
Chapter 5

Classification of quaternion algebras

Due to time constraints, this chapter contains less than what I hoped. For instance, some
proofs are omitted, and some are just done over Q. Still, I think the arguments over Q are
nice, where one go though things a bit more explicitly, and use tricks to simplify things that
don’t quite work in the general case. I may add more to this in the future, but as far as
expanding these notes go (which I am slowly doing though the course is over), my priorities
now are toward later chapters.

5.1 Quaternion algebras over local fields

Here we classify quaternion algebras over F where F is a local field of characteristic 0, i.e., F
is a p-adic field or R or C. The case where F is archimedean was already done in Section 2.6,
so it suffices to work out the classification when F is p-adic. For F p-adic, let $

F

denote a
uniformizer of F . This will be a special case of Theorem 2.7.3.

Here is the general statement.

Theorem 5.1.1. Let F be a local field of characteristic 0. If F = C, then the only quaternion
algebra over F (up to isomorphism) is M

2

(C). Put B = H =
��1,�1

R
�

if F = R and
B =

�

u,$

F

F

�

if F is p-adic where u 2 O⇥
F

is a nonsquare. If F 6= C, then, up to isomorphism,
there are exactly two quaternion algebras over F : M

2

(F ) and the unique quaternion division
algebra B.

Implicit in the statement in the p-adic case is that B does not depend upon the choice
of u or the uniformizer $

F

.

Lemma 5.1.2. Let F be a p-adic field, and B/F a quaternion algebra. Then B contains
the unique unramified quadratic extension K/F .

Proof. This is a special case of Corollary 4.3.5, which we did not prove. Either B ' M
2

(F )
or B is division. If B ' M

2

(F ), then the result is true by Proposition 2.4.1. So assume B
is division.

For simplicity, we will just complete the proof when F = Q
p

with p odd. In this case,
there are 3 nontrivial square classes represented by u, p, and up, where u 2 Z⇥

p

is not a
square (cf. Proposition 1.2.12). Recall Q

p

(
p
u) is the unique quadratic unramified extension

of Q
p

.
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We may thus assume B =
�

a,b

Q
p

�

where a, b 2 {u, p, up}. It suffices to show we can take
a = u. If not, then we may assume a, b 2 {p, up}, so B =

�

pu1,pu2
Q

p

�

where u
1

, u
2

2 {1, u}.
But since

�

a,b

F

�

'
��ab,b

F

�

(cf. Corollary 3.3.3), we have B =
��p

2
u1u2,pu2
F

�

=
��u1u2,pu2

F

�

. Since
B is not split, it must be that �u

1

u
2

is in the same square class as u, so indeed we can take
a = u.

Exercise 5.1.1. Prove the above lemma when F = Q
2

.

This takes care of the lemma when F is a “prime” p-adic field, i.e., F is some Q
p

. We
omit the proof in the case F is an extension of some Q

p

.

Proof of theorem. It suffices to show that there is a unique quaternion division algebra in
the p-adic case, and that it is given in the above form.

Again, for simplicity, we will just complete the proof when F = Q
p

with p odd. Then,
from the proof of the lemma we know any quaternion division algebra over Q

p

is of the form
B =

�

u,b

Q
p

�

, where b 2 {u, p, up}. Note B =
�

u,u

Q
p

�

is split by Proposition 3.3.7 since the norm
map Q

p

(
p
u)⇥ ! Q⇥

p

is surjective on integral units (Corollary 1.2.15).
Thus either B =

�

u,p

Q
p

�

or B =
�

u,up

Q
p

�

. It suffices to show that these are isomorphic. From
the fact that

�

a,b

F

�

=
�

a,�ab

F

�

(Corollary 3.3.3), they are isomorphic if �1 is a square in Q
p

,
i.e., if p ⌘ 1 mod 4.

Assume that �1 is not a square in Q
p

, in which case we may take u = �1. Then we
want to show the associated restricted norm forms x2 � py2 � pz2 and x2 + py2 + pz2 are
equivalent. There exist r, s 2 Q

p

such that r2 + s2 = �1. (This follows, for instance, from
Corollary 1.2.15 or knowing that

��1,�1

Q
p

�

is split and using Proposition 3.3.7.) Then the
change of variables y 7! ry + sz, z 7! sy � rz transforms x2 � py2 � pz2 to x2 + py2 + pz2,
as desired.

Exercise 5.1.2. Prove the above theorem when F = Q
2

.

Note that in the above proof, we showed that
��1,�1

Q
p

�

is split for p odd. In fact, we can
say precisely when

�

a,b

Q
p

�

is split now.

Exercise 5.1.3. Suppose p is an odd rational prime and a, b 2 Z are nonzero and square-
free. Assume v

p

(a)  v
p

(b). Show
�

a,b

Qp

�

is division (i.e., ramified) if and only if

(1) p - a, p|b, and a is a nonsquare mod p; or

(2) p|a, p|b and �a�1b is a nonsquare mod p.

Exercise 5.1.4. Let F = Q
p

, p odd. Show any quadratic field extension K/F embeds in
the quaternion division algebra B/F .
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5.2 Quaternion algebras over number fields

In this section, let F be a number field and B denote a quaternion algebra over F .
Recall that B is split at a place v of F if B

v

is split, i.e., isomorphic to M
2

(F
v

); otherwise
we say B ramifies at v, or just B

v

is ramified. For quaternion algebras B, B being ramified at
v is equivalent to B

v

being a division algebra. Note that B can only ramify at non-complex
places. Let

Ram(B) = {v : B
v

is ramified} .

Proposition 5.2.1. The ramification set Ram(B) of a quaternion algebra B over a number
field F is finite. Furthermore, Ram(B) determines B up to isomorphism.

Proof. Write B =
�

a,b

F

�

for some a, b 2 F⇥. We may assume in fact that a, b 2 O
F

. (We
may also assume that a, b are squarefree, though we do not need to for the proof.) Let S be
the set primes of F which divide a or b union with the set of all even primes. Then for any
finite v 62 S, we claim B

v

is split.
For simplicity, we just show this when F

v

= Q
p

, p odd. Indeed, we have B
v

=
�

a,b

Q
p

�

where
a, b 2 Z⇥

p

. If a or b are squares, B
v

is split, so assume they are not. Then, because v is
odd, there are only two square classes in Z⇥

p

and K
v

= Q
p

(
p
a) is the unramified quadratic

extension. Then, as in the proof of Theorem 5.1.1,
�

a,b

Q
p

�

must be split because b is a norm
from K

v

.
For the last part, suppose B0 is another quaternion algebra such that Ram(B0) =

Ram(B). By the local classification Theorem 5.1.1, this implies B
v

' B0
v

for all v. Then
the local-global principle Theorem 3.4.2 implies B ' B0.

This is analogous to the fact that the ramification sets of quadratic fields Q(
p
d) are

finite and determine the field up to isomorphism.
For the next result about Ram(B), we need an important result from algebraic number

theory.

Theorem 5.2.2 (Quadratic Hilbert Reciprocity). Let a, b 2 F⇥. Then the product of local
quadratic Hilbert symbols is

Q

v

(a, b)
F

v

= 1.

Proof. See, e.g., [Neu99, Thm VI.8.1]. (This reference is a more general version than what
we need, covering n-th power Hilbert symbols. Also, Neukirch’s definition of the Hilbert
symbol is a little different from ours, but can be seen to be equivalent from his Proposition
V.3.2 or Exercise V.3.1.)

The Hilbert reciprocity law is a generalization of Gauss’s classical quadratic reciprocity.
Specifically, quadratic Hilbert reciprocity can be viewed as a version of quadratic reciprocity
over arbitrary number fields.1

1General Hilbert reciprocity is a law for n-th power residue symbols, but only over number fields which
contain all n-th roots of unity. This generalizes other classical reciprocity laws, such as Eisenstein’s cubic
reciprocity over Z[⇣3]. Hilbert reciprocity was further generalized by Artin through the development of class
field theory.
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Exercise 5.2.1. Deduce the classical statement of quadratic reciprocity from Hilbert
reciprocity, namely: if p, q are odd (positive) rational primes, deduce

✓

p

q

◆✓

q

p

◆

= (�1)
p�1

2

q�1

2 .

(Cf. Exercise 3.3.8 and Exercise 3.3.9.).

Corollary 5.2.3. For a quaternion algebra B over a number field, the cardinality of Ram(B)
is finite and even and contains no complex places.

Proof. Recall v 2 Ram(B) if and only if (a, b)
F

v

= �1 from Corollary 3.3.8. Now apply
Hilbert’s reciprocity law and Proposition 5.2.1.

We now have enough results to determine if two rational quaternion algebras (i.e., quater-
nion algebras over Q) are isomorphic. Consider B =

�

a,b

Q
�

and B0 =
�

a

0
,b

0

Q
�

. We may modify
a, b, a0, b0 by squares to assume that a, b, a0, b0 2 Z and are all squarefree.

To determine if B ' B0 it suffices to determine their ramification sets.
First, recall 1 2 Ram(B) if and only if B is definite by Sylvester’s law of inertia, which

happens if and only if a, b < 0.
Next, for an odd prime p, a computationally simple criterion for p 2 Ram(B) was given

in Exercise 5.1.3: p 2 Ram(B) if and only if (i) p divides exactly one of a, b and the other
is a nonsquare mod p or (ii) p divides both and �a�1b is a nonsquare mod p. As a special
case, we get the following criterion can be useful as a first pass to determine the ramification
set of B.

Example 5.2.1. Let B =
�

a,b

Q
�

where a, b 2 Z squarefree. Then the set of odd primes in
Ram(B) is contained in the set of primes dividing ab. (Note: this gives a simpler proof of
the first part of Proposition 5.2.1 when F = Q.)

Last, to determine whether 2 2 Ram(B), the corollary implies we don’t need to do
anything else! We just count the number of odd and infinite places at which B ramifies—
then B also ramifies at 2 if and only if this number is odd. So for checking isomorphism,
we don’t even need to worry about the place 2. (Note this trick does not work for general
number fields.)

Hence B ' B0 if and only if

(1) both a, b < 0 if and only if both a0, b0 < 0; and

(2) the finite odd primes ramified in B are precisely the finite odd primes ramified in B0

(use Exercise 5.1.3).

In special cases, we can write down relatively simple necessary and sufficient isomorphism
criteria.

Example 5.2.2. Let B =
��1,b

Q
�

and B0 =
��1,b

0

Q
�

where b, b0 2 Z squarefree. Then B ' B0

if and only if b and b0 have the same sign and are divisible by the same set of primes which
are 3 mod 4.
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To see this, first note that checking they have the same ramification at infinity implies
means b, b0 must have the same sign. Then, for an odd prime p|b, p 2 Ram(B) if and only
if �1 is a nonsquare mod p, i.e., if and only if p ⌘ 3 mod 4.

Exercise 5.2.2. Let B =
�

3,b

Q
�

and B0 =
�

3,b

0

Q
�

where b, b0 2 Z squarefree. Determine
necessary and sufficient conditions on b, b0 for B ' B0.

Exercise 5.2.3. Determine the ramification sets of the following rational quaternion al-
gebras:

��1,�1

Q
�

,
��1,2

Q
�

,
�

2,3

Q
�

,
��3,�5

Q
�

and
��3,�6

Q
�

.

Now we know that any quaternion algebra over a number field F is determined (up
to isomorphism) by its ramification set S, which must be a finite set of even cardinality
containing only non-complex places. At least when F = Q, we also saw how to determine
S from the Hilbert symbol representations. The following result completes the classification
of quaternion algebras over number fields by saying to all such sets S, there is a quaternion
algebra with S as its ramification set.

Theorem 5.2.4. Let F be a number field. Given any finite set S of non-complex places of
F of even cardinality, there exists a unique (up to isomorphism) quaternion algebra B/F
such that Ram(B) = S. If S = ;, then B ' M

2

(F ); otherwise B is a division algebra.

To prove this, the following intermediary result is useful.

Lemma 5.2.5. Let F be a number field and S any finite set of non-complex places. There
exists a quadratic extension K/F such that K is not split at any v 2 S.

Proof. For simplicity, we just show this when F = Q, so S can be any set of places. Let
p
1

, . . . , p
r

denote the finite places in S. Then K = Q(
p±p

1

· · · p
r

) is ramified, and therefore
not split, at each p

i

. If 1 2 S, choosing the ± sign to be � means K is also ramified at
1.

The above lemma is a special case of an important result of Grunwald–Wang, which
implies given any n and finite set of finite places S of F , there exists a cyclic extension K/F
of degree n with whatever ramification/splitting type we want for each v 2 S. (Note we wrote
the above proof for F = Q in a way to make it clear you can specify the ramification type at
1.) Here is a quadratic example of what we mean by specifying the ramification/splitting
type.

Exercise 5.2.4. Show there exists a quadratic field K/Q which is ramified at 2, 3,1,
inert at 5, 7 and split at 11, 13. (Cf. Proposition 1.3.10 and the subsequent paragraph.)

Proof of theorem. We may assume S is nonempty. By the lemma, we may take some
quadratic extension K = F (

p
a) which is not split at any v 2 S. Now we want to take
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B =
�

a,b

F

�

for a suitable b 2 F⇥. Specifically, we want to choose b so that locally b is not a
norm from K at v if and only if v 2 S, i.e.,

�

v : K
v

/F
v

not split and b 62 N
K

v

/F

v

(K⇥
v

)
 

= S.

Then by Proposition 3.3.7, we will have Ram(B) = S as desired.
Let T be S union the infinite places of F union all places where K/F is ramified. Recall

from Corollary 1.2.15 that for v < 1 if K
v

/F
v

is unramified then N
K

v

/F

v

(O⇥
K

v

) = O⇥
F

v

. First
choose b such that b 2 O⇥

F

v

for all v 62 T with K
v

/F
v

nonsplit. This means Ram(B) ⇢ T .
Next, for a finite v 2 S, the image of the norm map N

K

v

/F

v

: O⇥
K

v

! O⇥
F

v

has index 2
in O⇥

F

v

. Thus the non-norms in F⇥
v

form an open subset U
v

⇢ F⇥
v

. We want b 2 U
v

for all
such v. Last, at each infinite place v 2 S (thus by assumption real), we want �

v

(b) < 0, i.e.,
b 2 U

v

= ��1

v

(R). If we can choose such a b, then Ram(B) = S.
For simplicity, we just demonstrate the existence of a desired b when F = Q and 1 62 S.

The case where 1 2 S is similar and left as an exercise. This follows the argument given
for F = Q given in a preliminary version of [Voi].

Let {p
1

, . . . , p
r

} be the primes of S. Take a =
Q

p
i

and K = Q(
p
a). Then K is ramified

exactly at the primes in S and also at 2 if a 6⌘ 1 mod 4. Take b 2 N such that: (i) b is a
nonsquare mod each p

i

and (ii) b ⌘ 5, 1 mod 8 according to whether 2 2 S or not. Then
Ram(B) � S, and no other primes except possibly those dividing b. (This follow for odd
primes by Exercise 5.1.3; see the exercise below for p = 2.) However, by Dirichlet’s theorem
on primes in arithmetic progressions, we can take b to be a prime satisfying the congruences
in (i) and (ii). This either Ram(B) = S or Ram(B) = S [ {b}. But since |Ram(B)| is even,
we must have Ram(B) = S!

There are two things at the end this proof I find striking: the use of the seemingly
unrelated theorem of Dirichlet on arithmetic progressions (so the theorem for F = Q is a
consequence of nonvanishing of Dirichlet L-values!) and the final application of the evenness
of |Ram(B)|. Pause, and marvel on this.

Exercise 5.2.5. For a, b 2 Z squarefree, show (i)
�

a,b

Q
2

�

is division if 2|a and b ⌘ 5 mod 8;
and (ii)

�

a,b

Q
2

�

is split if b ⌘ 1 mod 8.

Exercise 5.2.6. Prove the above theorem when F = Q and 1 2 S.

5.3 Subfields of quaternion algebras and sums of rational squares

We will be interested in quadratic subfields of quaternion algebras. There is a nice descrip-
tion.

Theorem 5.3.1. Let B be a quaternion algebra over number field F and K/F a quadratic
extension. The following are equivalent:

(1) K embeds in B;
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(2) K
v

embeds in B
v

for all v;

(3) K is not split at any (finite or infinite) place where B is ramified; and

(4) K splits B.

Clearly the statement (1) () (2) is a local-global principle for embeddings. In light of
Theorem 2.4.5, one can also view (2) () (4) as a local-global principle for splitting fields.

Proof. (1) =) (2): Obvious.
(2) =) (3): Suppose K

v

embeds in B
v

. If v 2 Ram(B), then B
v

is a division algebra,
so K

v

must also be a division algebra. Thus K
v

6' F
v

� F
v

, as the latter has zero divisors.
(3) =) (4): By Theorem 2.4.5, (3) implies each K

v

splits B
v

. Hence (B⌦
F

K)⌦
K

K
w

is split for all primes w of K. Thus B ⌦
F

K ' M
2

(K) by Theorem 3.4.2.
(4) =) (1): See [MR03, Thm 7.3.3].

If we want, we can think of this as a different kind of characterization of quaternion
algebras.

Exercise 5.3.1. Show that two quaternion algebras B,B0 over a number field F are
isomorphic if and only if they contain the same subfields.

The analogue of this is not true for local fields as we have seen that the local division
algebras contain all quadratic field extensions, though it would be true for quaternion alge-
bras B,B0 over p-adic fields (or R) if you ask what semisimple quadratic algebra extensions
(i.e., F � F and quadratic field extensions) they contain.

We remark that G. Prasad and A. Rapinchuk asked if two quaternion division algebras
over a field F must be the same if they contain the same subfields. This is the case for
p-adic, archimedean and number fields, but several counterexamples have been found for
other fields.

The above theorem gives a clean algebraic description of when a quadratic extension
K/F embeds in a quaternion algebra B/F for a number field F . On the other hand, there
is an elementary arithmetic criterion for this as well.

Proposition 5.3.2. Let d 2 F⇥ be a nonsquare and K = F (
p
d). Let B =

�

a,b

F

�

be a
quaternion algebra. Then K embeds in B if and only if �d is represented by the restricted
norm form N

0

: �ax2� by2+ abz2. Moreover, the number of embeddings of K into B is the
number of solutions to

ax2 + by2 � abz2 = d, x, y, z 2 F,

i.e., the number of pure quaternions of (reduced) norm �d.

This is valid for an arbitrary field F of characteristic not 2, but for infinite fields the
number of embeddings is typically 0 or infinite, so the last part of the proposition is not
really interesting for number fields. (Recall, by Skolem–Noether the embeddings of K into B
are conjugate, and conjugation gives many different embeddings—e.g., (2.3.1).). However, if
the norm form is definite, then the number of integral rather than rational solutions (taking
x, y, z 2 o

F

rather than F ) will be finite. We will look at such a result in the next chapter.
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Proof. Suppose we have an embedding � of K into B. Put ↵ = �(
p
d). Since the canonical

involution must restrict to Galois conjugation on �(K), we have that ↵ = �(�
p
d) = �↵,

so ↵ 2 B
0

is a pure quaternion of norm �↵2 = �(�(
p
d)2) = �d. Similarly, we can see that

each pure quaternion of norm �d gives a distinct embedding of K into B, which finishes the
proof.

This relation illustrates one way in which we can use the algebraic theory of quaternion
algebras to shed light on classical problems in number theory. Here is a simple instance.

By the squarefree part n 2 N, we mean the number d 2 N such that n = dm2 with m
maximal.

Corollary 5.3.3. A positive integer n is a sum of three rational squares if and only if its
squarefree part is not 7 mod 8.

Proof. Note the restricted norm form of B =
��1,�1

Q
�

is x2 + y2 + z2. By the proposition, n
is the sum of three (rational) squares if and only if K = Q(

p
�n) embeds in B. Recall that

B is ramified precisely at 2 and 1. So by (3) of the theorem, n is a sum of three squares
if 2 does not split in K. Let d be the squarefree part of n, and � be the discriminant of
K, i.e. � = �d if d ⌘ 3 mod 4 and � = �4d otherwise. Then 2 is split in K if and only
if
�

�

2

�

= +1, i.e., if and only if � ⌘ ±1 mod 8. Only � ⌘ 1 mod 8 is possible, which
corresponds to d ⌘ 7 mod 8.

In fact this corollary is true if one restricts to the sum of three integral squares, which is
Legendre’s three squares theorem (usually stated in the form n is a sum of 3 integral squares
if and only if n is not of the form 4j(8k + 7)). One can either deduce this from the above
result by showing an integer is a sum of three rational squares if and only if it is a sum of
three integral squares (see, e.g., [Ger08, Sec 9.4]), or prove it directly. We will give a direct
proof it in the next chapter when we study orders in quaternion algebras. (There are of
course non-quaternionic proofs as well.)

Exercise 5.3.2. Relate the above corollary to the usual statement of Legendre’s three
squares theorem by showing n 2 N is of the form 4j(8k + 7) for j, k 2 Z�0

if and only if
the squarefree part of n is 7 mod 8.

Exercise 5.3.3. Determine what positive integers are of the form x2 + 3y2 + 3z2 for
x, y, z 2 Q.
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