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Abstract. We investigate the distribution of degrees and rationality fields of weight 2
newforms. In particular, we give heuristic upper bounds on how often degree d rationality
fields occur for squarefree levels, and predict finiteness if d ≥ 7. When d = 2, we make
predictions about how frequently specific quadratic fields occur, prove lower bounds, and
conjecture that Q(

√
5) is the most common quadratic rationality field.

1. Introduction

Let Sk(N) = Sk(Γ0(N)) be the space of holomorphic cusp forms of weight k and level
N with trivial nebentypus. For a newform f ∈ Sk(N), denote by Kf its rationality field,
i.e. the number field generated by its Hecke eigenvalues. Define the (rationality) degree and
discriminant of f to be the degree and discriminant of Kf/Q respectively. In what follows,
we always assume trivial nebentypus.

Weight 2 newforms are of special interest as they correspond to modular abelian varieties,
i.e., simple factors of the Jacobian J0(N) of X0(N). Namely (the Galois orbit of) a degree d
newform f ∈ S2(N) corresponds to a d-dimensional simple abelian subvariety of J0(N) which
has conductor Nd. The d = 1 case is the celebrated bijection between rational newforms in
S2(N) and isogeny classes of elliptic curves of conductor N .

It is expected (e.g., see [35, 23, 28]) that the Galois orbit of a newform is “as large as
possible” 100% of the time, so that newforms have small degree rather infrequently. On the
other hand, there are a relatively large number of elliptic curves of small conductor. Watkins’
[39] refinement of the Brumer–McGuinness heuristics [7] for counting elliptic curves suggests
that the number of weight 2 rational newforms with level N < X grows like cX5/6 for some
computable constant c. See [12, 36] for some theoretical results towards this growth rate.
Note that the total number of weight 2 newforms of level N < X grows roughly like X2.

Here we consider the questions: how many weight 2 newforms of level N < X are there
with a given degree d or a given rationality field K? There is no analogue of the Brumer–
McGuinness heuristics for d > 1, since those rely on having simple equations for elliptic
curves. Moreover, as degree d > 1 forms are relatively rare, it is difficult to generate enough
data to predict precise asymptotics based on calculations.

In fact, even for d = 1, it is difficult to make accurate predictions based solely on compu-
tations. E.g., as remarked in [39], the growth rate in Cremona’s database of elliptic curves is
about X0.98; however more recent and very extensive calculations for prime conductors in [2]
align closely with the X5/6 heuristic.
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Using a combination of heuristics and data, we predict some bounds on asymptotic orders
of growth, and the relative frequency of such forms.

Conjecture 1.1. Let ε > 0. The number of degree d weight 2 newforms of squarefree level
N ≤ X is O(X1−d/6+ε) as X →∞. In particular, this number is finite if d ≥ 7.

Conjecture 1.2. Among squarefree levels N → ∞, 100% of degree 2 newforms in S2(N)
have rationality field Q(

√
5).

Remark 1.3. The heuristics for these conjectures do not require a restriction to squarefree
levels, however there are special considerations for non-squarefree levels. First, one should
only count quadratic twist classes for a more general analogue of Conjecture 1.1. Second,
CM forms (which do not occur in squarefree level with trivial nebentypus) deserve separate
consideration. Third, if pr | N for sufficiently large r, then the rationality field of a newform
f of level N must contain a certain cyclotomic subfield (e.g., if p ≥ 5 and r ≥ 3, then
Kf ⊃ Q(ζp)

+)—see [6, 26].
It is at least plausible that Conjecture 1.2 holds for general levels, and Conjecture 1.1

holds for general levels if one restricts to counting non-CM newforms up to quadratic twist.
However, our data are much more limited for non-squarefree levels.

Conjecture 1.1 is just a conjectural upper bound, and it may not be sharp for 2 ≤ d ≤ 5
(see below for more discussion). When d = 1, one can prove a lower bound of order X5/6 for
elliptic curves, but we are not aware of nontrivial analogous lower bounds (or even a proof of
infinitude!) for any d > 1. Using constructions of genus 2 curves with real multiplication, we
obtain the following lower bounds for d = 2, without a restriction to squarefree level.

Proposition 1.4. The number of quadratic twist classes of weight 2 newforms with rationality
field Q(

√
5) (resp. Q(

√
2)) and minimal level N < X is � X1/3 (resp. � X2/7).

The same result for squarefree levels would follow if one knew certain polynomials took on
squarefree values sufficiently often.

Remark 1.5. It is not even clear for which d ≤ 6 there should exist infinitely many weight 2
newforms of squarefree level. Constructions of genus 3 curves with real multiplication suggest
it may be infinite for d = 3—see Section 3.4. For d = 4, 5, 6, we have little theoretical evidence,
but our data suggest these counts are infinite at least for each d ≤ 4.

We will consider two approaches to predicting counts of newforms with fixed degree or
rationality field. First, in Section 2, we present a heuristic using a random model for Hecke
polynomials, building off of [33, 28]. In fact this random model naively suggests upper and
lower bounds for counts of degree d forms on the order of X1−d/6±ε. However, it ignores any
geometric considerations for the existence of degree d forms, so it is unclear how accurate this
heuristic is. Nevertheless, comparing these predictions with data at least suggests it gives an
upper bound, as asserted in Conjecture 1.1.

In Section 3, we suggest an approach to predict counts of weight 2 newforms with a given
rationality field K by counting moduli points for suitable abelian varieties. In principle, this
would also yield the number of counts of newforms of a fixed degree d, and we expect this
approach should give more accurate predictions than the random Hecke polynomial model.
However, it requires more knowledge about the moduli spaces and the relation between heights
and conductors than we currently possess. We carry out some of this analysis when d = 2,
namely when K = Q(

√
D) for D = 5, 8, 12, 13, 17. This leads to Conjecture 1.2, and also
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suggests cX3/5−ε may be a lower bound for the total count for degree 2 newforms. However,
our analysis is not definitive enough to confidently conjecture this.

A database of all prime-level forms of degree 6 or less and level 2 ·106 or less was computed
using an algorithm of the first author [8]. In Section 4, we use this database to investigate
Conjecture 1.1 and Conjecture 1.2, and pose some related questions.

Acknowledgements. We are especially grateful to Noam Elkies for many insights and sug-
gestions. We have also benefited from conversations with Eran Assaf, Armand Brumer, Bjorn
Poonen, Ari Shnidman, and John Voight. Computations were performed at the OU Super-
computing Center for Education & Research (OSCER) at the University of Oklahoma (OU).

2. Counts by degree

First we discuss counting newforms of fixed degree. For a newform f , let deg f = [Kf : Q]
be its rationality degree. Set

Cd(X) = #{newforms f ∈ S2(N) : N < X, N squarefree, deg f = d}.
As explained in the introduction, we restrict to squarefree N for simplicity, though our ini-
tial discussion applies equally well to counting quadratic twist classes of non-CM weight 2
newforms.

Watkins [39], building on heuristics of Brumer and McGuinness [7], formulates heuristics
that suggest

C1(X) ∼ c1X
5
6(1)

for some computable constant c1. It is known that X
5
6 � C1(X)� X1+ε [12]. Furthermore,

Shankar–Shankar–Wang [36] show a growth rate of b1X
5
6 if one restricts to elliptic curves

of squarefree conductor coprime to 6 with some restrictions on discriminant-conductor and
discriminant-height ratios.

While the exponent 5
6 is not in clear agreement with databases of elliptic curves in general

levels (the Cremona [10] and Stein–Watkins [37] databases), the compatibility with prime-
level data is much better. Namely, Watkins’ heuristic suggests a growth rate of c′1li(X

5
6 ) for

prime levels, and this fits extremely well with the extensive database of elliptic curves of prime
conductor in [2]. Thus there is much evidence towards (1).

For d > 1, the situation is much more mysterious. In [35], Serre proves a statement
which strongly suggests, though does not quite imply, the bound Cd(X) = o(X2). Namely,
if N → ∞ along a sequence which is coprime to a fixed prime `, among bases of eigenforms
for S2(N), Serre proves that the number of forms of degree d is o(dim(S2(N))) as N → ∞.
Serre’s theorem was made effective by Murty and Sinha [31], and more recently by Sarnak
and Zubrilina [34].

Since we do not know a good way to predict precise asymptotics for Cd(X), we aim to
predict weaker estimates of the form

Xαd � Cd(X)� Xβd(2)

which are nontrivial, i.e., αd > 0 or βd < 2. Computations of modular forms, as well as
heuristics in [28], suggest βd is decreasing in d, and thus we should at least be able to take
βd ≤ 5

6 for each d ≥ 1. In [28, Question 3.1], it was also suggested that one may have βd = 0
for d� 0.

To our knowledge, Conjecture 1.1 is the first prediction of more precise upper bounds (for
either squarefree or general levels). In particular, it predicts that one can take βd = 0 for



4 ALEX COWAN AND KIMBALL MARTIN

d ≥ 7, and βd arbitrarily small for d = 6. However, we do not have insight into whether the
upper bounds in Conjecture 1.1 should be sharp for 2 ≤ d ≤ 5.

Note that Conjecture 1.1 implies that αd = 0 is optimal among lower bounds of the form
(2) for d ≥ 6. In addition, Proposition 1.4 suggests that one may take α2 ≥ 1

3 for d = 2.
(Note that Proposition 1.4 does not prove a lower bound for squarefree levels, only for general
levels.) This lower bound is almost certainly not sharp. We do not have any predictions for
lower bounds when 3 ≤ d ≤ 5.

2.1. Random Hecke polynomial model. Here we present a random model to estimate
the distribution of degree d newforms that will lead us to Conjecture 1.1. This is based on
ideas for heuristics suggested in [33] and [28].

Consider a newspace Snew
2k (N). One can further decompose this space into 2ω(N) joint

eigenspaces of the Atkin–Lehner operators Wp for p | N , which we call the Atkin–Lehner
eigenspaces. Each Atkin–Lehner eigenspace is Galois invariant. For non-squarefree levels, one
can further decompose each Atkin–Lehner eigenspace into smaller Galois invariant subspaces
according to local inertia types of non-CM forms (see [11]) and the subspace of CM forms.

For simplicity, assume N is squarefree. Then there are no CM forms of trivial nebentypus
and there is only one local inertial type. Let S be an Atkin–Lehner eigenspace in Snew

2k (N).
For a newform f ∈ S, the single Fourier coefficient ap(f) generates Kf for 100% of p [22], and
it is conjectured that this is true for all but finitely many p if [Kf : Q] > 4 [32]. Hence, for
fixed p - N , the factorization type of the characteristic polynomial cTp(x) ∈ Z[x] of the Hecke
operator Tp will usually tell us the degrees of the newforms in S. In fact, it will always give
us lower bounds.

Let n = dimS. As in [33] and [28], we can model cTp(x) as a random polynomial in the set
Hn = Hn(k, p) of degree n monic integral polynomials whose roots α satisfy |α| ≤ 2pk−1/2.
Alternatively, one can consider the set of Weil q-polynomials of degree 2n where q = pk, or
the isogeny classes of n-dimensional abelian varieties over Fpk .

Set h(n) = #Hn. As discussed in [28, §2.1], the number of polynomials in Hn with a degree
d < n

2 factor is approximately h(d)h(n− d). Thus, if we select polynomials in Hn uniformly
at random, then

Prob(p ∈ Hn has a degree d factor) ≈ h(d)h(n− d)

h(n)
.(3)

In this section, by approximately (≈), we mean that for fixed d both sides have the same
growth rate in n as n→∞.

For fixed q, no good asymptotics are known for h(n) to directly estimate this probability.
There is an asymptotic for h(n) when n is fixed and q varies. Instead, [33] and [28, §2.1]
analyzed how this probability behaves if one uses a known asymptotic for #Hn(k, p) in pk

when n is fixed. (The result is certainly too small, as it would predict only finitely many
degree 1 forms.)

To circumvent this lack of precise asymptotics for h(n) as n → ∞, we rewrite the right
hand side of (3) as

h(d)h(n− d)

h(n)
= h(d)

h(n− d)

h(n− d+ 1)

h(n− d+ 1)

h(n− d+ 2)
· · · h(n− 1)

h(n)
.



COUNTING MODULAR FORMS BY RATIONALITY FIELD 5

One should have that h(n−2)
h(n−1) ≈

h(n−1)
h(n) , so applying this a small fixed number of times for a

given d yields

(4)
h(d)h(n− d)

h(n)
≈
(
h(n− 1)

h(n)

)d
.

Combining (3) and (4) suggests that the probability of a degree d factor of cTp should
approximately be the d-th power of the probability of a degree 1 factor of cTp . The latter
typically corresponds to a degree 1 form, and so we can model it using well-known expectations
about counts of elliptic curves.

We will also use the following lemma.

Lemma 2.1. Let ν2k(X) be the number of Atkin–Lehner eigenspaces in
⋃
N S

new
2k (N), where

N ranges over squarefree levels, having dimension less than X. Then X � ν2k(X)� X1+ε,
for any ε > 0.

Proof. Since dimSnew
2k (N)� N , the lower bound is obvious.

Let us show the upper bound. First, it follows from the dimension formulas for Atkin–
Lehner eigenspaces from [27] that any Atkin–Lehner eigenspace in Snew

2k (N) has dimension
(k−1)φ(N)

12·2ω(N) + O(N1/2+ε). (The necessary argument, though not the statement, is given in
the proof of [29, Proposition 3.10].) This dimension is � N1−ε. Hence if an Atkin–Lehner
eigenspace has dimension less than X, it occurs in a level N � X1+ε. Now the number of
Atkin–Lehner eigenspaces in levels less than t is bounded by

∑
N≤t 2ω(N). It is known that

this latter sum is 6
π2 t log t+O(t). �

Lemma 2.1 combines with (3) and (4) to produce the following heuristic.

Heuristic 2.2. Suppose the number of rational newforms of weight 2k and squarefree level
N < X is O(X1−α) for some α < 1. Then, for any ε > 0, the number of degree d weight 2k
newforms of squarefree level N ≤ X is O(X1−αd+ε) as X →∞.

Our reasoning for this heuristic is as follows. Under the hypothetical bound O(X1−α), the
lemma indicates that the probability of an Atkin–Lehner space of dimension n having a size
1 Galois orbit is approximately n−α. Assuming uniform distribution of Hecke polynomials in
H(n), the probability of a size d Galois orbit is approximately the probability of a degree d
factor of cTp , which by (3) and (4) is approximately n−dα. Applying the lemma again leads
to the stated heuristic.

Combining the Brumer–McGuinness and Watkins heuristics for d = 1 with Heuristic 2.2
now suggests Conjecture 1.1 from the introduction.

2.2. Assessment of the model. The random model for Hecke polynomials in Section 2.1
uses the counting measure on Hn, i.e., all polynomials in Hn are equally likely. If this were the
case, the heuristic reasoning above would suggest both upper and lower bounds: X1− d

6
−ε �

Cd(X)� X1− d
6
+ε, so the upper bound in Conjecture 1.1 would be essentially optimal.

However, there are other factors controlling the distribution of Hecke polynomials in Hn.
For instance, trace formulas place arithmetic conditions on the roots of Hecke polynomials.
Moreover, there are vertical and horizontal equidistribution results about convergence of the
roots to Plancherel and Sato–Tate measures. For this reason, we view our random model as
a first approximation to counting degree d forms.

In Section 4.1, we will present data which suggests this heuristic does give an upper bound,
but possibly not an optimal one. It is really the data that lends credence to Conjecture 1.1.
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An alternative perspective, which we will explore in Section 3, is that it is more natural to
model the distribution of degree d forms by modeling d-dimensional modular abelian varieties.
The analysis we do there for d = 2 is compatible with the notion that the random Hecke
polynomial heuristic gives a valid upper bound which might not be optimal.

2.3. Finiteness questions. Related to the question of asymptotics are several questions
about finiteness. We do not investigate them here, but suggest them for future consideration.

(1) We can ask: for what d are there infinitely many weight 2 newforms of squarefree
level? Conjecture 1.1 asserts such d must be at most 6, but also suggests the answer
could be negative for d = 6. We know a positive answer for d = 1, and expect a
positive answer for d = 2. Section 3.4 and our data suggest the answers may be
positive for d = 3, 4 also.

(2) More generally, one can ask the same question in weight 2k. Roberts’ conjecture [33]
implies that there are only finitely many quadratic twist classes of non-CM rational
newforms in weight 2k ≥ 6. So Heuristic 2.2 suggests that there are only finitely
many newforms of squarefree level of fixed weight 2k ≥ 6 and any fixed degree d ≥ 1.
One might similarly expect to have finitely many quadratic twist classes of non-CM
newforms of fixed degree d and weight 2k ≥ 6.

(3) One can also ask whether there should be a uniform version of the finiteness part
of Conjecture 1.1, i.e., whether for sufficiently large squarefree N and some fixed d0
(possibly d0 = 6), each Atkin–Lehner eigenspace has a unique Galois orbit of size
d ≥ d0. This seems plausible based on Heuristic 2.2. See Question 4.4 for a more
precise question in prime level.

3. Hecke fields

In Section 2 we considered the question of how often degree d newforms occur and presented
a random Hecke polynomial model, which, at least for prime levels, appears to give asymptotic
upper bounds. Here we consider the refined question of how often a specific degree d rationality
field K should occur, and relate this question to rational points on Hilbert modular varieties.
We discuss possible lower bounds for fixed quadratic fields, prove some lower bounds, and
predict that Q(

√
5) is the most common quadratic rationality field.

3.1. Modular varieties. First recall the connection between weight 2 modular forms and
abelian varieties.

Let N ≥ 1. To a newform f ∈ S2(N) with [Kf : Q] = d, Shimura constructed a d-
dimensional simple abelian variety Af/Q satisfying the following properties. First, Af is a
quotient of J0(N). Moreover Af is isogenous to Ag if and only if f and g are Galois conjugates.
The endomorphism algebra End0(Af ) := End(Af ) ⊗ Q ' Kf . The conductor of Af is Nd.
Finally, L(s,Af ) =

∏
σ L(s, fσ), where fσ ranges over the Galois conjugates of f .

In general, the center of the endomorphism algebra of a d-dimensional abelian variety A
has degree ≤ d. If End0(A) contains a totally real field K of degree d = dimA, then we say
A has maximal real multiplication (RM). Any Af as above has maximal RM, and conversely
if A/Q is a simple abelian variety with maximal RM, then it is isogenous to some Af [26,
Lemma 3.1]. Hence the correspondence f 7→ Af yields a bijection between degree d newforms
f of weight 2 and isogeny classes of d-dimensional simple abelian varieties A/Q with maximal
RM.

We propose a heuristic approach to predicting coarse asymptotic counts of such objects.
Let K be a totally real number field of degree d, and a be an ideal in OK . The quotient
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Hd/SL(OK ⊕ a) parametrizes d-dimensional complex abelian varieties with RM by OK to-
gether with a polarization structure corresponding to a (see [15] for a precise statement).
Compactifying this quotient and desingularizing gives a Hilbert modular variety Y (OK ⊕ a).

Now consider a newform f ∈ S2(N) with Kf = K. The abelian variety Af has endomor-
phism ring an order in OK . Typically we expect it is all of OK , but if not, one can replace
Af by an isogenous variety with RM by OK . Thus f corresponds to a rational point y on
Y (OK ⊕ a) for some a, which we can take to be in a given set of representatives for Cl+(K).

This correspondence is far from one-to-one. First, replacing Af by an isogenous variety, or
modifying the polarization structure, may give a different point y on Y (OK ⊕ a). Second, if
g is another weight 2 newform and Ag is C-isogenous to Af , then both f and g correspond
to the same rational points. Third, this is not a fine moduli space, so not all rational points
on Y (OK ⊕ a) will correspond to abelian varieties defined over Q, and of those that do, some
will correspond to non-simple abelian varieties.

That said, it seems reasonable to expect that, generically, quadratic twist classes of Galois
orbits of weight 2 newforms correspond to finite sets of rational points on Y =

⋃
a∈Cl+(K) Y (OK⊕

a). Thus one can attempt estimate the number of quadratic twist classes by estimating counts
of rational points on Y . A priori, it is not clear how different orderings of classes of newforms
(e.g., by minimal level) will correlate with different orderings of sets of rational points (e.g.,
by minimal height, for some choice of height function), and we will speculate more on this for
d = 2 anon.

Note that typically (each component of) Y will be of general type, and one might expect
that it has finitely many (and often no) rational points. Hence, for a given d, to estimate counts
of degree d newforms, it should in principle suffice to consider finitely many Y . Moreover, this
philosophy suggests that some totally real degree d rationality fields will be more common
than others, roughly according to whether the moduli spaces Y have many or few rational
points. Of course this is not the only consideration, due to various complications of the
correspondence between newforms and rational points mentioned above.

This philosophy is in line with Coleman’s conjecture (e.g., see [5]), which predicts there are
only finitely many isomorphism classes of endomorphism algebras for d-dimensional abelian
varieties over Q. Hence Coleman’s conjecture implies that, for a fixed d, only finitely many
degree d rationality fields Kf occur as f varies over weight 2 newforms.

3.2. Rational points on Hilbert modular surfaces. Now we estimate point counts on
certain Hilbert modular surfaces, and pursue the ideas of the previous section for d = 2.

Let D > 0 be a fundamental discriminant and OD be the ring of integers of Q(
√
D). Let

Y−(D) be the Hilbert modular surface constructed from the quotient H2/SL(OD ⊕
√
DOD).

This parametrizes principally polarized abelian surfaces with RM by OD (together with a
polarization structure). See [38], [15] for details. For brevity, we will write RM D for RM by
OD.

For our heuristic point counts, we will use explicit models for Hilbert modular surfaces.
For D < 100, Elkies and Kumar [14] computed models for Y−(D). By work of Hirzebruch
and Zagier [19], Y−(D) is rational (i.e., birational to P2) if and only if D ∈ {5, 8, 12, 13, 17}.

We expect that 100% of degree 2 weight 2 newforms correspond to rational points on Hilbert
modular surfaces with the most rational points, i.e., the rational surfaces. While the Hilbert
modular surfaces parametrizing non-principally polarizable surfaces with RM D are rational
over C for D = 12, 21, 24, 28, 33, 60 (see [38, Theorem VII.3.3]), we at least expect that the 5
rational Y−(D)’s should account for a positive proportion of degree 2 weight 2 newforms, and
this is supported by data.
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To be more precise, the polarization classes of abelian surfaces with RM D are in bijection
with the narrow ideal classes Cl+(Q(

√
D)). In particular, if D = 5, 8, 13, 17, the abelian

surface is automatically principally polarizable. For D = 12, the narrow class number is 2,
and the moduli spaces for each polarization type are rational (at least over C), so it is not
clear whether a positive proportion of abelian surfaces with RM 12 should be principally
polarizable. We cannot yet analyze counts for the non-prinicipal polarization types as we do
not know models for the corresponding moduli spaces together with appropriate invariants.
However, our data suggest that, at least for prime level, most degree 2 weight 2 newforms
have rationality field Q(

√
D) with D = 5 or 8, and thus correspond to points on Y−(5) and

Y−(8).
For the remainder of the section, assume D ∈ {5, 8, 12, 13, 17}. Then Y−(D) is birational

to P2
m,n. Let A2 be the moduli space for principally polarized abelian surfaces. Forgetting

the RM action yields a map Y−(D)→ A2.
Let M2 be the moduli space of genus 2 curves. To a genus 2 curve C : y2 = h(x), one

associates Igusa–Clebsch invariants I2j(C) for j = 1, 2, 3, 5. Here I2j(C) can be regarded as a
degree 2j-polynomial in the coefficients of h(x), and I10(C) is the discriminant of h. One can
realize A2 as weighted projective space P3

1,2,3,5 with coordinates (I2 : I4 : I6 : I10). The Torelli
map M2 → A2 sends the moduli of C to (I2(C) : I4(C) : I6(C) : I10(C)), and the image is
the complement of the hyperplane I10 = 0. We note that Igusa–Clebsch invariants are only
isomorphism invariants of C up to weighted projective scaling.

Elkies and Kumar [14] gave a birational model for Y−(D). In particular, for generic affine
coordinates (m,n) ∈ A2, one has an associated point on Y−(D) and thus weighted projective
coordinates (I2(m,n) : I4(m,n) : I6(m,n) : I10(m,n)) ∈ A2, where the I2j(m,n)’s are explicit
rational functions in m,n.

Now we will attempt to estimate the number of rational points (m,n) with bounded Igusa–
Clebsch invariants. First we want to scale Igusa–Clebsch invariants (in P3

1,2,3,5) to be integral,
as will be the case for the I2j(C)’s given a curve C over Z. Let us write (m,n) = (a/c, b/c)
for a, b, c ∈ Z with gcd(a, b, c) = 1. Regarding a, b, c as variables, we scale the I2j(m,n)’s to
get polynomials I2j(a, b, c) ∈ Z[a, b, c]’s which are minimal integral over Z[a, b, c]. That is, we
scale out denominators, and also any factors of the numerators π so that πj | I2j(a, b, c) for all
j ∈ {1, 2, 3, 5} implies π is a unit in Z[a, b, c]. The resulting I10(a, b, c)’s (which are uniquely
determined up to ±1) are given in Table 3.1.

D I10(a, b, c)

5
8(a5 − 10a3b2 + 25ab4 + 5a4c− 50a2b2c+ 125b4c
−5a3c2 + 25ab2c2 − 45a2c3 + 225b2c3 + 108c5)2

8 8c3(a− c)3(a+ c)6(−16a2b2 + 32b4 + a3c− 56ab2c+ 9a2c2 − 72b2c2 + 27ac3 + 27c4)2

12 (a+ c)3(a− c)9(−27a2 + b2 + 27c2)2(a2b+ 9a2c− 8c3)3

13
23 · 311 · (−267a3 + 72a2b− ab2 − 3552a2c+ 1440abc− 128b2c+ 768ac2)2

· (−12a3 + 3a2c+ b2c)4(−a3 − 150a2c+ 6abc− 264ac2 + 120bc2 + 64c3)4

17
215 · 311 · (−132a+ b+ 3c)3(−256a3 − 1200a2c+ 18abc− 6006ac2 + 99bc2 + 41c3)5

· (456a2 + ab+ 723ac− 8bc+ 24c2)3(4608a3 − 1728a2c+ b2c+ 216ac2 − 9c3)2

Table 3.1. I10 polynomials for Y−(D)

Specializing a, b, c to integers, we denote by Imin
2j (a, b, c) ∈ Z scalings which are minimal

integral over Z. Note that Imin
2j (a, b, c) | I2j(a, b, c) but they are often not equal. E.g., when
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D = 5, then the invariants I2j(1, 3, 2)’s are (−24 · 53, 28 · 54,−215 · 5 · 599, 221 · 38), whereas
the Z-minimal invariants Imin

2j (a, b, c) are obtained by scaling out a factor of 24, i.e., they are
(−53, 54,−23 · 5 · 599, 2 · 38).

First we want to estimate, in terms of a real parameter T , the growth of the cardinality of

ZD(T ) := {(a, b, c) ∈ Z3 − UD : gcd(a, b, c) = 1 and |Imin
2j (a, b, c)| < T 2j for j ∈ 1, 2, 3, 5},

where UD consists of (a, b, c) such that the map (a/c, b/c) → A2 is either undefined (e.g.,
c = 0) or is not finite-to-one (e.g., for D = 8, all points with m = a/c = −1 map to
(1 : 0 : 0 : 0) ∈ A2). Really our interest is just in bounding Imin

10 , but we impose bounds on
the other Imin

2j ’s to guarantee finiteness of ZD(T ).
Precise estimates are difficult, so we make two simplifications which are sufficient to get

lower bounds: (1) We impose the stronger bound |Imin
2j (a, b, c)| ≤ |I2j(a, b, c)| < T 2j . (2)

We will suppose each monomial in I2j(a, b, c) is bounded by T 2j . Note that (1) and (2) can
respectively be thought of as non-archimedean and archimedean simplifications to monomials.

Proposition 3.2. We have #ZD(T ) � T rD as T → ∞, where respectively rD = 3, 32 , 2, 1, 1
for D = 5, 8, 12, 13, 17.

Proof. Each I2j(a, b, c) is a homogeneous polynomial in a, b, c, say of degree dj . Taking a, b, c
independently up to size T 2j/dj shows there are � T 6j/dj tuples (a, b, c) with |I2j(a, b, c)| <
T 2j . Moreover, one checks the ratio j/dj is independent of the choice of j. Since the conditions
gcd(a, b, c) = 1 and (a, b, c) 6∈ UD are satisfied for a positive proportion of (a, b, c), we get
the asymptotic lower bound #ZD(T ) � T 30/d, where d = deg I10(a, b, c). We respectively
have d = 10, 20, 25, 30, 30 for D = 5, 8, 12, 13, 17, which gives the asserted lower bounds for
D = 5, 8, 13, 17.

For D = 12, one can get better lower bounds using a P1 × P1 parametrization for (m,n).
Namely, write (m,n) = (r/s, t/u) for r, s, t, u ∈ Z. Let I2j(r, s, t, u) be the minimal invariants
over Z[r, s, t, u]. These have degrees 6, 12, 18, 30 for j = 1, 2, 3, 5. Using same argument
as above gives a lower bound of #Z12(T ) � T 4/3. However, if we regard I2j(r, s, t, u) as
polynomials only in t and u, the respective degrees are 2, 4, 6, 10 for j = 1, 2, 3, 5. Thus by
taking r, s uniformly bounded and |t|, |u| � T yields #Z12(T )� T 2 as claimed. �

The lower bounds in the proposition are the optimal ones we could find using the P2

or P1 × P1 parametrizations for (m,n) by allowing either each of a, b, c or r, s, t, u to vary
independently up to some power of T (not necessarily the same power for each variable). We
remark that the optimal exponents for lower bounds using the P1 × P1 parametrization for
D = 5, 8, 13, 17 are 2, 4/3, 1, 1, respectively. To get these exponents, for D = 5 one can take
each of |r|, |s|, |t|, |u| � T . For D = 8, one takes |r|, |s| � T 2/3 and |t|, |u| � 1. For both
D = 13 and D = 17, one takes |r|, |s| � 1 and |t|, |u| � T 1/2.

Question 3.3. For D ∈ {5, 8, 12, 13, 17}, is #ZD(T )� T rD+ε for any ε > 0?

It is not clear if the simplifications to monomials affect the exponents in our estimates, but
if the I2j polynomials are sufficiently general type, one might expect they only account for a
multiplicative factor of size O(1 + T ε). Note that in the Brumer–McGuinness heuristics, it is
believed the analogous archimedean simplification (2) only affects counts by an O(1) factor.

A more serious reason to doubt the exponents in these lower bounds are optimal is that
there may exist (i) other rational parametrizations of Y−(D) where the I2j degrees are smaller,
or (ii) special curves on Y−(D) which intersect ZD in an especially large number of rational
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points. Indeed, the proof makes clear that different parametrizations may yield different
counts for a given surface.

Now we explain how these estimates for #ZD(T ) are related to counting quadratic twist
classes of weight 2 newforms f with rationality field Q(

√
D). As explained above, a positive

proportion of f (at least ifD 6= 12) should correspond to rational points on Y−(D). Conversely,
a rational point on Y−(D) may not come from a simple abelian surface with RM defined over
Q—one needs that the Mestre conic has a point, the RM is defined over Q, and the Jacobian is
nonsplit. However, we expect that these obstructions will only contribute logarithmic factors
to asymptotics. (See [9] for details about when the Mestre obstruction vanishes and when the
RM is defined over Q.)

Consider a point (a, b, c) ∈ ZD(T ) which corresponds to a Q̄-isomorphism class of simple
abelian surfaces A/Q. Generically this Q̄-isomorphism class should be the family of Jacobians
of quadratic twists of a genus 2 curve C/Q with RM D. Suppose this, and assume C is a
minimal quadratic twist of conductor NC . Then (a, b, c) corresponds to the quadratic twist
class of some minimal newform f of level Nf where NC = N2

f . One can write down a
minimal integral model for C, and the polynomially-defined Igusa–Clebsch invariants I2j(C)
are necessarily divisible by Imin

2j (a, b, c). Thus Imin
10 (a, b, c) divides the minimal discriminant

∆C = 2−12I10(C) of C. One also knows that the conductor NC | ∆C .
Now we would like to understand how NC relates to Imin

10 (a, b, c) or I10(a, b, c). There are no
general upper or lower bounds, and in fact there are competing issues in opposite directions.
One is that ∆C may be much larger than either Imin

10 (a, b, c) or I10(a, b, c), and numerically
this is quite typical. E.g., if pm ‖ Imin

10 (a, b, c) it often happens that pm+10 | ∆C (see [24]
for local results). On the other hand, the prime powers occurring in NC are often smaller
than those in ∆C . E.g., if p3 ‖ ∆C then necessarily p2 ‖ NC or p - NC . Some preliminary
investigations suggest that the latter issue has more impact, and asymptotic counts of curves
by Imin

10 may essentially be lower bounds (up to logarithmic factors) of counts by conductor.
This leads us to ask:

Question 3.4. Let Ctw
2 (D;X) be the number of quadratic twist classes of non-CM weight 2

newforms of minimal level N < X with rationality field Q(
√
D). Is Ctw

2 (D;X)� Xα−ε for α
such that #ZD(T )� Tα/5? Note that one can take α = 3

5 ,
3
10 ,

2
5 ,

1
5 ,

1
5 for D = 5, 8, 12, 13, 17.

Observe that all of these exponents are less than the exponent of 2/3 from the d = 2 case
of Conjecture 1.1. We will compare these speculative lower bounds with our prime level data
below.

Even if these lower bounds hold, there are several reasons why they may not be sharp. For
one, there is the issue of Question 3.3. Perhaps most serious is the issue of how prime powers
in NC relate to prime powers in ∆C mentioned above.

Another potential issue comes from the way we defined ZD(T ): for the comparison with
conductors, we are only interested in bounds on Imin

10 , and there may be many points with
Imin
10 small relative to Imin

2 , Imin
4 , Imin

6 . In particular, for D = 12, if one views I2j(a, b, c) as a
polynomial in b with a = 0 and c fixed, then the degrees are 2, 2, 4, 4, so one gets at least T 5/2

points with Imin
10 � T 10, which is a better than the lower bound � T 2 in Proposition 3.2.

These rational points correspond to the curve m = 0 on Y−(12), and numerical investigations
suggests this is a Shimura curve parametrizing abelian surfaces with geometric endomorphism
algebra the quaternion algebra of discriminant 6. Consequently, one might be able to take
α = 1

2 in Question 3.4 when D = 12. However, it is not clear that there is a family of genus
2 curves with RM 12 over Q that would achieve α = 1

2 .
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3.3. Lower bounds for quadratic fields. There are several known families of genus 2
curves with RM 5 and RM 8. These can be used to give lower bounds on counting such
curves with bounded discriminant, and therefore conductor. For a genus 2 curve C/Q, let ∆C

denote the minimal integral discriminant.

Proposition 3.5. The number of Q̄-isomorphism classes of genus 2 curves C/Q with RM 5

(resp. RM 8) with |∆C | < X is � X1/6 (resp. � X1/7).

Proof. First consider RM 5. Brumer exhibited a 3-parameter family of curves Cb,c,d with RM
5 over Q (see [6] for an announcement and [18] for a proof), however it is not clear when two
such curves are isomorphic, either over Q or Q̄. We consider the 1-parameter subfamily Cd
with b = c = 0, which is given by

Cd : y2 + (x3 + x+ 1)y = −dx3 + x2 + x.

This defines a genus 2 curve with RM 5 for all d ∈ Z (I10 is never 0 for d ∈ Z), and the
discriminant of this model, (27d3 − 81d2 − 34d − 103)2, is degree 6 in d. Thus to complete
the RM 5 case of the proposition, it suffices to show that the number of Cd′ isomorphic to a
given Cd over Q̄ is finite and uniformly bounded.

Let I2j (resp. I ′2j) denote the polynomial Igusa–Clebsch invariants for Cd (resp. Cd′) for
j = 1, 2, 3, 5. Then I4/I

2
2 and is an absolute invariant for Cd. Thus if Cd and Cd′ are Q̄-

isomorphic, one must have F := (I ′2)
2I4 − I22I ′4 = 0. Now F = 0 defines a union of 3 curves

in the (d, d′)-plane, none of which are of the form d = d0. So the number of Cd′ which are
Q̄-isomorphic to a fixed Cd is bounded by degF .

Now consider RM 8. Here we use Mestre’s 2-parameter family C ′a,b of genus 2 RM 8 curves
over Q from [30]. Consider the subfamily C ′b = C ′2,b, which is given by

C ′b : y2 = 7500x5 + (−75b+ 3400)x4 + (−34b+ 2283)x3 + (−3b+ 1111)x2 + 177x+ 9.

This is a genus 2 curve with RM 8 for b ∈ Z− {−88, 112}, and the discriminant has degree 7
in b. One can complete the argument just as in the RM 5 case. �

Corollary 3.6. The number of quadratic twist classes of weight 2 newforms with rationality
field Q(

√
5) (resp. Q(

√
2)) and minimal level N < X is � X1/3 (resp. � X2/7).

Proof. If C is a genus 2 curve with RM D over Q with nonsplit Jacobian, then modularity
tells us that C corresponds to a weight 2 newform f of level N ≤

√
|DC | and rationality

field Q(
√
D), so it suffices to show that a positive proportion of the curves in the proofs have

nonsplit Jacobian. For the RM 5 C ′d family above, one can check that the above model has
discriminant coprime to 5 when d ≡ 1 mod 5. Moreover computing the L-polynomial shows
the mod 5 Jacobian is nonsplit, whence the Jacobian of Cd over Q is nonsplit. Similarly, for
the RM 8 family, the curve C ′b has nonsplit Jacobian when b ≡ 1 mod 7. �

Note that these lower bounds are significantly smaller than those in Question 3.4.
Remark 3.7.

(1) Under the Bateman–Horn conjecture [1], 27d3 − 81d2 − 34d − 103 is prime for �
X/ logX integers d ≡ 1 mod 5. For such d, Cd has prime-squared discriminant and
the associated newform f has prime conductor. Consequently, subject to this conjec-
ture, the above argument shows there are � X1/3/ logX weight 2 newforms f with
rationality field Q(

√
5) and prime level < X. The analogous argument does not work

for RM 8 as the discriminant of C ′b splits into linear factors over Z.
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(2) Elkies [13] recently gave similar lower bounds for genus 2 curves with RM 5 which
satisfy an Eisenstein congruence, but with the exponent 1

3 replaced by 1
4 .

(3) One should similarly be able to give explicit lower bounds for D = 12, 13, 17 (and
some other D). Namely, [14] gives infinite families of RM D genus 2 curves for various
D, though without explicit models. One can use Mestre’s algorithm to construct
models, and then follow the above argument. However, this typically yields families
with discriminants of very large degree, and so one would need to do more work to
get decent lower bounds.

3.4. Remarks for higher degree. Much less is known about Hilbert modular n-folds for
n > 2 than for n = 2. Grundman and Lippincott ([16, 17]) have done work towards classifying
such spaces by arithmetic genus for n = 3, 4. Then Borisov and Gunnells [4] studied the
geometry of a Hilbert modular 3-fold attached to Q(ζ+7 ). However, to our knowledge, not
much is known about the explicit geometry of higher-dimensional Hilbert modular varieties
beyond these works and their references.

One case where we do know of geometric constructions leading to weight 2 modular forms
of degree d > 2 is the following. In [30], Mestre constructs (among other things) families of
genus d = p−1

2 hyperelliptic curves with potential RM by Z[ζ+p ]. When p = 5, 7, the RM
is actually defined over Q, and generically the curves should correspond to degree 2 and 3
modular forms with rationality fields Q(

√
5) and Q(ζ+7 ).

Mestre’s constructions have been extended by various authors. For instance, [21] and [20]
construct genus 3 curves C with RM by an order in Q(ζ+7 ) such that the RM is generically
defined over the base field. This at least suggests there may be infinitely many weight 2
newforms of squarefree level with rationality field Q(ζ+7 ).

4. Data

The LMFDB [25] currently contains all weight 2 newforms of level N ≤ 104 [3]. However,
this range is not nearly sufficient to study asymptotic behavior of the distribution of newform
degrees in squarefree level. For instance, one is still forced to have many small degree forms
of level close to 10000 as the size of Atkin–Lehner spaces can still be small. For instance, for
N = 9870 = 2 · 3 · 5 · 7 · 47, there are 183 newforms in S2(N) divided among 32 Atkin–Lehner
eigenspaces, and each Atkin–Lehner eigenspace has dimension between 3 and 8.

One can mitigate this effect by restricting to levels with at most 2 or 3 prime factors, or
ordering counts by dimensions of Atkin–Lehner eigenspaces rather than level. However, even
with such considerations, the range is still not large enough to say much about asymptotic
counts.

Instead, we analyze data we computed in prime level using the algorithms from [8]. Namely,
we computed all weight 2 newforms of prime level less than 2 · 106 and degree at most 6, as
well as the degrees of all newforms of prime level less than 106. Our data is available on the
first author’s personal webpage, and is currently in the process of being added to the LMFDB.

4.1. Data for counts by degree. In Figure 4.1, we plot counts C′d(X) of degree d Galois
orbits in weight 2 and prime level at most X for 1 ≤ d ≤ 4. The plot uses a log-log scale,
and because the number of primes up to X is approximately li(X), we do a least-squares fit
of functions of the form y = log(ali(exp(x)b))) to the data{

(logX, log C′d(X)) : X < 2 · 106, X prime, C′d(X) ≥ 1
}
.

For degree 1, our best fit values a ≈ 0.97 and b ≈ 0.832 are in agreement with the elliptic
curve database [2], which, for X up to 2 · 109, finds that a ≈ 0.97 and b ≈ 0.833. This agrees
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Figure 4.1. Number of forms with prime level less than X by degree, with least-squares fits
to the log-log data.

very well with the Brumer–McGuinness–Watkins heuristic (1). For d = 2, 3, 4, the best fit
exponents are approximately 0.629, 0.336, 0.108.

A least-squares fit of y = ali(xb) to the data (X, C′d(X)) yields similar values; the exponents
are 0.841, 0.622, 0.330, 0.107 for d = 1, 2, 3, 4, respectively.

When 1 ≤ d ≤ 4, Conjecture 1.1 is consistent with our prime level data. In Figure 4.1, the
growth rate O(X1−d/6) appears to be an upper bound. In this range the best fit has a notably
lower exponent for d = 3, 4, but there may exist logarithmic factors in the main asymptotics
for d ≥ 2. For example, for d = 2, the Mestre obstruction to rationality of genus 2 curves (see
Section 3.2) may introduce a logarithmic factor in the denominator. Note that in this range,
logX > X

1
6 , so it is difficult to distinguish between logarithmic factors and small powers of

X.
Table 4.2 shows the number of newform orbits of degree at most 6 with prime level between

1 and 104, between 104 and 106, and between 106 and 2 · 106. Note that the first data column
counts prime level forms which were already in the LMFDB.

Degree Level range Total
1 – 104 104 – 106 106 – 2 · 106

1 329 8843 6406 15578
2 212 2200 1096 3508
3 76 142 35 253
4 28 10 1 39
5 20 2 22
6 11 1 12

Table 4.2. Number of prime-level newform orbits by degree and level. Blank entries are 0.

Many of the forms of degree 5 and 6 in this dataset have very small levels. For instance,
12 of the 22 degree 5 forms are the largest-degree forms in their Atkin–Lehner eigenspaces,
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and similarly for 7 of the 12 degree 6 forms. Only 5 of the degree 5 forms and 3 of the degree
6 forms have levels greater than 1000.

Given this paucity of data, we refrain from any quantitative analysis of these forms, but
remark that the counts for d = 5, 6 appear to be consistent with Conjecture 1.1.

Table 4.3 gives the decomposition type, i.e., sizes of Galois orbits, of all prime levels up to 1
million which have two or more newform orbits of degree at least 7 in the same Atkin–Lehner
eigenspace. Here S±2 (p) denotes the subspace of S2(p) with Atkin–Lehner eigenvalue ±1 at p.

Level S+
2 (p) S−2 (p)

607 5 + 7 + 7 31
911 9 + 14 53

1223 34 9 + 59
1249 7 + 37 59
4751 153 18 + 225

Table 4.3. Atkin–Lehner eigenspaces with multiple orbits of size at least 7

Table 4.3 shows that there are only 6 newforms orbits of prime level less than 106 with
degree 7 or more that are not the unique largest in their Atkin–Lehner eigenspaces (2 of which
are tied for the largest), with degrees 7, 7, 7, 9, 9, and 18. This data for d ≥ 7 appears to be
consistent with Conjecture 1.1.

Moreover, Table 4.3 shows that, for each prime level between 4751 and 106, the newforms
in each Atkin–Lehner eigenspace consist of a single large Galois orbit together with orbits of
size ≤ 6. This prompts us to ask the following:

Question 4.4. Is there a prime p > 4751 and a sign ± such that S±2 (p) contains two or more
newform orbits each of degree 7 or more?

This question can be viewed as a uniform version of Conjecture 1.1 in prime level. It seems
plausible to us that in fact Table 4.3 is a complete list of all “mid-sized forms” of prime level.

4.2. Data counts by quadratic field. In this section we investigate Conjecture 1.2 and
Question 3.4 empirically. Table 4.5 and Figure 4.6 present the relevant contents of our dataset.

Disc Level range Total
1 – 104 104 – 106 106 – 2 · 106

5 158 1900 986 3044
8 37 242 100 379
12 1 14 3 18
13 13 40 6 59
17 1 1

Table 4.5. Number of prime-level degree 2 newform orbits by discriminant and level, for
discriminants D such that Y−(D) is rational. Blank entries are 0.

The growth rate of the counts plotted in Figure 4.6 appears to be the largest for D = 5,
and D = 8 appears to be the next largest. This is consistent with Conjecture 1.2.

Let C′d,D(X) denote the number of newform orbits of degree d, discriminant D, and prime
level at most X. For each of D = 5, 8, 12, and 13, we compute least-squares fits to the
following four sets of data points:
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Figure 4.6. Counts of degree 2 forms by discriminant D for rational surfaces Y−(D). The
plot on the right excludes discriminants 5 and 8.

(1)
{

(logX, log C′d,D(X)) : 1 < X < 2 · 106, X prime, C′d,D(X) ≥ 1
}

(2)
{

(logX, log C′d,D(X)) : 104 < X < 2 · 106, X prime, C′d,D(X) ≥ 1
}

(3)
{

(X, C′d,D(X)) : 1 < X < 2 · 106, X prime, C′d,D(X) ≥ 1
}

(4)
{

(X, C′d,D(X)) : 104 < X < 2 · 106, X prime, C′d,D(X) ≥ 1
}

In the first two cases we fit functions of the form y = log(ali(exp(x)b))), and in the last
two y = ali(xb). The best-fit exponents b we obtain vary depending on our choice of model
and range of X values. We present these best-fit values of b in Table 4.7.

Data X range Best-fit exponents
5 8 12 13

(logX, log C′d,D(X)) 1 – 2 · 106 0.73 0.61 0.39 0.42

(logX, log C′d,D(X)) 104 – 2 · 106 0.64 0.54 0.39 0.38

(X, C′d,D(X)) 1 – 2 · 106 0.67 0.56 0.37 0.37

(X, C′d,D(X)) 104 – 2 · 106 0.65 0.53 0.37 0.35

Table 4.7. Best-fit values of b when fitting functions of the form y = log(ali(exp(x)b))) or
y = ali(xb) as appropriate to data of counts of degree 2 newform orbits with prime level and
prescribed discriminant

The best-fit exponents we obtain are all higher than the lower bounds proposed in Ques-
tion 3.4, in many cases substantially, except for discriminant 12, where the value is slightly
lower than the 0.4 appearing in Question 3.4. There is only one form of discriminant 17 and
prime level less than 2 · 106, at level 75653.

The data presented in Table 4.5, Figure 4.6, and Table 4.7, as well as the heuristics from
Question 3.4, support Conjecture 1.2. Namely, the suggested lower bounds for counts by qua-
dratic rationality field are largest for Q(

√
5). Since the heuristics do not rely on a restriction

to prime level, one is led to ask:

Question 4.8. Do 100% of quadratic twist classes (ordered by minimal level) of weight 2
degree 2 non-CM newforms have rationality field Q(

√
5)?
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There is an arithmetic reason to expect a relative scarcity of certain quadratic fields in prime
level compared to the lower bounds for arbitrary levels suggested in Question 3.4. Namely, if
C is a genus 2 curve with RM D, then we typically expect odd primes dividing Imin

10 to divide
the conductor NC . Based on the factorizations of I10’s in Table 3.1, we expect Imin

10 to be a
2-power times a prime power very infrequently for D = 12, 13, 17. Indeed, the LMFDB [25]
lists 5485, 3948 2189, 1230, and 1643 forms in all levels N ≤ 10000 for D = 5, 8, 12, 13, and
17, respectively. Restricting to squarefree level, these numbers are 1820, 1124, 445, 319, and
461.

4.3. Data counts for cubic fields. While we have not attempted to carry out the approach
outlined in Section 3.1 to estimate counts of degree 3 forms with a given cubic rationality
field K, the data, though more limited, behaves similarly as in the degree 2 case. Table 4.9
and Figure 4.10 present counts of all prime level degree 3 newform orbits by their Hecke field
discriminant. These discriminants are sufficient to specify the Hecke field, in the sense that
if f and g are degree 3 forms of prime level less than 2 · 106 and Disc(Kf ) = Disc(Kg), then
Kf = Kg.

Disc Level range Total
1 – 104 104 – 106 106 – 2 · 106

49 34 90 30 154
81 3 13 16
148 12 6 18
169 2 6 3 11
229 8 20 1 29
257 9 6 1 16
321 2 1 3
404 2 2
469 1 1
473 2 2
621 1 1

Table 4.9. Number of prime-level degree 3 newform orbits by discriminant and level. Blank
entries are 0.

Figure 4.10. Counts of degree 3 forms by discriminant. The plot on the right excludes
discriminant 49 and is on a log scale. Not shown are the 9 forms with discriminant 321, 404,
469, 473, or 621.
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Like in Section 4.2, we fit functions of the form either y = log(ali(exp(x)b))) or y = ali(xb)
as appropriate to data points of the form either (logX, log C′d,D(X)) or (X, C′d,D(X)), for prime
X between either 1 and 2 · 106 or 104 and 2 · 106. The best-fit exponents we obtain in each
of these four cases, for D = 49, 81, 148, 169, 229, and 257, are shown in Table 4.11.

Data X range Best-fit exponents by D
49 81 148 169 229 257

(logX, log C′d,D(X)) 1 – 2 · 106 0.42 0.34 0.12 0.39 0.24 0.18

(logX, log C′d,D(X)) 104 – 2 · 106 0.42 0.32 0.11 0.38 0.20 0.19

(X, C′d,D(X)) 1 – 2 · 106 0.43 0.23 0.11 0.37 0.19 0.19

(X, C′d,D(X)) 104 – 2 · 106 0.43 0.22 0.11 0.37 0.18 0.19

Table 4.11. Best-fit values of b when fitting functions of the form y = log(ali(exp(x)b))) or
y = ali(xb) as appropriate to data of counts of degree 3 newform orbits with prime level and
prescribed discriminant

Analogous to the degree 2 case, it is natural to ask:

Question 4.12. Among squarefree levels N → ∞, do 100% of degree 3 newforms in S2(N)
have rationality field Q(ζ7)

+?
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