
Research in Designs & Codes

Kimball Martin

April 27, 2009

The idea of coding theory

Coding theory is the theory of communicating accurately over noisy channels. It lies in the intersection of math-
ematics, computer science and electrical engineering. Coding theory is used in many diverse applications such as
in satellite transmission and CD recording. Let me illustrate the basic ideas with the following example. Suppose
you’re sending emails back and forth with your friend and you receive:
DO YOU WNT TO SEE A OVIE THIS WEEKND?
So you notice there are typos in his email. This is called error-detection. You are able to do this because English
has a certain structure to it. If he was just typing a random string of characters (say a password or scientific data),
you would have no idea if there were any errors (until you tried it). There are two ways to understand his message.
First you could ask him for confirmation, i.e., you could ask
DID YOU ASK IF I WANTED TO SEE A MOVIE THIS WEEKEND?, or
WHAT DID YOU SAY?
Of course in this example, if you did that, he’d think you were stupid. But still, there is such a protocol for error-
detecting codes. These are codes with which you can detect errors but not correct them. The simplest example is
the “parity check code,” where the sum of all the digits in each word is even. If you detect an error in the data you
receive, you simply ask the other party to resend it. In some applications, this may be all you want to do—e.g.,
to make sure a credit card number or license number is valid. Of course, this could be quite inconvenient if you’re
telling a satellite something and by the time you hear it say “WHAT?” it’s on the other side of the earth, so you
need to wait until tomorrow to transmit again. (Perhaps this is a bit of an exaggeration, but you get the point.)
It would be much better to be able to correct the errors in real-time. Error-detecting codes are well enough known
about, so most of the current research focuses on “error-correcting” codes, as we will do.

In our example, this means you would simply interpret his email to be:
DO YOU WANT TO SEE A MOVIE THIS WEEKEND?
Here we simply correct the apparent three errors by common sense. Of course, there’s a small possibility that we’ve
made a mistake. For example, there could have been four errors and the original message was
DO YOU WANT TO SEE A BOVINE THIS WEEKEND?
But this is highly unlikely, though grammatically correct. So in error-correcting codes you correct errors you notice
into the most probable intended word. Thus you want to find a code with high probability of proper correction for
your noisy channel.

We will be concerned with the following general model. First we will be interested in binary (block) codes of
length n. This means you have a set of codewords C which are strings of length n of 0’s and 1’s. The idea is to take
the original data, encode it into codewords with some encoding algorithm, transmit your encoded data, receive it,
correct errors and decode it. We will assume the only possible errors that can occur are that some bits might get
flipped across the noisy channel. This is sufficient for nearly all applications I know of.

Let me illustrate the process the repetition code of length 3. Say you want to send the following nibble (string of
4 bits): 1010. To encode, you repeat each bit 3 times to get: 111 000 111 000. You send this over the noisy channel
and say you receive: 110 100 111 001. To decode, you just take the majority vote on each set of 3 bits, and get 1010
back. Notice there were three errors total and two of them in a row. Fortunately they were on different codewords.
If we had two errors on the same codeword, say we received: 100 000 111 010, then we would incorrectly decode
this as 0010. So the repetition code of length 3 can detect up to 2 errors per word but can (properly) correct only
1 error per word. Now you can define a repetition code of any odd length 2k + 1 which will detect up to 2k errors
and correct up to k errors per word.

Generally you choose your code based on what kind of noise you expect in your channel: What percentage of bits
will be flipped? Is the noise sparse or well spread out, or does it come in bursts? Often errors come in bursts, i.e., 7
out of 10 bits in a row get flipped, but then out of the next 120 bits, only 2 or 3 get flipped. So you wouldn’t want

1

a code of length 10, you might want one of length 128 that could correct up to 15 errors per word to be safe. Now
you could get by with a repitition code of length 31, but if you have a lot of data to send then your code isn’t very
efficient–for every 31 bits you receive, you only get one bit of data. We can do much better with a little work.

Linear codes

We’ll only consider linear codes. The theory of linear codes is very rich and there’s still a lot of research left to do
in it. In fact, one of the most interesting aspects of coding theory in my opinion is that, about 10 years ago, even
some of the non-linear codes with good properties (Kerdock, Preparata) were shown to be linear over Z/4.

Definition 1 Let F2 = Z/2 = {0, 1} and V be the vector space Fn
2 . For any v ∈ V , define its weight w(v) to

be the number of coordinates which are 1. Let C be a linear subspace of V of dimension k. Then we say C is a
(linear) code of length n and dimension k and the elements of C are codewords. The minimum distance d of C is
d = min{w(c− c′) : c, c′ ∈ C, c 6= c′} = min{w(c) : 0 6= c ∈ C}. We also say C is an (n, k, d)-code.

So |V | = 2n and |C| = 2k. Then you encode data words of length k as elements as codewords of length n. For
example, let V = F3

2 and C = {(0, 0, 0), (1, 1, 1)}, the repetition code of length 3. This is a [3,1,3] code. Notice you
can detect up to d− 1 = 2 errors per word and correctly correct up to (d− 1)/2 = 1. In general you can detect up
to d− 1 and correct up to (d− 1)/2 errors per word.

Why do we look at linear codes? There are easy constructions. It is easy to compute the (worst case) error-
correction capability (d−1)/2 and the information rate k/n (i.e., the data length efficiency). It is easy to encode and
decode, and to detect and correct errors. Most importantly, they turn out to give some very good codes in practice!
However, it’s not known if there are classes of linear codes which are asymptotically good. At the end of the last
section, I said we might want a code with n = 128, d = 31. The best linear code there is with desired n and d is
a (128, 40, 31)-code (see http://www.win.tue.nl/˜aeb/voorlincod.html). Then encoding will only multiply the size of
the data by 3.2, instead of 31 as in the repitition code. There is also a well known so-called second-order Reed-Muller
code with parameters (128, 29, 32), which will only increase the data size by a factor of about 4.4.

Example 1 The Hamming code, the smallest interesting example. Let

G =



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1


, H =



1 0 0
1 1 0
1 1 1
0 1 1
1 0 1
0 1 0
0 0 1


.

The (7,4,3) Hamming code C is the rowspace of G. It’s also the kernel of H. This means that c ∈ C iff Hc = 0. Let
G′ be the matrix G with the bottom three rows deleted. To encode a 4-bit piece of data x, multiply by G′ to get the
7-bit codeword G′x. Say someone sends you G′x and you receive c = G′x+ e where e is the “error” vector. Suppose
w(e) ≤ 1. If Hc = H(G′x + e) = He = 0, there’s no error. Error-correction and decoding can be done with a little
more linear algebra—I’ll leave you to think about that later.

Now where does this come example from? It’s the incidence matrix of the Fano plane (the projective plane of order
2). It’s also the incidence matrix of the quadratic residue difference set in {1, 2, 4} in Z/7. G is also a (truncated)
table of the autocorrelation sequence xt+3 = xt+1 + xt + 1.

Designs

The last example generalizes in various ways. Projective planes (and more generally, finite geometries) give rise to
codes. Difference sets (from quadratic residues and beyond) give rise to codes also, and these notions don’t coincide
in general (we’ll look at when they do when we get to difference sets). However, both of these generalizations fit into
the context of designs. I’ll only introduce Symmetric Balanced Incomplete Block Designs (SBIBDs).

Definition 2 Let P be a set of v points and B a set of v blocks B, where each B is a set of k points in P. Suppose
any 2 points lie in exactly λ blocks. Further suppose each point lies in exactly k blocks (symmetry). Then D = (P,B)
is an (v, k, λ)-SBIBD. The incidence matrix for D is the 0-1 matrix with rows labeled by P and column labeled by B
such that an entry (P,B) = 1 iff P ∈ B.

2

You can think of a SBIBD as a geometry where the points are points and the blocks are lines, each made up of
k points and there are k lines through each point. If λ = 1, then two points determine a line, so we get a plane. For
example, the Fano plane (projective plane of order 2) is a (7,3,1)-SBIBD. A design D with incidence matrix A gives
rise to the code which is the rowspace of A (over F2).

The order of a (v, k, λ)-SBIBD is n = k − λ. Codes from designs are only interesting if the design is of even
order. (Don’t confuse the n and k of the design with the n and k of the code—they’re not the same, but the
notation’s standard.) A Hadamard design is a (4n − 1, 2n − 1, n − 1) or (4n − 1, 2n, n) SBIBD. All SBIBDs satisfy
4n− 1 ≤ v ≤ n2 + n+ 1. Projective planes attain the upper bound. Hadamard designs satisfy the lower one.

Planes

Definition 3 An affine plane of order n is a set of n2 points P and n2 + n lines B such that
(i) 2 points determine a line
(ii) each line contains n points
(iii) each point lies in n+ 1 lines
(iv) 2 lines intersect in at most one point.

The “at most” part in condition (iv) makes us give up some symmetry in the definition by allowing for parallel
lines (which at times makes them harder to work with). We can remedy this however. Given an affine plane (P,B),
we can form the corresponding projective plane of order n by adding one “point at infinity” for each of the n + 1
classes of parallel lines. Add this point at infinity onto each of these parallel lines. Then join all the points at infinity
with one “line at infinity”. This gives a system (P ′,B′) where P ′ has n2 +n+ 1 points and n2 +n+ 1 lines such that

(i’) 2 points determine a line
(ii’) each line contains n+ 1 points
(iii’) each point lies in n+ 1 lines
(iv’) any two lines intersect in exactly one point.

This is the general definition of a projective plane of order n. An equivalent definition is that a projective plane of
order n is an (n2 + n+ 1, n+ 1, 1)-SBIBD.

Note that in addition to the extra symmetry from (iv’), there is now a duality between points an lines: for
instance there are the same number of points as lines, and (ii’) now mirrors (iii’). Just as any affine plane yields a
projective plane, removing one line and all the points on it from a projective plane of order n yields an affine plane
of order n.

In general, not all (either affine or projective) planes of order n are isomorphic. However by the symmetry of
the projective plane, any two affine planes which come from a given projective plane must be isomorphic. Hence, an
affine plane of order n exists if and only if a projective plane of order n exists, and the number of affine planes of
order n (up to isomorphism) is the same as the number of such projective planes of order n.

Facts about projective planes of order n
1. They exist if n = q is a prime power.
2. There’s more than one if q = ps > 8, s > 1. The number of planes →∞ as p→∞.
3. (Bruck-Ryser Theorem) If n ≡ 1, 2 (mod 4) and the squarefree part of n is divisible by a prime p ≡ 3 (mod 4),
then there is no projective plane of order n.
4. One exists iff there are n− 1 mutually orthogonal Latin squares of order n.
5. There is no known plane of non-prime power order.
6. Order 10 was ruled out by coding theory + computer (Lam, ’88).
7. There is only one plane of order n for 0 ≤ n ≤ 5 (easy to show), n = 7 (not so easy) and n = 8 (computer proof).
8. There are 4 planes of order 9 (constructed in early 20-th century; proved no more than 4 by computer).

Question 1 Does there exist a projective plane of order 12? More generally, of any non-prime-power order?

This is the smallest order not known, for Fact 3 says there’s no plane of order 2p if p ≡ 3 (mod 4), e.g. n = 6, 14, 22,
etc. It’s a very interesting problem. We can’t just apply the program for the order 10 case on super-fast computers.
The basic idea for n = 10 is: the corresponding code of such a plane can be proven to have so many codewords of
certain weights. Then you need to determine conditions on configurations for planes could possibly result in this,
and search for them with a computer. Lam started on this problem in 1980 and his final search ran for 2 or 3 years
(intermittantly) on a CRAY at IDA. For order 12, you’d need to start by proving some properties of such a plane.

It’s conjectured that planes only exist for prime-power orders. This is due to the fact that it’s easy to construct
them for prime-power orders, but no one knows how to for non-prime-power orders. Also the Bruck-Ryser theorem,
rules out infinitely man non-prime power orders. The next most outstanding question in this subject is:

3

Question 2 Is there more than one projective plane of order 11? Of any prime order?

Difference sets

A cyclic (v, k, λ) difference set is a set D of k integers (mod v) such that any non-zero x can be written as the
difference of 2 elements of D in exactly λ ways. A cyclic difference set gives rise to a circulant incidence matrix for
a (v, k, λ)-SBIBD. The i-th row will correspond to the i-th translate D + i. See the Hamming code example. You
can define difference sets more generally by, instead of working with Z/v, working with an arbitrary group of order
v, and you get (v, k, λ)-SBIBDs. More precisely,

Definition 4 Let G be a (multiplicative) group of order v and D a subset of k elements. If any non-zero g ∈ G can
be written as g = xy−1 exactly λ ways with x, y ∈ D, then D is a (v, k, λ) difference set.

Example 2 Let p be a prime. For p = 4n + 3, the nonzero quadratic residues mod p form a (4n + 3, 2n + 1, n)
difference set. Let x be odd. For p = 4x2 +1, the nonzero fourth powers mod p form a difference set. For p = 4x2 +9,
the fourthpowers mod p form a difference set. If p + 2 is prime, then {(a, 0)}∪ {(a, b) : a, b both (non)squares} is a
difference set in Z/p× Z/(p+ 2).

A (v, k, λ) difference set is also a (v, k, λ) design. It is easy to see that for a (v, k, λ) difference set we have
k2 − k = (v − 1)λ. When λ = 1, (v, k, λ = (n2 + n + 1, n + 1, 1) where n = k − 1, i.e., a planar (λ = 1) difference
set is a projective plane. Planes obtained this way give ideal network designs. Planar difference sets exist for any
prime-power order. In fact, any Desarguesian plane comes from a difference set.

Question 3 Which projective planes can be constructed from difference sets?

Question 4 For which groups, or which parameters even, do difference sets exist?

Hadamard Matrices

Definition 5 An n× n ±1-matrix H is called Hadamard (of order n) if HTH = nI.

Hadamard matrices are also used in other subjects such as radar, communications, spectrometry, image processing,
pattern recognition and genetic algorithms. They also make pretty patterns if you color them black and white squares
instead of ±1’s. Examples:

[1] ,
[

1 1
1 −1

]
,


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 ,


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Hadamard matrices of order n can only exist if n = 1, n = 2 or n = 4m. There are two famous and still

outstanding conjectures about Hadamard matrices. First we have the

Hadamard conjecture There is a Hadamard matrix of each order n = 4m.

Now notice the third matrix in the example above is circulant, i.e., each row is obtained by the previous by a
cyclic shift to the right. This is very special! It brings us to the second conjecture:

Hadamard circulant conjecture If n > 1, then there’s only one Hadamard circulant (up to equivalence), the 4×4
above.

What’s known:
–Hadamard matrices exist for all 2e (Sylvester) and 2e(pm + 1), p odd prime (Paley)
–The tensor (Kronecker) product of Hadamard matrices is Hadamard (so m,n exist =⇒ mn exists)
–The smallest case not known is 668 (the last case, 428, was done just this year!)
–Many construction of (infinite families) of Hadamard matrices are known.

–All Hadamard circulants have order 4n2 (or 1).
–A Hadamard circulant of order 4n2 implies the existence of a cyclic (4n2, 2n2 − n, n2 − n) difference set
–There’s no Hadamard circulant of order 4 < n ≤ 1011 except possibly if n = 4u2, u = 165, 11715, 82005

Let H be a Hadamard matrix of order 4n. By multiplying row and columns by −1’s we may assume the first
row and column are all 1’s. Then deleting the first row and column and changing the ±1’s to 0’s and 1’s gives the

4

incidence matrix for a Hadamard design, i.e., a (4n−1, 2n−1, n−1) or (4n−1, 2n, n) design. This process is reversible.
Hadamard difference sets, i.e., those with Hadamard design parameters or parameters (4n2, 2n2 ± n, n2 ± n), also
give rise to Hadamard matrices.

Question 5 Which groups have Hadamard difference sets?

If |G| = 2t+2 it is conjectured that G has a Hadamard difference set iff G/K is not cyclic or dihedral for any normal
subgroup K of index greater than 4. This is known if G is abelian. If |G| = 22t+2 and G is abelian, there is a
Hadamard difference set iff expG ≤ 2t+2.

Question 6 Classify the cyclic (4n− 1, 2n− 1, n− 1) Hadamard difference sets.

Several non-existence results are known. The only known cases are when v = 4n − 1 is (non-Mersenne) prime
(quadratic/sextic residues), v is a product of twin primes—Jacobi symbols, and v = 2m− 1 (Singer, GMW + several
new constructions). It’s been conjectured that these are only possible v’s.

This has been a very active field recently due to several recent conjectured constructions with some proofs. Many
things are still very mysterious. For example, if (k, 2m − 1) = 1 then the (non-zero) image of the “additive” 2-to-1
map x + xk on F2m gives a difference set in the multiplicative group F∗2m . The interplay between the additive and
multiplicative groups of F2m seems quite deep and is really not understood.

5

