
HOW OFTEN SHOULD YOU CLEAN YOUR ROOM?

KIMBALL MARTIN∗ AND KRISHNAN SHANKAR†

ABSTRACT. We introduce and study a combinatorial optimization problem motivated by the
question in the title. In the simple case where you use all objects in your room equally often,
we investigate asymptotics of the optimal time to clean up in terms of the number of objects in
your room. In particular, we prove a logarithmic upper bound, solve an approximate version
of this problem, and conjecture a precise logarithmic asymptotic.

INTRODUCTION

Suppose you have n objects in your room which are totally ordered. For simplicity, let us
say they are books on shelves alphabetized by author and title. If you are looking for a book
(assume you remember the author and title, but not its location on the shelves), the most
efficient algorithm is a binary search. Namely, look at the book in the middle of the shelf,
and because of the ordering, now you can narrow your search by half. Repeat this process of
halving your search list, and you can find your book in about log2 n steps. (Here is perhaps
a better model for humans naturally search: go to where you think the book should be,
scan that area, and if need be jump to a different area based on the ordering. However a
logarithmic cost still seems like a good model for this process.)

The theory of searching (and sorting) algorithms is of course well studied in computer
science—what is not, however, is what happens after that for humans. Namely, after you
are done with your book, you can do one of two things: either put it back on the shelf,
which we will also say takes about log2 n time, or leave it on your desk, which takes no
time. The latter is of course more efficient now, but if you keep doing this, eventually all
of your books will wind up as an unsorted pile on your desk. Then when you search for
a book, you essentially have to go through your pile book by book (a sequential, or linear,
search), which takes about n2 time, and thus is not very efficient for n large.

The question we are interested in here is: when is the optimal time to clean up? That is,
over the long run, what is the optimal value mopt(n) of m (1 6 m 6 n) at which you should
put all the books in the pile back, in order, on the shelf, in the sense that the the average
search plus cleanup cost (per search) is minimized. Here we assume the cleanup algorithm
is to simply go through the pile, book by book, and find the right location for each book on
the shelves via a binary search (see Remark 1.2 for a discussion of other cleanup algorithms).

The paper is organized as follows. (See Section 1.3 for a more detailed overview.) In Sec-
tion 1, after first formulating this problem precisely, we will discuss four different models

Date: May 11, 2015.
∗ Supported in part by a Simons grant. † Supported in part by an NSF grant.

2 K. MARTIN AND K. SHANKAR

and focus on the (generally unreasonable) case of the uniform distribution, i.e., where you
use all objects in your room equally often. It might be more realistic to consider a power law
distribution, but even the simple case of the uniform distribution is not so easy. The different
models correspond to having either complete or no memory of what is in the pile, and hav-
ing numbered shelves (each object has a designated location on the shelves) or unnumbered
shelves (only the relative order of books is important).

In Section 2, we analyze the search and cleanup cost functions in some detail for each of
these models. Our first result is that, in each of these models, one should not clean up im-
mediately (see Proposition 1 below). In fact, if n is small enough, one should never cleanup
(see Remarks 4.6 and 4.7). In Section 3, we restrict ourselves to complete memory with
numbered shelves for simplicity, and prove that one should clean up before about 4 log2(n)

objects are in the pile (see Proposition 2). A good lower bound for the mopt(n) is not so easy,
and so we instead consider an approximate problem in Section 4. Based on the analysis
from Section 2, we expect the optimal value m̃opt(n) of m for the approximate problem to be
a lower bound for mopt(n). We essentially determine exactly the optimal value of m for the
approximate problem (Theorem 3), which is about 3 log2(n), and then based on numerics
conjecture that mopt(n) ∼ 3 log2(n) (Conjecture 4). In fact we expect that for all four models
with arbitrary distributions, mopt(n) grows no faster than 4 log2(n). Therefore, we humbly
suggest you clean your room before 4 log2(n) objects are out.

Since we use a fair amount of (often similar looking) notation, we provide a notation
guide at the end for convenience (Appendix A).

Acknowledgements. It is a pleasure to thank our colleague Alex Grigo for helpful com-
ments and suggestions. We thank the referee whose careful reading has helped improve the
exposition. We also thank our parents for never making us clean up our rooms.

1. GENERAL SETUP

1.1. The Statement of the Problem.
We now make a general formulation of our problem, which we call a search with cleanup

optimization problem.

Let X = {X1, . . . , Xn} be a finite set of distinct well-ordered objects, which we view as
a probability space with probability measure µ. We consider the following discrete-time
Markov chain, depending on a parameter 1 6 m 6 n.

(1) At time t = 0 each Xi is in a sorted list1 L, and there is an unsorted pile P which is
empty.

(2) At any time t ∈ {0, 1, 2, . . .}, each X ∈ X is in exactly one of L and P , i.e., X is a
disjoint union X = L t P .

(3) At any time t > 1 with |P| < m, exactly one object X = Xi is selected, and X is
selected with probability µ(X). If the selected X ∈ P , nothing changes. Otherwise,
then X is removed from L and added to P .

1By list, we mean an indexed list, rather than a linked list.

HOW OFTEN SHOULD YOU CLEAN YOUR ROOM? 3

(4) At any time t, if |P| = m, we stop the process.

This process has finite stopping time with probability 1 provided at least m elements of
X have nonzero probabilities, which we will assume.

Note the state of the process at time t is described simply by a subset P of X, together
with a marked element Xit (the object selected at time t > 1). The set of possible states is
then simply all subsets P of X, together with a marked point Xit , of cardinality at most m.

Associated to this process are two (nonnegative) cost functions, S(X;P) and C(P), which
do not depend upon t. Here X ∈ X and P ⊂ X. The functions S(X;P) and C(P) are called
the search and cleanup costs.

Let Xm = Xm,n denote the set of finite sequences χ = (Xi1 , . . . , Xi`) in X such that (i) the
underlying set {Xi1 , . . . , Xi`} has cardinality m, and (ii) Xij 6= Xi` for j < `. We extend the
measure µ to a probability measure on Xm by

(1.1) µ(χ) =
∏̀
j=1

µ(Xij).

Note the sequences χ ∈ Xm are in 1-1 correspondence with the possible paths of finite
length for the Markov process from the initial state up to the stopping state described in
Step 4. Namely, for t = 0, . . . , `, let Pχ(t) denote the set of elements {Xi1 , . . . , Xit} (here
Pχ(0) = ∅). Thus Pχ(t) represents the “unmarked” state of the process from time t = 0

until the stopping time t = `. Furthermore each µ(χ) is the probability of that path for the
process.

For example, suppose n > 3, m = 3 and χ = (X1, X2, X1, X3). This corresponds to
selecting X1 at time 1, X2 at time 2, X1 at time 3, and X3 at time 4, after which the process
stops, since we have selected m = 3 distinct objects. Specifically, at t = 1 we have P =

Pχ(1) = {X1}; at time t = 2 we have P = Pχ(2) = {X1, X2}; at time t = 3, we have
P = Pχ(3) = {X1, X2}; (unchanged); and at the stopping time t = 4, we have P = Pχ(4) =

{X1, X2, X3}. If µ is the uniform distribution on X, the probability of this path is µ(χ) = 1
n4 .

Given χ ∈ Xm, we let `(χ) be its length, i.e., the corresponding stopping time, and write
χ = (χ1, χ2, . . . , χ`) where ` = `(χ).

Now we extend S(X;P) and C(P) to χ = (Xi1 , . . . , Xi`) ∈ Xm by

(1.2) S(χ) =
∑̀
j=1

S(Xij ;Pχ(j − 1)) =

`(χ)∑
j=1

S(χj ;Pχ(j − 1))

and

(1.3) C(χ) = C(Pχ(`(χ)).

These values are called the total search and total cleanup costs for the path χ.

We want to optimize the average total cost function

(1.4) F (m) := F (m;n) = E

[
S(χ) + C(χ)

`(χ)

]
=
∑
χ∈Xm

S(χ) + C(χ)

`(χ)
µ(χ).

4 K. MARTIN AND K. SHANKAR

Assume µ(X) 6= 0 for each X ∈ X.

Problem. Given a model M = (X, µ, S, C), determine the value mopt(n) = mopt(n;M) of
m ∈ {1, 2, . . . , n} that minimizes F (m;n).

In the event that there is more than one such minimizing m—which we do not typically
expect—we may take, say, mopt(n) to be the smallest such m, so that mopt(n) is a well-
defined function.

Here we will study the asymptotic behavior in the simple case of µ being a uniform dis-
tribution on X as n = |X| → ∞ for certain cost functions S and C specified below. We note
the Markov process we consider arises in the coupon collector’s (or birthday) problem, and
more generally, sequential occupancy problems (see, e.g., [JK] or [Ch]). The cost functions,
however, make the analysis of this problem much more delicate than occupancy problems
typically studied in the literature. It turns out that the expected value of the reciprocal of
the waiting time in a sequential occupancy problem plays a key role in our analysis. Several
results for the expected value of the waiting time itself are known (e.g., see [BB]), but not, to
our knowledge, for its reciprocal.

1.2. Models and Cost Functions.
From now on, we assume µ is the uniform distribution on X unless explicitly stated oth-

erwise. There are four reasonable, simple search models to consider, all based on doing a
binary search on L and a sequential search on P . Here we view P as an unordered set. The
models depend upon whether the positions of L (the “shelves”) are numbered or not and
whether the process is memoryless or not. These models correspond to the following search
algorithms A for an element X of L t P .

For a memoryless process, at any time t, we assume we do not know what elements are in
P , i.e., we do not remember the state of the system. Thus it is typically worthwhile to search
L first, as searching L is much more efficient than searching P . Hence for a memoryless
process, we will always first search L for X . If this search is unsuccessful (i.e., X ∈ P), then
we search P .

At the other extreme, one can consider the process where one has complete memory, i.e.,
at any time t, we know the state P of the system. Thus if X ∈ L, we simply search L, and if
X ∈ P , we only search P .

The other option in the model depends on the data structure for L. Imagine X1, . . . , Xn

are books with a total ordering. TheXi’s in L are the books that are ordered on bookshelves,
whereas the Xi’s in P lie in an unorganized pile on a desk. If there is a marking on each
shelf for the corresponding book, so each book has a well defined position on the shelf, we
say the shelves are numbered. In this case, we think of L as a list of size n indexed by keys
k1 < k2 < · · · < kn, where ki points to Xi if Xi ∈ L, and ki points to null if Xi ∈ P , and
a search on L, amounts to a search on n keys, regardless of how many objects X actually
remain in L. Otherwise, the shelves are unnumbered, so only the relative position of the

HOW OFTEN SHOULD YOU CLEAN YOUR ROOM? 5

books on the shelves is important (akin to books shelved in a library stack). Here we simply
view L as a sorted binary tree, and a search on L is really a search on the |L| objects in L.

While shelf positions are not typically numbered for books, this situation of “numbered
shelves” commonly occurs in other situations, such as a collection of files each in their own
labelled folder jacket. Namely, you may take out a file to look at, but leave the folder jacket
in place so there is a placeholder for where the file goes when you put it back.

With these models in mind, the four search algorithms A for an object X in L t P can be
described as follows.

• M1 (No memory, unnumbered shelves) A: do a binary search on the |L| objects in
L; if this fails, then do a sequential search on P
• M2 (No memory, numbered shelves) A: do a binary search on the n keys to find the

correct position for X in L; if it is not there, do a sequential search on P
• M3 (Complete memory, unnumbered shelves) A: if X ∈ L, do a binary search on

the |L| objects in L; if X ∈ P , do a sequential search on P
• M4 (Complete memory, numbered shelves) A: if X ∈ L, do a binary search on the n

keys for L; if X ∈ P , do a sequential search on P

Each of these algorithms naturally gives rise to a search cost function S(X;P) where
X ∈ L t P , namely the number of comparisons needed in this algorithm. However, it is
not necessary for us to write down these functions explicitly. Rather, it suffices to explicate
the following average search cost functions. (In fact, one could replace the exact search cost
S(X;P) by a certain average search cost and be left with the same optimization problem—
see Section 5.)

Let sL(j) denote the average cost of a search for an object in L when L contains n − j

elements (we average over both the n choose n−j possibilities forL and the n−j possibilities
for the object). Similarly, let sP(j) denote the average cost of a search for an object in P given
P contains j objects (again averaging over all possibilities for P and the object).

We define the following average search cost functions for successful binary, failed binary
and sequential searches on j objects:

b(j) =

(
1 +

1

j

)
log2(j + 1)− 1

bf (j) = log2(j + 1)(1.5)

s(j) =
j + 1

2
.

The formula for s(j) is of course exactly the expected number of steps required for a
successful sequential search. It is easily seen that when j + 1 is a power of 2, b(j) (resp.
bf (j)) is the exact expected number of steps required for a successful (resp. failed) binary
search on j objects. These functions are not quite the exact average number of steps for
binary searches for all j (they are not generally rational), but as we are primarily interested

6 K. MARTIN AND K. SHANKAR

in asymptotic behavior, we will work with the functions given above for simplicity.2 Note
that b(2r+1 − 1) − b(2r − 1) < 2 and is in fact close to 1 for large r. So b(n) in general is a
reasonable approximation of the expected cost for a successful binary search.

Then, for the above four algorithms A, the functions sL(j) and sP(j) are given as follows.

• M1 (No memory, unnumbered shelves)

sL(j) = b(j)(1.6)

sP(j) = bf (n− j) + s(j)

• M2 (No memory, numbered shelves)

sL(j) = b(n)(1.7)

sP(j) = bf (n) + s(j)

• M3 (Complete memory, unnumbered shelves)

sL(j) = b(j)(1.8)

sP(j) = s(j)

• M4 (Complete memory, numbered shelves)

sL(j) = b(n)(1.9)

sP(j) = s(j)

Remark 1.1. If µ were a highly skewed distribution, then it might be more efficient in the
no memory models to do the pile search before a list search (see Section 5).

We now define our cleanup cost functions, based on the simple algorithm of doing a
binary search for each object in P to find the appropriate position to insert it into L. (Even if
one remembers the general area where the object should go, there is still the time needed to
identify/arrange the exact spot and the time to physically place it there, and a logarithmic
cost seems like a reasonable model for this.) This leads to two different possible cleanup
cost functions, corresponding to the cases of numbered and unnumbered shelves.

If the shelves are numbered, then the cleanup cost should just be the search cost to find
the correct position for each object in P , and it makes sense to set

C(P) =
∑
X∈P

S(X; ∅),

where S(X; ∅) denotes the search cost to find the position in L for X . Note that there is no
dependence upon what order we replace the objects. However, we can make things a little
easier on ourselves if we wish. Since we will just be considering an average of C(P) over χ
(weighted by 1

`(χ)), it will suffice to consider an average cleanup cost

Cm =

(
n

m

)−1 ∑
|P|=m

C(P).

2 For a discussion of how this affects the problem for smaller values of n, see Remark 4.1.

HOW OFTEN SHOULD YOU CLEAN YOUR ROOM? 7

Hence we have

(1.10) Cm = m · b(n), M∈ {M2,M4}.

If the shelves are unnumbered, then the cleanup cost in fact depends upon the order we
replace the objects. Let us write P = {Xi1 , . . . , Xim} and suppose we place them back in
order Xi1 , . . . , Xim . Write SL(X) for the cost of a (failed if X 6∈ L) binary search on L for the
object X . Then the order-dependent cleanup cost is

Cod(Xi1 , . . . Xim) = SL(Xi1) + SL∪{Xi1}(Xi2) + · · ·+ SL∪{Xi1 ,...,Xim−1
}(Xim).

Since P is unordered, we consider all cleanup orderings to occur with the same probability.
Hence it suffices to consider an average over all possible orderings:

C(P) =
1

m!

∑
Cod(Xi1 , . . . Xim),

where (Xi1 , . . . , Xim) runs through all possible orderings of P .
As before, since we will be taking an average of our cleanup costs over χ (weighted by

1
`(χ)), we can consider the simpler quantities

Cm =
1(
n

m

) ∑
|P|=m

C(P),

as in the numbered case. By additivity of the expected value, one sees

(1.11) Cm =

m∑
j=1

bf (n− j), M∈ {M1,M3}.

As with S(X;P), we could replace the exact cleanup cost C(P) with its average over all
subsets of size P (cf. (5.2)).

Remarks.

1.2. This is not the only reasonable way to clean up. One could first sort the objects in P ,
which can be done in O(m logm) time, though the way humans naturally sort is perhaps
better modeled by insertion sort, which takes O(m2) time. Then one can merge L and P in
O(n) steps, as in a linear merge sort. This is more efficient than our above algorithm if m is
relative large and one efficiently sorts P . Since our optimization problem is one in which m
should be at most logarithmic in n (cf. Proposition 2 and Remark 1.6), our cleanup algorithm
above is more efficient.

1.3. Alternatively, one could do a binary-search-based merge sort after sorting P as follows.
Say the ordering on X is X1 < X2 < · · · < Xn. Let Xj1 , . . . , Xjm be the elements in P in
sorted order, i.e., j1 < j2 < · · · < jm. First do a binary search to insert Xj1 in L. Then
do a binary search on L ∩ {Xj1+1, Xj1+2, . . . , Xn} to find the position for Xj2 . Continue in
this manner of binary searches on smaller and smaller subsets of L, to replace all m objects.
This may more be efficient than the cleanup algorithm we are using, depending on how we

8 K. MARTIN AND K. SHANKAR

sort P and the relative size of m and n, and it may be interesting to study our optimization
problem with this type of algorithm. However, it is only slightly more efficient when m is
relatively small compared to n: suppose m ≈ log n and one does an insertion sort on P ; the
insertion sort alone takes O(log2 n) time, which is the same order as our original cleanup
algorithm. In light of the additional complications it brings, we do not consider this type of
cleanup here.

1.4. One could also consider partial cleanups, where one does not put back all objects at the
same time, but only some of the items in P . We do not wish to consider such complications
here. Moreover, as it typically takes time and effort for humans to switch between tasks,
there seems to be extra efficiency in practice if one clean up all at once (or in a few chunks),
than in many small steps.

1.5. This model assumes all objects are in relatively close proximity, as in your room. If one
wanted to consider a similar problem for objects in large library or warehouse, one should
include the cost of transit time for retrieving and putting back the objects in the functions
sL and C(P). The transit time should be O(

√
n) assuming the objects are organized in a

2-dimensional grid, or at least 3-dimensional with bounded height.

1.3. Overview.
Intuitively, there are three reasons why it may be better to wait to cleanup, i.e., why

mopt(n) might be greater than 1. Assume n is large.

(i) If one has complete memory and there are relatively few objects in the pile, the search
cost for an object in the pile will be less than the search cost for a random object in the list.

(ii) If the shelves are not numbered and there are relatively few objects in the pile, one will
almost surely be searching for objects which are in the sorted list, and this will go slightly
faster if there are less than n objects in the list.

(iii) In all four of the above models, the average cleanup cost per search should decrease
as m increases.

Thus in the case of complete memory, it is rather evident that we should have mopt > 1.
On the other hand, in the case of no memory, if one searches for an object in the pile, one
first has to do a binary search on the list, which costs more than just searching for a random
element in the list. So in the case of no memory, unnumbered shelves, it is not a priori
obvious whether this factor or points (ii) and (iii) will win out. This is settled by our first
result, which says one should never clean up immediately.

Proposition 1. SupposeM∈ {M1,M2,M3,M4}. For any n > 2, we have mopt(n) > 1.

This is not hard, and we provide two proofs: one by computing F (1) and F (2) explicitly
in each model (see Section 2.3), and another by observing F (m) < F (1) whenever m <

4b(n−m) (see Lemma 2.13).
In Section 3, we restrict ourselves for simplicity to the case of complete memory and

numbered shelves (modelM4). An upper bound for mopt is not too difficult, since after the

HOW OFTEN SHOULD YOU CLEAN YOUR ROOM? 9

pile is a certain size, each search will have an associated cost that is at least F (1). Specifically,
we show

Proposition 2. LetM =M4. For n > 1, mopt(n) < 4b(n) 6 4 log2(n+ 1).

The problem of obtaining a good lower bound seems much more difficult, and we use
some bounds shown in Section 4 to construct an approximation F̃ (m) for F (m) such that the
(smallest if not unique) value m̃opt(n) (see Section 2 for the definition) ofmwhich minimizes
F̃ (m) should satisfy m̃opt(n) 6 mopt(n) (Conjecture 4.2). While we can compute m̃opt(n) for
fairly large n fairly quickly, the amount of time required to compute mopt(n) is significant,
so we can only compare values of these functions for relatively small n (see Table 4.1), but
it appears that m̃opt(n) ∼ mopt(n). Given that this is the case, one would like to determine
m̃opt(n).

Theorem 3 (Theorem 4.3). For any n > 5, we have

3b(n)− 3
2
6 m̃opt(n) < 3b(n) + 1

2

i.e., for n > 5, m̃opt(n) equals d3b(n)− 3
2e or d3b(n)− 3

2e+ 1.

This leads us to the following conjecture about our original problem.

Conjecture 4 (Conjectures 4.2 and 4.5). LetM =M4. For n > 5, we have

mopt(n) > 3b(n)− 3
2
,

and, asymptotically,

mopt(n) ∼ 3b(n) ∼ 3 log2(n).

We briefly touch on the amount of cost savings in this optimization problem in Remark
4.8.

Finally, in Section 5, we make some comments about the problem for non-uniform distri-
butions. In particular, we expect that, as one varies the underlying distribution, mopt(n) is
maximized for the uniform distribution.

Remark 1.6. Based on the above factors, one would expect that the optimal cleanup point
should be greater in the case of complete memory versus no memory, as well as in the case
of unnumbered shelves versus numbered shelves. Consequently, we expect that

mopt(n;M1) 6 mopt(n;M2) 6 mopt(n;M4) 6 mopt(n;M3).

We verified this numerically for small n, but we do not focus on this here. In particular,
we note that preliminary numerics for M3 suggest mopt(n) ∼ 4 log2(n) (Remark 4.7). (In
this paper, by “numerical calculations” we mean that we used high-precision floating point
calculations in PARI/GP, and not to mean that our calculations were provably correct.)

10 K. MARTIN AND K. SHANKAR

2. EXPECTATION COSTS

In this paper, m and n denote integers satisfying 1 6 m 6 n. Further, unless otherwise
specified, χ will denote a path in Xm. If f is a function on Xm, we sometimes denote E[f] by
Em[f] to specify m, or Em,n[f] if we want to specify both m and n.

In this section, we decompose

F (m) = FL(m) + FP(m) + FC(m),

where the terms on the right will represent average list search, average pile search and
average cleanup costs. We will analyze these terms individually. (In the case of no memory,
where one does a list search then a pile search for an object X ∈ P , we include both of these
search costs in the function FP .) It appears that FL and FC are increasing in m, whereas FP
is decreasing in m (cf. Remark 2.7 and Lemma 2.8). We also expect that F is unimodal—
initially decreasing, then increasing. Thus our optimization problem is about the question
of when FP begins increasing faster than FL + FC decreases.

2.1. Expected search cost.
In this section, we want to find a way to calculate E

[
S
`

]
. We can reduce this to studying

averages of the form

(2.1)
∑

χ∈X (`)
m

S(χ) =
∑

χ∈X (`)
m

∑̀
j=1

S(χj ;Pχ(j − 1)),

where

(2.2) X (`)
m = {χ ∈ Xm : `(χ) = `}.

Namely, note the probability that χ ∈ X (`)
m depends only on `, and is

(2.3) µ(X (`)
m) =

|X (`)
m |
n`

.

Hence

(2.4) FS(m) := E

[
S

`

]
=
∑
χ∈Xm

S(χ)

`(χ)
µ(χ) =

∞∑
`=m

1

`n`

∑
χ∈X (`)

m

S(χ)

Proposition 2.1. We have

|X (`)
m | = m!

(
n

m

){ `− 1

m− 1

}
.

Here
{ `
m

}
denotes the Stirling number of the second kind, i.e., the number of ways to

partition a set of ` elements into m nonempty subsets.

Proof. Note X (`)
m is in bijection with the set of pairs (α,X) where α is a sequence of length

` − 1 in X consisting of m − 1 distinct elements, and X is an element of X not occurring
in α. The number of such α is simply the number of surjective maps from {1, . . . , ` − 1}

HOW OFTEN SHOULD YOU CLEAN YOUR ROOM? 11

to {1, . . . ,m − 1}, which is (m − 1)!
{ `− 1

m− 1

}
by the twelvefold way, times the number of

possibilities for the set of m − 1 distinct elements in α, which is

(
n

m− 1

)
. Observing that

for each such α there are n− (m− 1) distinct choices for X gives the stated result. �

As an aside, we note this provides a proof of the identity (cf. [Ch, Thm 2.11])

(2.5)
∞∑
`=m

{ `− 1

m− 1

} 1

n`
=

(n−m)!

n!

since
∑
|X (`)
m |/n` = 1.

Write
S(χ) = SL(χ) + SP(χ)

where
SL(χ) =

∑
χj 6∈Pχ(j−1)

S(χj ;Pχ(j − 1))

and
SP(χ) =

∑
χj∈Pχ(j−1)

S(χj ;Pχ(j − 1)).

In other words, SL(χ) (resp. SP(χ)) is the total cost of searches along χwhen the sought-after
object is in L (resp. P).

The action of the symmetric group Sym(X) on X induces an action on X (`)
m . Namely, for

σ ∈ Sym(X), put
χσ = (χσ1 , . . . , χ

σ
`).

Also, for χ ∈ Xm, we put τχ(j) to be the number of times one searches along χ for an object
in P when P has size j. Explicitly, set t0 = t0(χ) = 0 and, for 1 6 j 6 m, let tj = tj(χ) be the
minimal integer such that |Pχ(tj)| = j. Then for 0 6 j < m, we set τj(χ) = tj+1(χ)−tj(χ)−1.

Lemma 2.2. For any χ ∈ X (`)
m , we have the following average cost formulas:

1

n!

∑
σ

SL(χσ) =
m−1∑
j=0

sL(n− j)

and
1

n!

∑
σ

SP(χσ) =

m−1∑
j=0

τj(χ)sP(j).

Proof. To see the first equality, observe that for any χ, there must be exactly one search for
an object Xij which is in L when L has n − j objects for each j = 0, 1, . . . ,m − 1. Fixing
one such j and averaging the contribution of this search cost over the permutations σ yields
sL(n− j).

The second equality is similar. �

12 K. MARTIN AND K. SHANKAR

This yields the following expected cost formulas:

E[SL(χ) |χ ∈ X (`)
m] = |X (`)

m |−1
∑

χ∈X (`)
m

SL(χ) =

m−1∑
j=0

sL(n− j)

and

E[SP(χ) |χ ∈ X (`)
m] = |X (`)

m |−1
∑

χ∈X (`)
m

SP(χ) =
m−1∑
j=0

E[τj | X (`)
m]sP(j).

Consequently, one has

Lemma 2.3.

FS(m) = E

[
S

`

]
= FL(m) + FP(m)

where

FL(m) =
∞∑
`=m

|X (`)
m |
`n`

m−1∑
j=0

sL(n− j) = Em

[
1

`

]m−1∑
j=0

sL(n− j)

and

FP(m) =
∞∑
`=m

|X (`)
m |
`n`

m−1∑
j=1

Em[τj | X (`)
m]sP(j).

2.2. Expected cleanup cost.
The expected cleanup cost per item is simply

FC(m) := Em

[
C

`

]
=
∑
χ∈Xm

C(χ)

`(χ)
µ(χ) = Cm

∑
χ∈Xm

µ(χ)

`(χ)
= CmEm

[
1

`

]
where Cm is as in (1.10) or (1.11) according to whether the shelves are numbered or not.

With this notation, the expected search-and-cleanup cost is

F (m) = FL(m) + FP(m) + FC(m).

Note that in the case of numbered shelves, we have

FC(m) = FL(m).

In the case of unnumbered shelves,

FC(m) = Em

[
1

`

]m−1∑
j=0

bf (n− j − 1)

and

FL(m) = Em

[
1

`

]m−1∑
j=0

b(n− j).

Consequently, we have

FC(m) =

(
1−

m−
∑m−1

j=0 log2(n− j + 1)/(n− j)∑m−1
j=0 log2(n− j + 1)

)
FL(m).

We remark that this implies FC(m) 6 FL(m).

HOW OFTEN SHOULD YOU CLEAN YOUR ROOM? 13

In any case, we have reduced our problem to studying the expected list search cost FL(m)

and FP(m).

2.3. Some simple calculations.
Here, we calculate F (1;n) and F (2;n) for each of the four models discussed above, which

we hope will be instructive. In all cases, these calculations, together with the observation
(2.6) that E2

[
1
`

]
< 1

2 , imply that F (2;n) < F (1;n) for all n > 2, giving one proof of Propo-
sition 1. We remark the proof of this inequality does not depend on the specific definitions
of the functions b(j) and bf (j), just that these functions are increasing. In fact, it does not
depend upon the definition of s(j) either, as long as s(1) > 0.

Calculations for m = 1.
First consider m = 1. Then X1 = X (1)

1 = {(1), (2), (3), . . . , (n)}. Consequently E[1`] = 1

and FP(1) = 0.

2.3.1. Unnumbered shelves. Suppose we have unnumbered shelves, i.e.,M1 orM3. Then

F (1;n) = FL(1;n) + FC(1;n) = b(n) + bf (n− 1).

2.3.2. Numbered shelves. Suppose we are in the case of numbered shelves, i.e., M2 or M4.
Then

F (1;n) = 2FL(1;n) = 2sL(n) = 2b(n).

Calculations for m = 2.

Now take m = 2. Then, for ` > 2, X (`)
2 consists of the 2

(
n

2

)
sequences of the form

(X1, X1, . . . , X1, X2), where there are `− 1 occurrences of X1. Then

(2.6) E

[
1

`

]
= n(n− 1)

∞∑
`=2

1

`n`
< n(n− 1)

1

2

∞∑
`=2

1

n`
=

1

2
.

As an aside, we note that the equality in (2.6) yields the closed form expression

(2.7) E2

[
1

`

]
= n(n− 1)

(
log

1

1− 1/n
− 1

n

)
.

Since

E[τχ(1) |χ ∈ X (`)
2] = `− 2,

we have

FP(2;n) = sP(1)
∞∑
`=m

|X (`)
2 |
`n`

(`− 2) = sP(1)

(
1− 2E

[
1

`

])
.

14 K. MARTIN AND K. SHANKAR

2.3.3. No memory, unnumbered shelves. SupposeM =M1, so

F (2;n) = FL(2;n) + FP(2;n) + FC(2;n).

Here FL(2;n) = E
[
1
`

]
(b(n) + b(n−1)), FC(2;n) = E

[
1
`

]
(bf (n−1) + bf (n−2)), and sP(1) =

bf (n− 1) + s(1), so

F (2;n) = bf (n− 1) + s(1) + E

[
1

`

]
(b(n) + b(n− 1)− bf (n− 1) + bf (n− 2)− 2s(1)) .

2.3.4. No memory, numbered shelves. SupposeM =M2, so

F (2;n) = 2FL(2;n) + FP(2;n).

Here FL(2;n) = 2E
[
1
`

]
b(n) and sP(1) = bf (n) + s(1), so

F (2;n) = bf (n) + s(1) + E

[
1

`

]
(4b(n)− 2bf (n)− 2s(1)) .

2.3.5. Complete memory, unnumbered shelves. SupposeM =M3, so

F (2;n) = FL(2;n) + FP(2;n) + FC(2;n).

Here FL(2;n) = E
[
1
`

]
(b(n) + b(n−1)), FC(2;n) = E

[
1
`

]
(bf (n−1) + bf (n−2)), and sP(1) =

s(1), so

F (2;n) = s(1) + E

[
1

`

]
(b(n) + b(n− 1) + bf (n− 1) + bf (n− 2)− 2s(1)) .

2.3.6. Complete memory, numbered shelves. SupposeM =M4, so

F (2;n) = 2FL(2;n) + FP(2;n).

Here FL(2;n) = 2E
[
1
`

]
b(n) and sP(1) = s(1), so

F (2;n) = s(1) + E

[
1

`

]
(4b(n)− 2s(1)) .

2.4. Expected list search cost.
We now return to studying search costs, in particular we consider the expected list search

and cleanup costs, FL(m) and FC(m). Since

FL(m) = Em

[
1

`

]m−1∑
j=0

sL(n− j) and FC(m) = CmEm

[
1

`

]
,

studying these quantities reduces to studying

(2.8) Em

[
1

`

]
= Em,n

[
1

`

]
=

∞∑
`=m

|X (`)
m |
`n`

= m!

(
n

m

) ∞∑
`=m

{ `− 1

m− 1

} 1

`n`
.

Note this is the expected value of the reciprocal of a waiting time for a sequential occupancy
problem.

First we obtain the following finite formula, which allows us to compute Em
[
1
`

]
quickly.

HOW OFTEN SHOULD YOU CLEAN YOUR ROOM? 15

Lemma 2.4. We have

(2.9) Em

[
1

`

]
=

(
n− 1

m− 1

)
(−1)m+1 +m

(
n

m

)
m−1∑
j=1

(−1)m−j

(
m− 1

j

)
log(1− j/n)

j
.

Note the first term can be interpreted as the j = 0 term for the sum on the right.

Proof. The generating function for Stirling numbers of the second kind is given by

(2.10)
∞∑
`=m

{ `− 1

m− 1

}
x`−1 =

xm−1

(1− x)(1− 2x) · · · (1− (m− 1)x)
.

Hence

(2.11) Em

[
1

`

]
=

n!

(n−m)!

∫ 1/n

0

xm−1

(1− x)(1− 2x) · · · (1− (m− 1)x)
dx.

We compute the integral using partial fractions.

xm−1

(1− x)(1− 2x) · · · (1− (m− 1)x)
=

A1x

1− x
+

A2x

1− 2x
+ · · ·+ Am−1x

1− (m− 1)x
,

where Aj =
(−1)m−1−j

(j − 1)! (m− 1− j)!
. Now

∫
Ajx

1− jx
dx = −Ajx

j
− Aj log(1− jx)

j2
, and so we

have

(2.12) Em

[
1

`

]
= m!

(
n

m

)
m−1∑
j=1

−Aj
j
· 1

n
− Aj
j2
· log(1− j/n)

We can simplify this sum a little by observing that m!
Aj
j

= m · (−1)m−1−j

(
m− 1

j

)
. Then

the first part of the above summation simplifies to

m

n

(
n

m

)
(−1)m

m−1∑
j=1

(−1)j

(
m− 1

j

)
=
m

n

(
n

m

)
(−1)m · (−1)

Putting all this together yields the lemma. �

Since the above formula is an alternating sum, it not so useful in studying the behavior of
Em

[
1
`

]
as m varies, which is our goal, though it is useful for numerics.

Now we observe some elementary bounds.

Lemma 2.5. For 1 6 m 6 n,

1

n(log(n)− log(n−m))
6

1

Em[`]
6 Em

[
1

`

]
6

1

m
.

(We interpret the leftmost term as 0 when m = n.)

16 K. MARTIN AND K. SHANKAR

Proof. As is well known, ` is a sum of m independent geometric distributions with means n
n ,

n
n−1 , . . . , n

n−m+1 . Thus

(2.13) Em[`] =

m−1∑
j=0

n

n− j
= n(Hn −Hn−m),

where Hj is the j-th harmonic number. This implies the first inequality. The second is
Jensen’s inequality. The third follows as `(χ) > m for any χ ∈ Xm. �

If n → ∞ and m grows slower than
√
n, ` → Em[`] in probability [BB]. Thus we might

expect 1
Em[`] to be a good approximation for Em[1`], as the following bound shows.

Lemma 2.6. For 1 < m <
√

2n,

Em

[
1

`

]
<

1

Em−1[`]
.

For 1 < m 6 n,

Em

[
1

`

]
6

1

Em−1[`]
+

(m− 1)(n−m)

2n2
.

Proof. Let x > 0. Chebyshev’s inequality tells us

Pr(|`− Em[`]| > x) 6
Var(`)
x2

.

Consequently,

(2.14) Em

[
1

`

]
6

1

Em[`]− x
(1− y) +

y

m
=

1

Em[`]− x
+ y

(
1

m
− 1

Em[`]− x

)
for any y > Var(`)

x2
. Note

Var(`) =
m−1∑
j=0

jn

(n− j)2
6

n

(n−m+ 1)2
(m− 1)m

2
.

Set x = n
n−m+1 so Em[`]− x = Em−1[`]. Now we apply (2.14) with

y =
(n−m+ 1)2

n2
n

(n−m+ 1)2
(m− 1)m

2
=

(m− 1)m

2n
.

Observe

1

m
− 1

Em−1[`]
=

1

mEm−1[`]

m−2∑
j=1

j

n− j
− 1

 6 1

mEm−1[`]

(
(m− 2)(m− 1)

2(n−m+ 2)
− 1

)
,

which is negative if m <
√

2n, and one gets the first part. The second part follows from the
crude bound

1

mEm−1[`]

m−2∑
j=1

j

n− j
− 1

 6 1

m

n−m
n

.

�

HOW OFTEN SHOULD YOU CLEAN YOUR ROOM? 17

Remark 2.7. (i) The preceding two lemmas imply that Em
[
1
`

]
is decreasing in m for 1 6

m <
√
n. However, note that it follows easily that Em

[
1
`

]
is decreasing in m for all m > 1

because of the inequality of probabilities, µm(` 6 X) 6 µm−1(` 6 X) for all X .

(ii) In fact we expect the first part of Lemma 2.6 to hold for all 1 < m 6 n, as well as the
stronger bound Em

[
1
`

]
6 m−1

m
1

Em−1[`]
, which appears true numerically. This stronger bound

together with Lemma 2.5 would imply

(2.15) mEm

[
1

`

]
> (m+ 1)Em+1

[
1

`

]
,

which means that for any of our four modelsM, the expected list search and cleanup costs,
FL(m) and FC(m), are strictly decreasing in m. Furthermore, numerics suggest that the
sequence 1

Em[`] decreases in m faster than the sequence Em[1`]. For instance, it appears

mEm

[
1

`

]
− (m+ 1)Em+1

[
1

`

]
6

m

Em[`]
− m+ 1

Em+1[`]
; and

Em+1[`]

Em[`]
>

Em[1/`]

Em+1[1/`]
.

Lemma 2.8. Fix m > 1, and let ε > 0. Then for sufficiently large n,

FL(m;n) > FL(m+ 1;n)− ε and FC(m;n) > FC(m+ 1;n)− ε.

In the case of unnumbered shelves, we may take ε = 0, i.e., for m0 sufficiently small relative to n,
FL(m;n) and FC(m;n) are decreasing in m for 1 6 m < m0.

Proof. It is easy to see that (e.g., by Lemma 2.5 or [BB]), for fixed m, 1
Em,n[`]

and Em,n
[
1
`

]
are

increasing sequences with limit 1
m . This implies that for n sufficiently large

Em,n

[
1

`

]
>
m+ 1

m
Em+1,n

[
1

`

]
− ε.

This implies the lemma as

m+ 1

m

m−1∑
j=0

sL(n− j)−
m∑
j=0

sL(n) > 0 and
m+ 1

m
Cm − Cm+1 > 0,

and these differences can be bounded away from 0 in the unnumbered case. �

2.5. Expected pile search cost.
Now we consider the expected pile search cost

FP(m) =

m−1∑
j=1

Em

[τj
`

]
sP(j) =

∞∑
`=m

|X (`)
m |
`n`

m−1∑
j=1

Em[τj(χ) |χ ∈ X (`)
m]sP(j).

First we remark the following explicit formula for the expected values in the inner sum.

Lemma 2.9. For 1 6 j 6 m− 1, we have

Em[τj | X (`)
m] =

{ `− 1

m− 1

}−1
×
`−m∑
k=1

jk
{`− k − 1

m− 1

}
.

18 K. MARTIN AND K. SHANKAR

Proof. If ` = m, then τj(χ) = 0 for all χ ∈ X (`)
m and the formula trivially holds, so suppose

` > m and let χ ∈ X (`)
m . If r = τj(χ) > 1, we can remove the element at position tj+1 − 1 to

get an element χ′ ∈ X (`−1)
m such that

τj(χ
′) = r − 1, τj′(χ

′) = τj′(χ) j′ 6= j.

This map from χ to χ′ is a j-to-1 surjective map, i.e., for j, r > 1 we have

#{χ ∈ X (`)
m : τj(χ) = r} = j ·#{χ ∈ X (`−1)

m : τj(χ) = r − 1}.

Summing over all r > 1, we see

#{χ ∈ X (`)
m : τj(χ) > 1} = j|X (`−1)

m |.

Similarly if r > k we can remove the last k elements before position tj+1 to get a jk-to-1 map
into X (`−k)

m , and we have

(2.16) #{χ ∈ X (`)
m : τj(χ) > k} = jk|X (`−k)

m |.

Now observe that

Em[τj | X (`)
m] =

`−m∑
k=1

kµ{χ ∈ X (`)
m : τj(χ) = k} =

`−m∑
k=1

µ{χ ∈ X (`)
m : τj(χ) > k}

and apply Proposition 2.1. �

Consequently, we have

Em

[τj
`

]
= m!

(
n

m

) ∞∑
`=m

1

`n`

∞∑
k=1

jk
{`− k − 1

m− 1

}
= m!

(
n

m

) ∞∑
k=1

jk
∞∑

`=m+k

1

`n`

{`− k − 1

m− 1

}

= m!

(
n

m

) ∞∑
k=1

jk

nk

∞∑
`=m

1

(`+ k)n`

{ `− 1

m− 1

}
(2.17)

This expression allows us to get the following upper bound.

Proposition 2.10. For 1 6 j 6 m− 1, the covariance Cov(τj ,
1
`) < 0, i.e.,

Em

[τj
`

]
<

j

n− j
Em

[
1

`

]
.

Proof. From (2.17) we have

Em

[τj
`

]
<

∞∑
k=1

jk

nk
Em

[
1

`

]
=

j

n− j
Em

[
1

`

]
.

That this is equivalent to the condition of negative covariance asserted above follows as

µ{χ ∈ Xm : τj(χ) = k} =

(
j

n

)k n− j
n

HOW OFTEN SHOULD YOU CLEAN YOUR ROOM? 19

implies

Em[τj] =
n− j
n

∞∑
k=1

k

(
j

n

)k
=
j

n

n− j
n

(
1− j

n

)−2
=

j

n− j
.

�

Remark 2.11. Suppose n > 4 and 1 6 j < m < n. Then numerically it appears that

Em

[τj
`

]
6 Em+1

[τj+1

`

]
.

This would imply that FP(m) is increasing in m, and, in the case of complete memory,

FP(m+ 1) >
m+ 1

m
FP(m).

Lastly we note

Lemma 2.12. We have

mEm

[
1

`

]
+
m−1∑
j−1

Em

[τj
`

]
= 1.

Proof. This follows from the observation that
∑m−1

j−1 τj(χ) = `(χ)−m. �

2.6. Reinterpreting F (m).
From above, we can rewrite

(2.18) F (m) = mEm

[
1

`

]
s∗(m) +

m−1∑
j=1

Em

[τj
`

]
sP(j),

where

s∗(m) =

∑m−1
j=0 sL(n− j) + Cm

m

denotes the average total (search plus cleanup) cost of taking an object out of L. This expres-
sion yields the following interpretation (cf. Lemma 2.12): we can think of mEm

[
1
`

]
as the

probability that a given search will cost s∗(m), and Em
[τj
`

]
as the probability that a given

search will cost sP(j).
It is easy to see thatmEm

[
1
`

]
= 1 if and only ifm = 1, so we have F (1) > F (m) whenever

m > 1 satisfies sP(m− 1) < s∗(m). This yields

Lemma 2.13. Let 1 < m 6 n.

(1) In the case of unnumbered shelves, if m < 4b(n−m), then F (m) < F (1).
(2) In the case of numbered shelves, if m < 4b(n), then F (m) < F (1).

20 K. MARTIN AND K. SHANKAR

3. AN UPPER BOUND

For simplicity now, we will assume we are in modelM4 (complete memory, numbered
shelves), though a similar argument can be used forM2 as well. In this case we have

F (m) = 2FL(m) + FP(m).

Recall that F (1) = 2b(n). Thus, once the pile P has more than 4b(n) elements, a single
average pile search must cost more than F (mopt(n)). This idea gives the following upper
bound.

Proposition 3.1. Suppose n > 1. Then mopt(n) < 4b(n).

We will first prove a lemma. We say a function f : Xm → R is additive if, for any χ =

(χ1, . . . , χ`) and any 1 6 k < `, we can write f as a sum of terms

f(χ) =
∑̀
j=1

f(χj ;Pχ(j − 1))

where the f(χj ;Pχ(j − 1)) depends only upon χj and what is in the pile before time j.
We can naturally restrict such functions f to functions of Xk for k < m. Note that all the
cost functions we considered above are additive, and any linear combination of additive
functions is additive.

Let m > k > 1. Define a restriction map Rmk : Xm → Xk, given by

Rmk χ = (χ1, . . . , χtk(χ)).

We let Tmk : Xm →
⋃∞
k=1X

k be the truncated tail from the restriction map, i.e.,

Tmk χ = (χtk(χ)+1, . . . , χ`(χ)).

Put Pχ,k = Pχ(tk(χ)) to be the pile after time tk(χ).

Lemma 3.2. Suppose f : Xm → R is additive and m > k > 1. If

(3.1) f(Xi;Pχ,k) >
f(Rmk χ)

`(Rmk χ)

for all χ ∈ Xm and Xi ∈ X, then

(3.2) Em

[
f

`

]
> Ek

[
f

`

]
.

If, further, the inequality in (3.1) is strict for some χ andXi, then the inequality in (3.2) is also strict.

Proof. Since f and ` are additive, we can write

Em

[
f

`

]
=
∑
χ∈Xm

µ(χ)
f(Rmk χ) + f(Tmk χ;Pχ,k)

`(Rmk χ) + `(Tmk χ)
.

Then the above condition guarantees, for any χ,

f(Rmk χ) + f(Tmk χ;Pχ,m−1)
`(Rmk χ) + `(Tmk χ)

>
f(Rmk χ)

`(Rmk χ)

HOW OFTEN SHOULD YOU CLEAN YOUR ROOM? 21

as a+b
c+d >

a
c if and only if b

d >
a
c . �

Proof of Proposition 3.1. Set k = b4b(n)c and let k < m 6 n. Let S̄L(χ) (resp. S̄P(χ)) be the
average of SL(χσ) (resp. SP(χσ)), where σ ranges over Sym(X). Let f = 2S̄L + S̄P , so
F (m) = Em[f`].

Then note that
f(Rmk χ)

`(Rmk χ)
=

2kb(n) + S̄P(Rmk χ)

`(Rmk χ)
6 2b(n),

since

S̄P(Rmk χ) 6 (`(Rmk χ)− k)sP(k − 1) 6 2b(n)(`(Rmk χ)− k)

Furthermore, this inequality must be strict for some χ (in fact, one only gets equality when
n+ 1 is a power of 2 and tj(χ) = j for j < k).

On the other hand, for any Xi ∈ X, we have f(Xi;Pχ,k) > 2b(n) (with equality if Xi 6∈
Pχ,k). Applying the above lemma, we see F (m) > F (k). �

4. AN APPROXIMATE PROBLEM

Here we make a conjectural lower bound and asymptotic for mopt(n) by comparing our
problem with a simpler optimization problem. We continue, for simplicity, in the case of
M4, though similar approximate problems could be considered forM1,M2 andM3 also.

Based on the bounds for Em[1`] and Em[
τj
`] above, we consider the approximate expecta-

tion cost

F̃ (m) = 2F̃L(m) + F̃P(m),

where

F̃L(m) = mb(n)
1

Em[`]

and

F̃P(m) =

m−1∑
j=1

j + 1

2

j

n− j
1

Em[`]
.

Specifically, Lemma 2.5 and Proposition 2.10 imply FL(m) > F̃L(m) and

FP(m) 6
m−1∑
j=1

j + 1

2

j

n− j
Em

[
1

`

]
.

We suspect that the approximation F̃P(m) is much closer to this upper bound forFP(m) than
FP(m) itself is, and so we should have FP(m) 6 F̃P(m). This is supported by numerical
evidence. (See Table 4.1 for some numerical calculations.) Moreover, since conjecturally
FL(m) is decreasing in m (and, empirically, faster than F̃L(m) is), while FP(m) is increasing
in m (and, empirically, slower than F̃P(m)), we make the following conjecture.

Let m̃opt(n) be the value of m ∈ {1, 2, . . . , n}which minimizes F̃ (m). We call the problem
of determining m̃opt(n) an approximate search with cleanup problem.

22 K. MARTIN AND K. SHANKAR

Remark 4.1. Recall that formopt(n), we used the function b(n) from (1.5), is an exact average
search cost if n is a power of 2 and approximate otherwise (since we are working with
a complete memory model here, bf (n) does not arise here). It is then natural to wonder
whether using an exact formula for b(n) for all nmakes much of a difference. This is relevant
for small n since, but should not matter for asymptotics for large n. However, choosing b(n)

as in (1.5) does not make much of a difference for small n either; see the emboldened entries
the third row in Table 4.1 for the differences. The optimal value in the case of exact average
search cost functions is labeled mexact

opt (n).

Conjecture 4.2. LetM =M4. Then mopt(n) > m̃opt(n).

TABLE 4.1. Small values of m̃opt, mopt and mexact
opt

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m̃opt 1 2 3 4 5 6 7 8 8 8 9 9 9 9 9 10 10 10 10 11

mopt 1 2 3 4 5 6 7 8 8 8 9 9 9 10 10 10 10 10 11 11

mexact
opt 1 2 3 4 5 6 7 8 8 9 9 9 9 10 10 10 10 11 11 11

n 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

m̃opt 11 11 11 11 11 12 12 12 12 12 12 12 12 13 13

mopt 11 11 11 12 12 12 12 12 12 12 13 13 13 13 13

mexact
opt 11 12 12 12 12 12 12 12 12 13 13 13 13 13 13

Theorem 4.3. For any n > 5, we have

3b(n)− 3
2
6 m̃opt(n) < 3b(n) + 1

2
.

In other words, for n > 5, m̃opt(n) is either d3b(n)− 3
2e or d3b(n)− 3

2e+ 1.

We note that in fact both possibilities of this proposition occur: sometimes m̃opt(n) is
d3b(n) − 3

2e and sometimes it is d3b(n) − 3
2e + 1, though numerically there seems to be a

tendency for m̃opt(n) to be in the right half of this interval, i.e., most of the time m̃opt(n) >

3b(n)− 1
2 .

Proof. Let 1 6 m < n. We want to investigate when the difference

(4.1)
F̃ (m)− F̃ (m+ 1) =

2mb(n) +
1

2

m−1∑
j=1

j(j + 1)

n− j

(1

Em[`]
− 1

Em+1[`]

)

−
(

2b(n) +
1

2

m(m+ 1)

n−m

)
1

Em+1[`]

is positive, i.e., when is F̃ (m) is decreasing in m? The above expression is positive if and
only if

2F̃L(m)− 2F̃L(m+ 1) > F̃P(m+ 1)− F̃P(m).

HOW OFTEN SHOULD YOU CLEAN YOUR ROOM? 23

Since Em+1[`]− Em[`] = n
n−m , this is equivalent to

(4.2) 4b(n)(n−m)

(
nm

n−m
− Em[`]

)
> m(m+ 1)Em[`]− n

m−1∑
j=1

j(j + 1)

n− j
.

The left hand side of (4.2) is

4nb(n)
m−1∑
j=0

m− j
n− j

,

whereas the right hand side of (4.2) is

n
m−1∑
j=0

m(m+ 1)− j(j + 1)

n− j
= n

m−1∑
j=0

(m− j)(m+ j + 1)

n− j
.

Hence (4.2) is positive if and only if

(4.3)
m−1∑
j=0

m− j
n− j

(4b(n)− (m+ j + 1)) > 0.

Lemma 4.4. Let a, b, c ∈ Z with a > 1 and c > max{a, b}. The sum
a∑
j=0

(a− j)(b− j)
c− j

is negative if b 6 a−2
3 . This sum is positive if if b > a

3 and c > 5a2.

Proof. All nonzero terms of the sum are positive (resp. negative) if b > a (resp. b 6 0), so
assume 0 < b < a. Now note the above sum is negative if and only if

(4.4)
b∑

j=0

(a− j)(b− j)
c− j

<

a∑
j=b

(a− j)(j − b)
c− j

.

This is certainly the case if

1

6
b(b+ 1)(3a− b+ 1) =

b∑
j=0

(a− j)(b− j) 6
a∑
j=b

(a− j)(j − b) =
1

6
(a− b)(a− b+ 1)(a− b−1).

Writing d = a− b, we see this is true if

b(b+ 1)(3d+ 2b+ 1) 6 d3 − d,

which holds if b 6 d
2 − 1, i.e., if b 6 a−2

3 .
Similarly, the sum in the lemma is positive if

1

c

b∑
j=0

(a− j)(b− j) > 1

c− a

a∑
j=b

(a− j)(j − b),

i.e., if
b(b+ 1)(3d+ 2b+ 1) >

c

c− a
(
d3 − d

)
.

24 K. MARTIN AND K. SHANKAR

Suppose b > a
3 , i.e., b > d

2 . Then the above inequality is satisfied if

d

2
(
d

2
+ 1)(4d+ 1) >

(
1 +

a

c− a

)(
d3 − d

)
,

which holds if
d2

4
(4d+ 1) >

(
1 +

a

c− a

)
d3,

which holds if
c− a

4a
> a > a− b = d.

This holds if c > 5a2 > 4a2 + a. �

Now applying the first part of this lemma with a = m, c = n and b = d4b(n) −m − 1e 6
4b(n)−m, we see

m > 3b(n) + 1
2 =⇒ F̃ (m) < F̃ (m+ 1),

hence m̃opt(n) < 3b(n) + 1
2 .

Similarly, applying the second part of the lemma with a = m, c = n and b = b4b(n)−m−
1c > 4b(n)− 2 we see

m < 3b(n)− 3
2 and n > 5m2 =⇒ F̃ (m) > F̃ (m+ 1).

Note m < 3b(n) − 3
2 implies 5m2 6 n when 45(b(n) − 1.5)2 6 n. If n is large so that

45(b(n) − 1.5)2 6 n, then we have m̃opt(n) > 3b(n) − 3
2 . This is satisfied if n > 4050. When

n 6 4050, one can compute directly that (4.3) holds for all m < 3b(n) − 3
2 . Lastly, note that

n > 3b(n)− 3
2 for n > 5. �

Hence, we should have 3b(n) − 3
2 6 mopt(n) < 4b(n). Here only the lower bound is

conjectural. At least for n small, the table above suggests m̃opt(n) is to be a very good
approximation for mopt(n). This suggests that mopt(n) grows like m̃opt(n) plus some term
of smaller order, and we are led to

Conjecture 4.5. As n→∞, we have the asymptotic mopt(n) ∼ 3b(n).

Remarks.

4.6. From Table 4.1, we note that for n 6 8, one should not clean up until all the objects are
in the pile. One might ask for n 6 8 if one should ever clean up, i.e., is F (n) at least less
than the cost of an average pile search, n+1

2 ? Calculations show this is only true for n = 7

and n = 8, i.e., one should never clean up if n 6 6. (This entire remark does not depend on
whether one uses the approximate average search cost function for b(n) in (1.5) or replaces
b(n) with the exact average search cost as discussed in Remark 4.1.)

4.7. For M3, calculations also say that mopt(n) = n for n 6 8, but here it is only better to
never clean up if n 6 2. Furthermore, calculations suggest that mopt(n) ∼ 4b(n) forM3 .

HOW OFTEN SHOULD YOU CLEAN YOUR ROOM? 25

0 5 10 15 20

6.5

7

7.5

8

m

F (m)

F̃ (m)

FIGURE 1. Comparing F̃ (m) with F (m) for n = 20

0 20 40 60 80 100

10

20

30

40

m

F̃
(m

)

FIGURE 2. F̃ (m) for n = 100

4.8. To see how close F̃ (m) is to F (m), we plotted both for n = 20 in Figure 1. Note that
there is significant cost savings to be had by waiting until mopt to clean up. However, for
large n, the graph of F (m) will be more lop-sided, i.e., the right endpoint F (n) will be much
larger than the left endpoint F (1). It is not feasible to compute all values of F (m) for some
large n, but we graph F̃ (m) for n = 100 in Figure 2. We expect that the graph of F (m) will
have a similar shape, and that for large n, the cost savings of waiting until mopt to clean
up is proportionally smaller. However, the cost savings should be more pronounced for
non-uniform distributions.

26 K. MARTIN AND K. SHANKAR

5. NON-UNIFORM DISTRIBUTIONS

Finally we comment on the problem for general probability distributions on X. Now if
one defines the cost functions S(X;P) and C(P) using algorithm A as in Section 1.2, these
cost functions do not just depend upon the multiset of probabilities {µ(Xi)}, but upon the
specific distribution.

Example 5.1. Fix 1 6 r 6 n and 0 6 ε 6 1. Now take the distribution given by µ(Xr) = 1− ε
and µ(Xi) = ε/(n − 1). Assuming ε is small, then most of the time one will be searching
for Xr. Depending on what r is, the search (as well as cleanup) cost associated to Xr might
be as low as 1 or as high as bf (n) ≈ log2(n). Hence, at least for certain values of ε and n,
one might expect the answer to the associated search with cleanup optimization problem
depends upon the choice of r.

Therefore, we define our cost functions not using the exact search costs given by algorithm
A, but rather on the associated average search costs. Specifically, in the complete memory
case, we set

(5.1) S(X;P) =

{
sL(n− |P|) X 6∈ P
sP(|P|) X ∈ P

and

(5.2) C(P) =

|P|∑
j=1

sL(n− j).

In the case of the uniform distribution on X, this gives us the same optimization problem
we studied above.

Note that in the case of no memory, it may be better to always search the pile first, de-
pending on how skewed the distribution is. For instance, in Example 5.1, if ε is sufficiently
small, then with high probability at any t > 1, we will be looking for Xr and it will be in the
pile. Thus we should always search the pile first. Furthermore, by this reasoning (in either
the complete or no memory case), for ε small enough, we should clean up whenever another
object gets in the pile, i.e., mopt(n) = 2.

Consequently, we can decompose the average total cost as in the uniform case

(5.3) F (m) = mEm

[
1

`

]
· 2b(n) +

m−1∑
j=1

Em

[τj
`

]
sP(j),

though now the quantities Em
[
1
`

]
and Em

[τj
`

]
will be more complicated. In this case, the

probability functions for the underlying Markov process will follow more general sequential
occupancy distributions (see, e.g., [JK] or [Ch]).

Note that for a nonuniform distribution, typically objects with higher probabilities will
be in the pile at any given time, so the pile search costs will be higher than in the uniform

HOW OFTEN SHOULD YOU CLEAN YOUR ROOM? 27

case. Put another way, the expected waiting time Em[`] until cleanup is minimized for the
uniform distribution (see, e.g., [Na], [FGT], [BP] and [BS] for results on Em[`]). Therefore,
the more skewed the distribution is, the faster the probabilitiesEm

[τj
`

]
should be increasing

in m, i.e., the smaller mopt(n) should be, as indicated in our example above. In particular,
we expect mopt(n) is maximized for the uniform distribution.

28 K. MARTIN AND K. SHANKAR

APPENDIX A. NOTATION GUIDE

Section 1.1.
X a set of n objects (the books) X1, . . . , Xn

µ a probability measure on X (and later Xm)
L a sorted list (the shelves)
P an unsorted list (the pile)
Xm = Xm,n the finite sequences (paths) of objects in X consisting of m distinct

objects, where the last object is distinct from the previous ones
χ a path in Xm
χt the t-th object in χ
`(χ) the length of χ
Pχ(t) the set of objects in P at time t along path χ
S(X;P) the search cost for object X ∈ L t P given a certain pile P
C(P) the cleanup cost for a certain pile P
S(χ) the total search cost along path χ
C(χ) the cleanup cost for path χ
F (m) = F (m;n) the average total per-search cost for cleaning up when |P| = m

mopt(n) = mopt(n;M) the argument which minimizes F (m)

Section 1.2.
M1 the no memory, unnumbered shelves model
M2 the no memory, numbered shelves model
M3 the complete memory, unnumbered shelves model
M4 the complete memory, numbered shelves model
A a search algorithm for the model
b(j) the average case successful binary search cost on a sorted list of length j
bf (j) the average case failed binary search cost on a sorted list of length j
s(j) the average case sequential search cost on a list of length j
sL(j) the average cost to search for an element of Lwhen the list size is j
sP(j) the average cost to search for an element of P when the pile size is j
Cm the average cleanup cost for a pile of size m

Section 2.1.
E[f] = Em[f] = Em,n[f] the expected value of a function on Xm,n
X (`)
m the paths in Xm of length `

FS(m) the expected search cost per search{a
b

}
the Stirling number of the second kind

SL(χ) the contribution to S(χ) from searches for objects in L
SP(χ) the contribution to S(χ) from searches for objects in P
Sym(X) the symmetric group on X

τj(χ) the number of times one does j-element pile search along χ

HOW OFTEN SHOULD YOU CLEAN YOUR ROOM? 29

Section 2.2.
FL(m) the expected value of SL per search
FP(m) the expected value of SP per search
FC(m) the expected cleanup cost per search

Section 4.
F̃ (m), F̃L(m), F̃P(m) certain approximations for F (m), FL(m), FP(m)

m̃opt(n) the argument minimizing F̃ (m)

REFERENCES

[BB] Baum, Leonard E.; and Billingsley, Patrick., Asymptotic distributions for the coupon collector’s problem,
Annals of Math. Stat., 36(6) (1965), 1835–1839.

[BS] Berenbrink, Petra; and Sauerwald, Thomas. The Weighted Coupon Collectors Problem and Applications,
Lecture Notes in Computer Science, 5609 (2009), 449–458.

[BP] Boneh, Shahar; and Papanicolaou, Vassilis., General asymptotic estimates for the coupon collector problem,
J. Comput. Appl. Math., 67(2) (1996), 277–289.

[Ch] Charalambides, Charlambos A., Combinatorial methods in discrete distributions, Chapman and Hall, 1st
edition, 2002.

[FGT] Flagolet, Philippe; Gardy, Danièle; and Thimonier., Löys. Birthday paradox, coupon collectors, caching
algorithms and self-organizing search, Disc. Appl. Math., 39(3) (1992), 207–229.

[JK] Johnson, Norman L.; and Kotz, Samuel., Urn models and their application: an approach to modern discrete
probability theory, Wiley, New York, 1977.

[Na] Nath, Harmindar B., On the collector’s sequential sample size, Trabajos Estadist. Investigacion Oper., 25(3)
(1974), 85–88.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, NORMAN, OK 73019
E-mail address: kmartin@math.ou.edu
E-mail address: shankar@math.ou.edu

	Introduction
	1. General Setup
	1.1. The Statement of the Problem
	1.2. Models and Cost Functions
	Remarks
	1.3. Overview

	2. Expectation costs
	2.1. Expected search cost
	2.2. Expected cleanup cost
	2.3. Some simple calculations
	Calculations for m=1
	Calculations for m=2
	2.4. Expected list search cost
	2.5. Expected pile search cost
	2.6. Reinterpreting F(m)

	3. An upper bound
	4. An approximate problem
	Remarks

	5. Non-uniform distributions
	Appendix A. Notation guide
	References

