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AN ON-AVERAGE MAEDA-TYPE CONJECTURE

IN THE LEVEL ASPECT

KIMBALL MARTIN

(Communicated by Amanda Folsom)

Abstract. We present a conjecture on the average number of Galois orbits
of newforms when fixing the weight and varying the level. This conjecture
implies, for instance, that the central L-values (resp. L-derivatives) are nonzero
for 100% of even weight prime level newforms with root number +1 (resp. −1).

1. Introduction

Let Sk(N) (resp. Snew
k (N)) be the space of weight k elliptic cusp (resp. new)

forms of level Γ0(N). For S a Hecke-stable subspace of Snew
k (N) such that the

subset of newforms is closed under the action of Gal(Q̄/Q), denote by Orb(S) the
set of Galois orbits of newforms in S.

Maeda’s conjecture asserts that for any even k such that Sk(1) = Snew
k (1) �= 0,

there is a single Galois orbit, i.e., #Orb(Sk(1)) = 1, and in fact T2 (or any Tp)
acts irreducibly (over Q) on Sk(1) with Galois group of type Sn. More generally,
let Sqr denote the set of squarefree positive integers with exactly r prime factors.
Then for N ∈ Sqr, Sk(N) has 2r Atkin–Lehner eigenspaces. Tsaknias’ [Tsa14]
generalization of Maeda’s conjecture in the case of squarefree levels states that, for
fixed N ∈ Sqr, one has #Orb(Snew

k (N)) = 2r for all k larger than some k0(N). It
follows from trace formula methods that #Orb(Snew

k (N)) ≥ 2r for all sufficiently
large k, and this can be made effective in terms of N [Mar18]. Thus we may think
of this generalized Maeda conjecture as saying that the number of Galois orbits is
almost always the minimum possible.

On the other hand, if we fix k = 2 and vary N ∈ Sqr, one expects a strict
inequality #Orb(S2(N)) > 2r infinitely often due to the existence of sufficiently
many elliptic curves of squarefree level. However, we predict the following on-
average analogue of Maeda’s conjecture in the level aspect.

Conjecture A. Let k ≥ 2 be even. Then the average number of Galois orbits of
Snew
k (N) over all N ∈ Sqr is 2r, i.e.,

(1.1) lim
X→∞

∑
N∈Sqr(X) #Orb(Snew

k (N))

#Sqr(X)
= 2r,

where Sqr(X) = {N ∈ Sqr : N ≤ X}. In fact, for a fixed prime p, Tp acts
irreducibly on each of the 2r Atkin–Lehner eigenspaces of Snew

k (N) for 100% of
N ∈ Sqr which are coprime to p.

Received by the editors December 21, 2019, and, in revised form, June 18, 2020.
2020 Mathematics Subject Classification. Primary 11F11, 11F30, 11G18; Secondary 11Y35.
The author was supported by a grant from the Simons Foundation/SFARI (512927, KM).

c©2021 American Mathematical Society

1373

https://www.ams.org/proc/
https://www.ams.org/proc/
https://doi.org/10.1090/proc/15328


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1374 KIMBALL MARTIN

In particular, this asserts that each Atkin–Lehner eigenspace is spanned by a
single Galois orbit 100% of the time, analogous to the usual Maeda conjecture.

One application of Maeda’s conjecture is to non-vanishing of central L-values for
newforms of full level [CF99] (see also [KZ81, Corollary 2]). The above conjecture
similarly has applications to non-vanishing L-values and derivatives. We recall that
if a newform f ∈ Sk(N) has root number −1, then the central L-value L(k, f) is
forced to vanish by the functional equation.

Theorem 1. Let k ≥ 2 be even, and assume Conjecture A. Let F ′
k denote the

collection of newforms in
⋃

N prime Sk(N), partially ordered by level. Then

(1) for 100% of f ∈ F ′
k with root number +1, we have L(k, f) �= 0; and

(2) for 100% of f ∈ F ′
k with root number −1, we have L′(k, f) �= 0.

Now we expand on these statements as well as the content of the paper.

1.1. Statistics of Galois orbits. First, Maeda’s conjecture for full level was for-
mulated on the basis of computational data. To date (for T2 as well as for most
other Tp’s), Maeda’s conjecture has been verified for k ≤ 14000 [GM12]. See [Tsa14]
and [DPT] for evidence towards the analogue for squarefree level as well as a pos-
sible generalization for non-squarefree level. See also [MS16] for additional indirect
analytic evidence.

Our conjecture is based on both heuristics in Section 2 and data in Section 3.
Our primary heuristics come from applying general heuristics about factorizations
of random integer polynomials to Hecke polynomials. This leads to three heuristics
in Section 2.1 which, roughly stated, are the following: (wt) suggests the probability
of small Galois orbits decreases rapidly as the weight increases; (lev) suggests the
probability of small Galois orbits decreases rapidly as the level increases; and (lin)
suggests most small Galois orbits arise from rational newforms, i.e., most small
Galois orbits are size 1. These heuristics are in accord with data from the LMFDB
[LMFDB], and our computational progress here is to compute the number and sizes
of Galois orbits for S2(N) where N < 60000 is prime. (LMFDB calculations cover
N ≤ 10000 when k = 2.) Note that according to the heuristic (wt), k = 2 should
be the key case in which to test Conjecture A.

We also explore statements stronger than Conjecture A in higher weight. A con-
jecture of Roberts [Rob18], in the case of squarefree level, asserts that there are only
finitely many rational newforms of weight k ≥ 6, and none with k ≥ 52. The heuris-
tic (lin) suggests Conjecture B: if k is such that there are only finitely many weight
k rational newforms of squarefree level, then in fact #Orb(Snew

k (N)) = 2r for all
but finitely many N ∈ Sqr. Combining Roberts’ conjecture with Conjecture B and
(lin) suggests Conjecture B+: for k ≥ 6 (resp. k sufficiently large), #Orb(Snew

k (N))
is exactly the number of nonzero Atkin–Lehner eigenspaces in Snew

k (N) for all but
finitely many (resp. all) squarefree N .

See Table 1 for a rough comparison of the kinds of statements these conjectures
make about the number of certain Galois orbits in Snew

k (N) for squarefree N . The
“weight aspect” column refers to fixed N and varying k, and vice versa for the
“level aspect” columns. Here “rational orbits” refers to counting only Galois orbits
of size 1, i.e., Galois orbits consisting of rational newforms. The “all” row consists
of assertions of the form that the number of Galois orbits is always the minimum
possible (meaning the number of nonzero Atkin–Lehner eigenspaces in the case of
all orbits, and 0 in the case of rational orbits), whereas the “a.a.” (almost all) row
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Table 1. Conjectures on numbers of Galois orbits in squarefree level

weight aspect level aspect
all orbits rational orbits all orbits

all Maeda (N = 1) Roberts (k ≥ 52) Conjecture B+ (k large)
a.a. Tsaknias Roberts (k ≥ 6) Conjecture B+ (k ≥ 6)
100% Conjecture A

allows for a finite number of possible exceptions, and the “100%” row allows for an
infinite but density 0 set of exceptions.

While we have presented Roberts’ conjecture and Conjecture B+ in this table
as statements in the level aspect, since there should be no exceptions for almost
all k, one can view these statements as allowing both the weight and level to
vary provided k is not too small. Consequently, Conjecture B+ is stronger than
Tsaknias’ generalized Maeda conjecture for squarefree levels as it asserts that the
k0(N) in that conjecture can be taken to be independent of N , i.e., there is a
uniform bound k0 after which there are no “extra” Galois orbits in any Snew

k (N)
with k ≥ k0 and N squarefree.

We also briefly discuss how often Hecke polynomials are irreducible or Galois
groups are of type Sn in Sections 2.3 and 3.4. In addition, we raise some other
questions related to [Rob18], [Mur99] and [KSW08] based on our data (Questions 3
and 4).

1.2. Rationality fields of large degree. Lipnowski and Schaeffer [LS] formu-
lated a conjecture in a similar vein as Conjecture A, that the rational Hecke mod-
ules of each Atkin–Lehner eigenspace are asymptotically simple. Restricting to
N prime, this means that for fixed ε = ±1 the maximal size of an orbit in the
Atkin–Lehner ε-eigenspace Snew,ε

k (N) should be asymptotic to the dimension of
Snew,ε
k (N), i.e.,

(1.2) lim
N→∞

max{#O : O ∈ Orb(Snew,ε
k (N))}

dimSnew,ε
k (N)

= 1.

While neither Conjecture A nor the Lipnowski–Schaeffer conjecture imply the other,
Conjecture A is morally stronger in that it is suggestive of the Lipnowski–Schaeffer
conjecture but not conversely. Namely, Conjecture A would imply that (1.2) holds
for a density 1 subsequence of prime levels N , but (1.2) alone does not imply any
bounds on the number of Galois orbits, even restricting to some density 1 subset
of prime levels.

Both Conjecture A and the Lipnowski–Schaeffer conjecture assert very strong
statements about the growth of degrees of rationality fields of newforms, namely
that the growth of rationality fields is must be generically linear in the level. At
present, only much weaker results are known. For instance, as the level grows, one
knows that the proportion of newforms with rationality fields of bounded degree
tends to 0 [Bin17]. Moreover, there exist sequences of newforms with rationality

fields with degrees growing at least on the order of logN [BM16], and N
1
2−ε if one

admits class number heuristics [LS]. See also [LS] and [BPGR] for log logN type
bounds for more general sequences.
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1.3. L-values. The conclusion of Theorem 1 is expected from minimalist-type con-
jectures (see [Bru95] for k = 2) and the Katz–Sarnak philosophy. The non-vanishing
of central L-values L(k, f) and L-derivatives L′(k, f) is already known for a positive
proportion of such f in prime levels by [Van99], [KM00] and [IS00]. In [IS00], a con-
nection is made between large proportions of non-vanishing of central values (via a
more refined density conjecture) and Landau–Siegel zeroes. In particular, suitable
lower bounds on central L-values L(k, f) for strictly greater than 50% of newforms
f ∈ Sk(N) with root number +1 implies the nonexistence of Landau–Siegel zeros
of Dirichlet L-functions. This suggests a potential connection between the average
number of Galois orbits and Landau–Siegel zeroes.

The proof of Theorem 1 in Section 4 is an immediate application of the above
non-vanishing results together with the behavior of L-values and L-derivatives un-
der the Galois action. The obstruction to extending this to squarefree level is
that one needs the existence of non-vanishing L-values and L-derivatives in 100%
of Atkin–Lehner eigenspaces. While this may very well be accessible by current
analytic methods, to our knowledge it has not been considered. One could also
apply Conjecture A to questions such as non-vanishing of twisted L-values (e.g.,
see [MW20]).

1.4. Final remarks. In [MW20], we give another application of Conjecture A to
zeroes of automorphic forms on definite quaternion algebras.

Finally, we remark that one could attempt to generalize Conjecture A to non-
squarefree levels. In the case of non-squarefree level, the naive expectation for the
number of non-CM Galois orbits should be given by the number of possible local
representation types at ramified places, which varies with both the primes p|N as
well as vp(N). We do not consider this here, in part because it would be difficult to
generate a convincing amount of data for non-squarefree level and partly because
even the correct generalization of Maeda’s conjecture to non-squarefree level is
not clear (see [DPT]). Similarly, we do not consider nontrivial nebentypus or odd
weights, but it is reasonable to expect an analogue of Conjecture A in these settings
as well.

2. Heuristics

2.1. Random polynomials. Let k ≥ 2 be even, N ∈ Sqr and n = dimSnew
k (N) ∼

(k−1)ϕ(N)
12 . Let ε denote a sign pattern for N , i.e., a collection (εp)p|N such that

εp = ±1 for each p|N . For p|N , let Wp be the Atkin–Lehner involution at p
on Snew

k (N). Denote by Snew,ε
k (N) = {f ∈ Snew

k (N) : Wpf = εpf for p|N} the
Atkin–Lehner eigenspace of newforms associated to ε. By [Mar18], we know that
dimSnew,ε

k (N) ∼ n
2r (asymptotically as kN → ∞ for (k,N) ∈ 2Z>0 × Sqr), and in

fact we know good error estimates.
Consider a Hecke operator Tp (p � N) acting on Snew

k (N) or some Snew,ε
k (N).

Then each Galois orbit O of newforms in these spaces corresponds to a factor
gO,p(x) of the characteristic polynomial cTp

(x) ∈ Z[x] of Tp. More precisely, we

must have gO,p(x) = mO,p(x)
j for some irreducible polynomial mO,p(x) ∈ Z[x],

and the roots of gO,p(x) are in one-to-one correspondence with the Tp-eigenvalues
of the newforms in O.

Thus a random model for the number and degrees of factors of cTp
(x) will provide

a simple heuristic for an upper bound on the number of and a lower bound on the
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sizes of the Galois orbits of Snew
k (N) or Snew,ε

k (N). In fact, the main result of
[KSW08] implies that for a given Galois orbit O, gO,p(x) = mO,p(x) for 100% of
primes p. Hence we may use a model for the factorization of cTp

(x) for an arbitrary
p � N to model the Galois orbits of Snew

k (N).
We recall two heuristic principles on random polynomials, which are quite robust

to the model being considered.

(RP1) In the absence of simple reasons for nontrivial factors, the probability that a
well-behaved random polynomial in Z[x] is irreducible tends to 1 (typically
quickly) as the size of the polynomial grows.

(RP2) Asymptotically, the probability that a well-behaved random polynomial in
Z[x] is reducible over Q is proportional to the probability that it has a
linear factor over Q.

We do not attempt to define the notions of “well-behaved” or the “size” of the
polynomial—indeed we use them in a somewhat vague sense here—but just remark
that by size we have in mind some combination of the sizes of the degree, the
coefficients and the roots of the polynomial. The principle (RP1) has been long
studied, and there are many results in this direction. See, e.g., [BBB+18] for a
recent study of (RP2), which the authors term universality.

Apart from the decomposition of Snew
k (N) into Atkin–Lehner eigenspaces, there

are no obvious reasons why the characteristic polynomials of Tp’s acting on Snew
k (N)

should factor for p � N . Thus (RP1) suggests that, for p � N , Tp acts irreducibly
on each Atkin–Lehner eigenspace 100% of the time. This is our first heuristic why
Conjecture A should be true.

To be more precise, we recall a simple model for Hecke polynomials on Atkin–
Lehner eigenspaces recently proposed by Roberts [Rob18].

Consider the collection Pd(t) of degree d monic polynomials in Z[x] all roots real
size at most t. It follows from [AP14a, Theorem 4.1] that |Pd(t)| is approximately

(2.1) Rd(t) := (2t)
d(d+1)

2

d∏
j=1

(j − 1)!2

(2j − 1)!
= 2dt

d(d+1)
2

d−1∏
j=1

(
j

2j + 1

)d−j

when d+ t is large (cf. [AP14b, Theorem 3.1]). Thus the probability that a random
polynomial in Pd(t) has a factor of degree e ≤ d

2 is approximately

(2.2) Pd,e(t) :=
Re(t)Rd−e(t)

2δRd(t)

=
1

2δte(d−e)

e−1∏
j=1

(
2j + 1

j

)j d−e−1∏
j=e

(
2j + 1

j

)e d−1∏
j=d−e

(
2j + 1

j

)d−j

,

where δ = 1 if d = 2e and 0 otherwise.
Note (for d > 2)

Pd,1(t) =
1

td−1

d−1∏
j=1

2j + 1

j

and

Pd,e(t) <

(
3

t

)e(d−e)

.
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Consequently, we see that both Pd,e(t) → 0 and Pd,1(t) 	
∑�d/2�

e=2 Pd,e(t) as d+ t →
∞, provided t > 3. In fact, by refining the above bound, this analysis works for
fixed t > 2 and d → ∞. Thus (RP1) and (RP2) hold for this model with fixed
t > 2 and d → ∞.

Let nε = dimSnew,ε
k (N) ≈ (k−1)ϕ(N)

12·2r . Then a crude model for the characteristic

polynomial of Tp acting on Snew,ε
k (N) is a random polynomial in Pnε

(2p(k−1)/2).
One obvious defect is that, even for fixed N and ε, the probability of reducibility
decreases rapidly as p → ∞.

For odd N , we will just use a model for the factorization of cT2
as a model for

the Galois orbits. In light of both [KSW08] and observed data (see Table 7), the
factorization of cT2

does seems to be a very good model for the sizes of Galois

orbits. Further, as in [Rob18], we may view Pnε,e(2
k+1
2 ) as a rough model for the

probability that Snew,ε
k (N) has a Galois orbit of size e (or a collection of smaller

Galois orbits whose sizes sum to e), even when N is even.
This model is not very accurate—as pointed out in [Rob18], it severely underpre-

dicts the actual number of factorizations of cTp
’s. In fact it suggests all but finitely

many Atkin–Lehner eigenspaces consist of a single Galois orbit as N → ∞ along
Sqr, which should not be true at least in weight 2 (cf. Section 2.2 and Question 3).
We will partially address this by also considering arithmetic statistics in Section 2.2
below. However, the model at least suggests the following principles which we be-
lieve in accordance with the data and general expectations about randomness. In
the following statements, we consider r ≥ 1 fixed, N ∈ Sqr, k ≥ 2 even, ε a sign
pattern for N and p � N .

(wt) Given N , ε and p, the probability that Tp acts reducibly on Snew,ε
k (N)

decreases rapidly as k becomes large.
(lev) Given ε and p, the probability that Tp acts reducibly on Snew,ε

k (N) decreases
rapidly as N grows coprime to p.

(lin) If k + N is large, the probability that Tp acts reducibly on Snew,ε
k (N) is

roughly equal to the probability that Tp acting on Snew,ε
k (N) has a rational

eigenvalue.

Note (wt) and (lev) follow from (RP1) since increasing k + N increases the
dimensions of the Atkin–Lehner subspaces. Similarly, (lin) follows from (RP2).
Specifically, (lev) suggests Conjecture A.

Before we discuss other heuristics and data, we discuss the relation of the above
heuristics with the following recent conjecture of [Rob18] restricted to our setting
of squarefree level. (In particular, we do not need to account for quadratic twist
classes or CM forms.) By a rational newform, we mean a newform in Sk(N) with
rational Fourier coefficients, i.e., a newform whose Galois orbit has size 1. Let Fk

be the set of newforms which lie in some Sk(N) with N squarefree.

Conjecture 2 (Roberts). Fix k ≥ 6. There are only finitely many rational new-
forms in Fk. Further, if k ≥ 52, there are no rational newforms in Fk.

Roberts’ support for his conjecture comes from his rough heuristic model together
with an apparent lack of motivic sources for rational newforms in higher weight and
computations in weights k ≤ 50 and levels N ≤ Ck. Here the bound Ck depends
on k—e.g., C6 = 1000, C10 = 450, C20 = 150, C30 = 100 and C40 = 30.

Of course when k = 2, rational newforms correspond to isogeny classes of ellip-
tic curves, so we expect infinitely many rational newforms (cf. Section 2.2). For
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k =4, Roberts remarks that it is unclear if there should be infinitely many rational
newforms or not, and that this is related to the existence of suitable Calabi–Yau
threefolds.

Now (lin) suggests the following more speculative conjecture, which implies some-
thing much stronger than Conjecture A if Roberts’ conjecture is true for k.

Conjecture B. Fix k. Suppose there are only finitely many rational newforms in
Fk. Then #Orb(Snew

k (N)) = 2r for all but finitely many N ∈ Sqr.

As some numerical evidence for this conjecture, Roberts observed that in his
calculations for k ≥ 6 that there were only four squarefree levels where an Atkin–
Lehner eigenspace has multiple Galois orbits with no orbits of size 1, which is in
line with (lin) and the above conjecture.

Moreover, in light of the second part of Roberts’ conjecture, the above heuristics
suggest that for k sufficiently large, each Atkin–Lehner eigenspace may only be a sin-
gle Galois orbit for arbitrary squarefree N , which is what we labeled Conjecture B+
in the “all” row of Table 1. Put another way, it is possible that the generalized
Maeda conjecture for squarefree level is true with a uniform bound on the weight:
there exists some absolute k0 such that for any r ≥ 0, #Orb(Snew

k (N)) = 2r for
all k ≥ k0 and all N ∈ Sqr. (Recall that the conjecture in [Tsa14] only asserts the
existence of a lower bound k0(N) depending on N .)

2.2. Elliptic curves. As mentioned before, random polynomial models as above
seem too crude to accurately predict the frequency of small Galois orbits. One
perspective is that the existence of small Galois orbits is due to the existence of
suitable motives, which seem to be hard to model without a deep understanding
of arithmetic. However, we can supplement the random polynomial model above
with heuristics from arithmetic geometry.

In particular, based on the principle (wt), we expect that Conjecture A should
be true if it is true in weight 2. Our data below corroborate this idea, by indicating
the average number of Galois orbits converges to 2r faster the higher the weight
is (see Section 3.1). Moreover, by the principle (lin), we expect that Conjecture A
should be true if, as N → ∞ in Sqr, 0% of weight 2 newforms are rational.

By dimension formulas, we know that the number of weight 2 newforms of level

N ≤ X, N ∈ Sqr, grows at least on the order of X2

logX (up to a constant, this is the

asymptotic for r = 1). However the number of isogeny classes of elliptic curves of
arbitrary conductor less thanX is O(X1+ε) [DK00]. (Heuristics of Watkins [Wat08]
suggest it is actually O(X5/6).) Consequently, 0% of weight 2 newforms along levels
in Sqr are rational. This gives arithmetic support for our belief in Conjecture A.

In fact, generalizing work of Serre, Binder [Bin17] showed that, for any weight k
and fixed degree A, 0% of weight k newforms of levels N have a rationality field of
degree ≤ A for any sequence of N → ∞ with a bounded number of prime factors.

2.3. Galois groups. Conjecture A is an on-average analogue of two aspects of
Maeda’s conjecture in the level aspect: the number of Galois orbits and the ir-
reducibility of the action of Tp. The remaining aspect of Maeda’s conjecture is
the assertion that the rationality fields of newforms are of type Sn. Since random
polynomials tend to have Galois groups of type Sn, it is reasonable to expect that
Conjecture A also holds with the added statement that cTp

has Galois group of
type Sn for 100% of Atkin–Lehner eigenspaces.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1380 KIMBALL MARTIN

Table 2. Average numbers Ak,1(X) of Galois orbits for r = 1

X = 250 500 1000 2500 5000 10000
k = 2 2.038 2.484 2.679 2.684 2.577 2.483

4 2.057 2.042 2.030 2.016
6 1.981 2.000 2.000
8 2.000 2.000
10 1.981
12 1.943

Table 3. Average numbers Ak,2(X) of Galois orbits for r = 2

X = 250 500 1000 2500 5000 10000
k = 2 3.243 4.386 5.292 5.615 5.608 5.442

4 4.405 4.352 4.250 4.135
6 4.108 4.069 4.042
8 3.973 3.986
10 4.013
12 4.000

Table 4. Average numbers Ak,3(X) of Galois orbits for r = 3

X = 250 500 1000 2500 5000 10000
k = 2 3.708 5.885 8.652 11.34 12.30 12.29

4 7.500 8.902 9.237 8.701
6 8.167 8.557 8.348
8 8.292 8.197
10 8.083
12 7.958

There are examples of newforms with rationality fields whose Galois group is not
a full symmetric group. For instance, in LMFDB [LMFDB] one finds 351 Galois
orbits of weight 2 newforms in squarefree levels N < 10000 whose rationality field is
the degree 3 cyclic extension Q(ζ14)

+/Q. Analogous to questions about the finitude
of rational newforms, one might ask if all or almost all Galois orbits have rationality
fields of type Sn when one restricts to sufficiently large weights. Unfortunately, we
do not have precise enough heuristics or abundant enough data to speculate about
this.

3. Data

3.1. LMFDB data. First we present some numerical evidence for Conjecture A
using data from LMFDB [LMFDB]. LMFDB contains data for the newforms in
Snew
k (N) whenever Nk2 ≤ 40000. Using these data, we computed the average

number Ak,r(X) of Galois orbits over the spaces Snew
k (N) where N ∈ Sqr with

N < X for numerous values of X ≤ 10000, 2 ≤ k ≤ 12 and 1 ≤ r ≤ 3. The data are
summarized in Tables 2 to 4, corresponding respectively to r = 1, 2 and 3. Blank
spaces in the tables denote the situations where LMFDB lacks sufficient data to
compute these averages.
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0
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Figure 1. The average number A2,1(X) of Galois orbits for
S2(N), N < X prime

Our first remark about the data is that, for fixed k, r the rough shape of the
graph Ak,r(X) as a function of X initially increases with N (corresponding to the
range where some Atkin–Lehner spaces are 0) and then is essentially decreasing.
In accordance with our heuristics, it appears that Ak,r(X) tends to 2r faster the
larger k is and the smaller r is, as the dimensions of the Atkin–Lehner eigenspaces
are larger in these situations.

In particular, the data for the case k = 2 and r = 3 are not sufficient to
make it numerically apparent whether the average tends to 23. However, the data
on the whole seems to be in support of Conjecture A, and also the notion that
Conjecture A should be true if it is true for k = 2. In addition, it seems reasonable
to expect that, for given k, the distribution of sizes of Galois orbits along a sequence
of Atkin–Lehner eigenspaces depends primarily on dimension of the Atkin–Lehner
eigenspaces and not to any significant amount on the number r of prime factors of
N . Thus, at least to our mind, we can be confident about Conjecture A if we are
in the special case of k = 2 and r = 1, which is what we focus on below.

3.2. Data for S2(N), N prime. To gather more numerical evidence for
Conjecture A, we computed A2,1(X) for X ≤ 60000. Raw data on the number
and size of Galois orbits for S2(N) for prime N ≤ 60000 are available on the au-
thor’s website.1 These calculations were carried out in parallel using Sage [Sage] on
the University of Oklahoma’s supercomputing facilities (OSCER) over the course of
several weeks. See Figure 1 for a graph of A2,1(X), which appears to be eventually
decreasing to 2, as conjectured. We remark that A2,1(60000) ≈ 2.3016 (compare
with Table 2). The apparent slow rate of convergence is expected in light of the
well-known numerical phenomenon that the proportion of weight 2 newforms ac-
counted for by elliptic curves tends to 0 quite slowly (e.g., see [BHK+16]).

1https://math.ou.edu/~kmartin/data/

https://math.ou.edu/~kmartin/data/
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Table 5. Counts of number of Galois orbits for S2(N) with N prime

number of orbits % with
2 3 4 5 6 7+ 2 orbits

0 < N < 10000 777 331 67 25 9 6 63.2%
10000 < N < 20000 786 193 39 9 5 1 76.1%
20000 < N < 30000 769 176 31 5 1 1 78.2%
30000 < N < 40000 768 158 23 7 2 0 80.2%
40000 < N < 50000 750 162 14 3 1 0 80.6%
50000 < N < 60000 765 121 28 6 4 0 82.8%

Table 6. Counts of small Galois orbits for S2(N) with N prime

size of orbits
1 2 3 4 5 6 7

0 < N < 10000 329 212 76 28 20 11 18
10000 < N < 20000 200 104 16 3 0 0 0
20000 < N < 30000 176 80 5 2 1 0 0
30000 < N < 40000 171 56 5 1 0 0 0
40000 < N < 50000 140 56 7 0 0 0 0
50000 < N < 60000 152 57 2 0 0 0 0

One consequence of Conjecture A would be that, in 100% of prime levels, S2(N)
has exactly 2 Galois orbits. (For N > 59, S2(N) has at least 2 orbits.) In fact,
provided the number of Galois orbits does not grow too fast along any subsequence,
this is equivalent to the k = 2, r = 1 case of Conjecture A. Table 5 summarizes
how often we get exactly 2 (or 3, or 4, etc.) Galois orbits in weight 2 in certain
ranges. These numerics suggest that indeed there are exactly 2 Galois orbits 100%
of the time. We remark that for prime N < 60000, the maximum number of Galois
orbits is 10.

One of our heuristics for Conjecture A uses the idea (lin), that most of the
time an Atkin–Lehner eigenspace has multiple Galois orbits, the multiple orbits are
accounted for by the existence of a rational newform. In Table 6, we summarize
the number of small Galois orbits in various ranges, and observe that indeed most
of the time there is a small Galois orbit, it is of size 1. In fact, there are no orbits
of “moderate” size: for 10000 < N < 60000, there are no Galois orbits of size
6 ≤ d ≤ 300. This suggests the following question:

Question 3. Fix k, r, d. Are there infinitely many Galois orbits of size d in the
union of spaces Snew

k (N) with N ∈ Sqr?

Note that for d = 1, this is just asking about the infinitude of rational newforms,
which is the topic of Roberts’ conjecture discussed above. In fact, Conjecture B+
would imply that for k ≥ 6, the answer is negative for all r, d. On the other hand,
when k = 2 and d is small, we expect this question has a positive answer. So the
most novel case of this question is when k is small but d is not. At least for k = 2,
r = 1 and d sufficiently large, our data suggest the answer may be no.

3.3. The method. Now we describe our method to compute Galois orbits. For
an odd prime N , let B = BN be the definite quaternion algebra of discriminant
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Table 7. Frequency that p is the smallest prime such that Tp acts
on S2(N) with no repeated eigenvalues (N < 60000 prime)

p 2 3 5 7 11 13 17 19 23 47
frequency 5815 158 42 14 15 2 3 4 3 1

N . Then we computed the Brandt matrix TB
2 for a maximal order OB of B, which

acts on the space of M quaternionic modular forms associated to OB. This space
of quaternionic modular forms is Hecke isomorphic to M2(N) � CE2,N ⊕ S2(N),
where E2,N is the normalized weight 2 level N holomorphic Eisenstein series. The
Eisenstein eigenvalue of TB

2 is 3, and thus the eigenvalues of TB
2 acting on BN are 3

together with the eigenvalues of T2 acting on S2(N). We compute the characteristic
polynomial cTB

2
(x) = (x− 3)cT2

(x).

If cT2
(x) has no repeated factors, then the number of Galois orbits in S2(N)

is simply the number of irreducible factors of cT2
(x). If cT2

(x) has repeated fac-
tors, then we repeat the above calculation with successive Tp’s until this method
succeeds. We performed these calculations in parallel by treating different N on
different cores. Most of the calculation time is spent computing the characteristic
polynomials, and the computational complexity increases both with N and with p.
For N close to 60000, this calculation for a single Tp can take over 24 hours of wall
time.

3.4. Irreducibility of Hecke polynomials. In most cases, T2 acts on S2(N) with
no repeated eigenvalues. Even when T2 does not, we typically do not have to try
many Tp’s to find one that does. Table 7 shows for how many primes N < 60000 a
given p is minimal such that Tp has no repeated eigenvalues.

More generally, given p we can ask how many primeN �= p are there such that cTp

has no repeated roots for S2(N)? Note that if we have multiple rational newforms
occurring in S2(N), the naive probability that two given such newforms f1 and
f2 have the same ap is approximately 1

4
√
p by Deligne’s bound. Since we expect

that there are infinitely many prime levels N where S2(N) has 2 rational newforms
(e.g., coming from Neumann–Setzer elliptic curves [Set75]) we expect that cTp

has
repeated roots for infinitely many N .

To avoid this situation, let us examine the case where S2(N) has exactly 2 Galois
orbits. Out of the 4615 prime levelsN < 60000 such that S2(N) has exactly 2 Galois
orbits, there is only one level N such that T2 has repeated eigenvalues on S2(N),
namely N = 251. Here T2 acts irreducibly on the 17-dimensional root number
+1 subspace of S2(251) but acts reducibly on the 4-dimensional root number −1
subspace. (Incidentally, a newform in the latter space has rationality field with
Galois group D8.) Based on the rarity of repeated eigenvalues of T2, we guess that
there may be no other such N .

This is related to a question studied in [Mur99] and [KSW08]: given a non-
CM newform f ∈ Sk(N) with rationality field K, how often is Q(ap(f)) a proper
subfield of K? Restricted to our setting of squarefree level and trivial nebentypus,
[Mur99, Conjecture 3.4] asserts that this happens for infinitely many p exactly in
the following cases: k = 2 and K is quadratic, cubic, or quartic with a quadratic
subfield. See [VH17] for more precise heuristics in the case k = [K : Q] = 2. Also,
the results and heuristics in [MS16] suggest an affirmative answer does not happen
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too often. In the cases where we expect Q(ap(f)) = K for all but finitely many p,
we can ask if something stronger is true.

Question 4. Given k and N , let f ∈ Sk(N) be a non-CM newform with rationality
field K. Is Q(ap(f)) = K for all p � N assuming k or K is “sufficiently large”?

By K being sufficiently large, we mean either that [K : Q] is sufficiently large
or the Galois group of K is not too degenerate. When k = 2, just requiring that
[K : Q] ≥ 5 to avoid the cases in Murty’s conjecture is not sufficient to guarantee
a positive answer. Here is an example of this, pointed out to us by Alex Cowan.
There is a degree 9 newform f ∈ S2(1223), such that both the a2(f) and a13(f)
Hecke eigenvalues generate isomorphic degree 3 extensions with Galois group S3.
(This does not happen for any other ap(f) with p < 10000, p �= N .) We note that
the rationality field K of f has Galois group of order 1296, which is much smaller
than S9.

Note that an affirmative answer to Question 4 under appropriate conditions
would imply that Tp acts irreducibly on each Galois orbit of Sk(N) for all but
finitely many squarefree N coprime to p.

4. Proof of Theorem 1

Fix k ≥ 2 even. For a prime level N , the Atkin–Lehner eigenspaces of Snew
k (N)

are simply the spaces with fixed root number ±1.
Let σ ∈ Gal(Q̄/Q). It follows from an algebraicity result of Shimura [Shi76,

Theorem 1] that L(k, fσ) �= 0 if and only if L(k, f) �= 0. Thanks to the extension
of the Gross–Zagier formula by Zhang, we also know that L′(k, fσ) �= 0 if and only
if L′(k, f) �= 0 [Zha97, Corollary 0.3.5].

Consequently to show Theorem 1, it suffices to know that forN sufficiently large,
there exist f ∈ Sk(N) with L(k, f) �= 0 (so f necessarily has root number +1) and
g ∈ Sk(N) with root number −1 such that L′(k, g) �= 0. This follows, e.g., from
the works [Van99], [KM00] and [IS00] mentioned in the introduction.

Acknowledgments

We thank Alex Cowan, Ariel Pacetti, David Roberts, Gabor Wiese, the anony-
mous referees, and especially Bartosz Naskr ↪ecki for helpful discussions and feedback.
Some of the computing for this project was performed at the OU Supercomputing
Center for Education & Research (OSCER) at the University of Oklahoma (OU).

References
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