Lecture n_1 : Real, complex and quaternionic representations

(See also Serre, Section 13.2)

Let (ρ, V) be a representation of a finite group G. We say ρ is **real** if there is a choice of basis such that ρ can be represented with real matrices. Equivalently, $V \simeq W \otimes_{\mathbb{R}} \mathbb{C}$ where W is a representation of G over \mathbb{R} .

If ρ is real, then ρ is self-conjugate, i.e., $\rho \simeq \overline{\rho}$. The converse is not true.

Example. Let ρ be the irreducible 2-dimensional representation of Q_8 . Then ρ is self-conjugate but not real.

To see this, we may realize $\rho(i) = \begin{pmatrix} i \\ -i \end{pmatrix}$, $\rho(j) = w := \begin{pmatrix} -1 \\ 1 \end{pmatrix}$. Then $w\rho(g)w^{-1} = \overline{\rho}(g)$ for all g.

On the other hand, suppose there exist $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C})$ such that $\rho'(g) := A\rho(g)A^{-1}$ is real for $g \in Q_8$. After scaling, we may assume $A \in SL_2(\mathbb{C})$ so ad - bc = 1. We compute

$$\rho'(i) = A \begin{pmatrix} i \\ -i \end{pmatrix} A^{-1} = i \begin{pmatrix} ad + bc & -2ab \\ 2cd & -(ad + bc) \end{pmatrix},$$

$$\rho'(j) = A \begin{pmatrix} -1 \\ 1 \end{pmatrix} A^{-1} = \begin{pmatrix} ad + bc & -a^2 - b^2 \\ c^2 + d^2 & -(ad + bc) \end{pmatrix}.$$

Consequently ad + bc = 0, which combined with ad - bc = 1 means $ad = \frac{1}{2} = -bc$. Note that $\rho'(i)^{-1} = \rho'(-i) = -\rho'(i)$. Now $iji^{-1} = -j \in Q_8$ implies

$$\rho'(i)\rho'(j)\rho'(i)^{-1} = -\rho'(j),$$

i.e.,

$$\begin{pmatrix} (2ab)^2(c^2+d^2) \\ (2cd)^2(a^2+b^2) \end{pmatrix} = \begin{pmatrix} a^2+b^2 \\ -(c^2+d^2) \end{pmatrix}.$$

But $2ab, 2cd \in i\mathbb{R}^{\times}$ means 2ab, 2cd < 0 Since both of these matrices must be real, comparing top right entries says $a^2 + b^2$ and $c^2 + d^2$ have opposite signs, whereas comparing the bottom left tells us the opposite. Contradiction.

We will say ρ is **quaternionic** if ρ is self-conjugate but not real. We will say ρ is **(properly)** complex if ρ is not self-conjugate.

Let $V^* = \operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$ denote the dual of V and ρ^* be the contragredient representation:

$$\langle \rho(g)v, \rho^*(g)v^* \rangle = \langle v, v^* \rangle,$$

where $\langle , \rangle : V \times V^* \to \mathbb{C}$ is a bilinear pairing, or equivalently a linear map $V \otimes V^* \to \mathbb{C}$. Different pairing give equivalent definitions of ρ^* .

Lemma 1. Let (ρ, V) be a representation of G. Then $(\overline{\rho}, \overline{V}) \simeq (\rho^*, V^*)$.

Proof. Recall that $\rho^*(g) \simeq {}^t \rho(g)^{-1}$. Hence if $\lambda_1(g), \ldots, \lambda_n(g)$ denote the eigenvalues of $\rho(g)$,

$$\chi_{\rho^*}(g) = \sum \lambda_i(g)^{-1} = \sum \overline{\lambda}_i(g) = \chi_{\overline{\rho}}.$$

(See also Exercise 2.3 in Serre.)

Exercise 1. Suppose V, W are representations of G. Show that $\operatorname{Hom}_{\mathbb{C}}((V \otimes W)^G, \mathbb{C})$ (G-invariant linear forms on $V \otimes W$) is isomorphic (as a vector space) to $\operatorname{Hom}_G(V, W^*)$. (Hint: for $\ell \in \operatorname{Hom}_{\mathbb{C}}((V \otimes W)^G, \mathbb{C})$, consider the map $\alpha : V \to W^*$ given by $v \mapsto (w \mapsto \ell(v \otimes w))$.)

Exercise 2. Suppose V, W are irreducible representations of G. Using the previous exercise, deduce that the tensor representation $V \otimes W$ of G contains the trivial representation if and only if $V \simeq W^*$.

Proposition 1. Let (ρ, V) be an irreducible representation of G. Then $\overline{\rho} \simeq \rho$ if and only if there is a nondegenerate bilinear form $B: V \times V \to \mathbb{C}$ which is G-invariant, i.e.

$$B(\rho(q)v, \rho(q)w) = B(v, w) \quad \forall v, w \in V, q \in G.$$

In this case, B is unique up to scaling.

Proof. A bilinear form on V is equivalent to a linear form on $V \otimes V$, so we may identify $\operatorname{Hom}_{\mathbb{C}}(V \otimes V, \mathbb{C})$ with the bilinear forms on V. Now a G-invariant form is simply an element of $\operatorname{Hom}_{\mathbb{C}}((V \otimes V)^G, \mathbb{C})$. By the first exercise, this is an element of $\operatorname{Hom}_G(V, V^*) \simeq \operatorname{Hom}_G(V, \overline{V})$, which is nonzero if and only if $\overline{V} \simeq V$. Such an element is unique up to scaling as $\dim \operatorname{Hom}_G(V, \overline{V}) \leq 1$ by Schur's Lemma.

Consider the bilinear form B from the proposition. This corresponds to an element in $\operatorname{Hom}_{\mathbb{C}}(V \otimes V, \mathbb{C}) \simeq V^* \otimes V^*$. The G invariance means that B corresponds to the trivial representation in $V^* \otimes V^*$. Recall

$$V^* \otimes V^* = \operatorname{Sym}^2(V^*) \oplus \Lambda^2(V^*).$$

Moreover, B is symmetric (resp. alternating) iff the trivial representation is contained in $\operatorname{Sym}^2(V^*)$ (resp. $\Lambda^2(V^*)$).

Theorem 1. Let (ρ, V) be an irreducible representation of G. Then ρ is real if and only if V has a nondegenerate G-invariant symmetric bilinear form.

Proof. If ρ is real, we can construct a symmetric B as follows. Choose a basis so that the matrices $\rho(g)$ are real. Let B_0 be any nondegenerate bilinear form V. Then averaging B_0 over G gives B.

Suppose V has a nondegenerate G-invariant symmetric bilinear form B. Let (-,-) be a G-invariant inner product on V, conjugate linear in the second variable. Consider the map $\varphi: V \to V$ given by

$$B(v, w) = \overline{(\varphi(v), w)}.$$

This makes φ conjugate linear and bijective. Then φ^2 is \mathbb{C} -linear, and thus an isomorphism. Note

$$(\varphi^2(v), w) = \overline{B(\varphi(v), w)} = \overline{B(w, \varphi(v))} = (\varphi(w), \varphi(v)) = \overline{(\varphi(v), \varphi(w))}.$$

In particular,

$$(\varphi^2(v), v) = (\varphi(v), \varphi(v)) \ge 0$$

for all v. This means all diagonal matrix coefficients for φ^2 are real and positive in any basis. One also sees:

$$(\varphi^2(v), w) = \overline{(\varphi^2(w), v)}.$$

This means that φ^2 is a Hermitian positive-definite matrix.

Fact: There is a unique positive-definite Hermitian Φ such that $\Phi^2 = \varphi^2$. Moreover, $\Phi = P(\varphi^2)$ for some polynomial P. Consequently φ commutes with Φ .

Let $\sigma = \varphi \Phi^{-1}$. Then $\sigma^2 = \varphi^2 \Phi^{-2} = 1$, so σ is diagonalizable. Write $V = V_+ \oplus V_-$ (over \mathbb{R}) where V_{\pm} is the ± 1 -eigenspace of σ . Since σ is conjugate linear, multiplication by i interchanges V_+ and V_- .

Now G-invariance implies φ and σ commute with each $\rho(g)$. Hence V_+ and V_- are G-stable \mathbb{R} -subspaces of V.

Theorem 2 (Frobenius–Schur). Let ρ be an irreducible representation with character χ . Then the Frobenius–Schur indicator

$$\frac{1}{|G|} \sum_{g \in G} \chi(g^2) = \begin{cases} 1 & \text{if } \rho \text{ is real,} \\ 0 & \text{if } \rho \text{ is complex,} \\ -1 & \text{if } \rho \text{ is quaternionic.} \end{cases}$$

Proof. Let χ_{σ} (resp. χ_{α}) denote the character of the symmetric (resp. alternating) square of ρ . Then

$$\frac{1}{|G|} \sum_{g \in G} \chi(g^2) = \langle 1, \chi_{\sigma} - \chi_{\alpha} \rangle = \langle 1, \chi_{\sigma} \rangle - \langle 1, \chi_{\alpha} \rangle.$$

Now ρ is real (resp. quaternionic) iff ρ possesses a non-degenerate invariant symmetric (resp. alternating) bilinear form, i.e., iff $\langle 1, \overline{\chi}_{\sigma} \rangle$ (resp. $\langle 1, \overline{\chi}_{\alpha} \rangle$ is nonzero. But note the multiplicity of the trivial representation (which is self-conjugate) in $\operatorname{Sym}^{2}(\rho)$ is the same as its multiplicity in $\operatorname{Sym}^{2}(\rho^{*})$, and similarly for $\Lambda^{2}(\rho)$.

Exercise 3. Show that an irreducible representation ρ is self-conjugate if and only if χ_{ρ} is real.

Exercise 4. Let (ρ, V) be the irreducible 2-dimensional representation of Q_8 . Check that there is a unique-up-to-scaling nondegenerate G-invariant bilinear form B on V. Check B is alternating (i.e., B(v, v) = 0 for all v).

Exercise 5. Let G be group of odd order, and ρ be a nontrivial irreducible representation of G. Show ρ is (properly) complex.