and s ∈ {0, 1, . . . , p−1} if

β is even and s ∈ {0, 1} if β is odd. Consequently, it suffices to prove e
(r)
−αXvλ ∈ M

for e
(r)
−α ∈ A and such monomials X. We prove this by inducting on the total degree

of e
(r)
−αX. The base case when the total degree is zero is immediate.
Now assume the total degree of e

(r)
−αX is greater than zero. If the total degree

of X is zero, then we have e
(r)
−αvλ. If r < p then e

(r)
−α ∈ Dist(G1) by (3.1) and the

result is immediate. Now say α = εi − εi+1 and say r > λi − λi+1, then e
(r)
−αvλ = 0

by SL(2) theory. Since λ ∈ X+
p (T ), our two cases cover all possibilities. Thus the

result always holds.
Now assume the total degree of X is greater than zero. We can then write

X = e
(s)
−βY where β is a positive root and s ∈ {1, . . . , p−1} if β is even and s = 1 if

β is odd, and Y is a monomial of total degree strictly less than the total degree of
X. If α+β is not a root, then e

(r)
−αe

(s)
−β = e

(s)
−βe

(r)
−α and the result holds by induction.

If α + β is a root, then using (2.5) we have

e
(r)
−αe

(s)
−β =

∑
ab,c,de

(b)
−βe

(c)
−αe

(d)
−(α+β)

where the sum is over all b, c, d ∈ Z≥0 with rα + sβ = bβ + cα + d(α + β) for some
integral coefficients ab,c,d (c.f. [11, Lemma 8]). Observe that b + d = s so s ≥ b, d

which implies e
(b)
−β , e

(d)
−(α+β) ∈ Dist(G1). Also observe that c + d = r < r + s so by

the inductive assumption e
(c)
−αe

(d)
−(α+β)Y vλ ∈ M. Therefore all terms of the sum lie

in M, proving the desired result.
�

Given a Gev-supermodule, M , we can inflate M to a G-supermodule through
the Frobenius morphism F = F 1 : G → Gev. We denote the resulting G-supermodule
by F ∗M and call it the Frobenius twist of M . This defines a functor from the cate-
gory of Gev-supermodules to the category of G-supermodules. For example, if we let
Lev(µ) be the irreducible Gev-supermodule of highest weight µ, which is simply the
irreducible Gev-module viewed as a supermodule concentrated in degree 0̄, we have
the G-supermodule F ∗Lev(µ). Conversely, if N is a G-supermodule, then there is
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an induced Gev structure on the fixed point space NG1 . Namely, the representation
G → GL(NG1) is constant on G1-cosets so factors through to give a representation
Gev → GL(NG1) by Lemma 3.1. Therefore by taking G1-fixed points we have a
functor from G-supermodules to Gev-supermodules which is right adjoint to F ∗.
We are now prepared to prove the main result.

Theorem 4.4. For λ ∈ X+
p (T ) and µ ∈ X+(T ),

L(λ + pµ) ∼= L(λ)⊗ F ∗Lev(µ),

where Lev(µ) denotes the irreducible Gev-supermodule of highest weight µ.

Proof. For λ ∈ X+
p (T ), L(λ) is irreducible as a G1-supermodule by Lemma 4.3.

By Lemma 4.2 and Proposition 3.4 we know

H := HomG1(L(λ), L(λ + pµ))0 6= 0.

We view H as a G-supermodule by conjugation: the action of u ∈ Dist(G) is given
by (uf)(x) =

∑
i uif(σ(vi)x) for f ∈ H and x ∈ L(λ), where ∆(u) =

∑
i ui⊗vi and

∆ and σ are the comultiplication and antipode of Dist(G), respectively. Checking
directly one can verify that the map H ⊗L(λ) → L(λ + pµ) given by f ⊗ x 7→ f(x)
is an even G-supermodule homomorphism. Since H is nonzero, the map must be
nonzero hence, by the irreducibility of L(λ + pµ), surjective. On the other hand
by the complete reducibility of L(λ + pµ) by Lemma 4.1 and the super version of
Schur’s Lemma,

dimk (H ⊗ L(λ)) = dimk (HomG1(L(λ), L(λ + pµ))0 ⊗ L(λ))

≤ (dimk L(λ + pµ)/ dimk L(λ)) · dimk L(λ)

= dimk L(λ + pµ),

so our map must be an isomorphism. Finally, since the action G1 on H is trivial,
we have H ∼= F ∗M for some Gev-supermodule M . Since L(λ + pµ) is irreducible,
M must be irreducible. Since H has highest weight pµ, M ∼= Lev(µ). �
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