A FEARSOME FOURSOME:
LANGLANDS, TUNNELL, WILES AND FERMAT

KIMBALL MARTIN

Modulaire! Modulaire!
Those words are so unfair!
Many meetings, many seatings,
Many meanings, many gleanings.

Yet so obtusive, so elusive,
Is there nothing more conducive?
Ah, here’s a friend by far more fair!
Though rough and rugged for the wear.

Seldom was a longer name so seemly,
Or came functoriality so dreamy,
Than when I turned from modulaire,
And found that automorphy in the air.

These notes are from a presentation for Ma 162b taught by Edray Goins at Caltech in Winter 2004. I
attempt here to give a rough sketch of the role of automorphic forms and representations in the proof of
Fermat’s last theorem (that is, the proof that all (semistable) elliptic curves are modular). I am really not
at all following Gelbart’s article in the Cornell-Silverman-Stevens volume, except perhaps in Section 4. In
Section 3, I attempted to follow Cogdell’s lecture notes from a course at the Fields Institute (available on
their website) in Winter 2003. I claim absolutely no responsibility to the veracity of the words which follow.

Notation: Gg = Gal(Q/Q), $ is the upper half-plane, tr is the trace map, and Fr, denotes a Frobenius
conjugacy class for p in an appropriate finite quotient of Gg.

1. L-FUNCTIONS

We’ve talked about a correspondence between two-dimensional Galois representations and modular forms,
but I’d like to rephrase things in terms of L-functions, though I suppose I don’t actually need to. However
it will be much more convenient for stating things more generally. Let f be a eigen-cusp-new-form of weight
w > 1 and character €. By Deligne, Serre, Eichler and Shimura, one can attach to f an odd, continuous
Galois representation p : Gg — GLa(F) such that for almost all primes p,

(1) tr(p(Frp)) = ap , det(p(Frp)) = e(p)p" ™",

where ' = C if w = 1 and F can be Q, for any prime [ if w > 2.

In fact for F = C or Fy, it’s conjectured that any odd, continuous irreducible Galois representation
p : Gg — GLy(F) should correspond to a modular form f (defined over F) in the above sense. (I'm told
things are more delicate when F' = Q;.) In this case, we'll say that p is modular. Let’s reformulate the
weight-one case with L-functions. Write f = > ., anq™. Define the L-function

L(Svf):ZZ_zZHLP(Svf) ) LP(Saf) !
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Let p : Gg — GL2(C) be a continuous Galois representation. Define the Artin L-function by

L(s,p) = [ [ Lo(s. p);
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where at the unramified places for p (so at almost all places),

1 1
B ) = T o) T (P + et olFr ) >
Thus f corresponds to p if and only if L,(s, f) = L,(s, p) for almost all p. This can only happen when p is
odd. I'll remark that if p is even, p should correspond to something called a Maass form. Similarly, you can
define an L-function L(s, E) for an elliptic curve F so that E is modular if and only if L(s, F) = L(s, f), but
we’ll do something a little different.

2. THERE AND BACK AGAIN

Let it be known that F is a semistable elliptic curve over Q. The goal is to prove that E is modular.
Recall we have associated to the [-torsion points of E a Galois representation pg; : Gg — GL2(Z;). This
gives a residual representation pp; : Go — GLo(IF;). We'll say that pp, is residually modular (of weight
two) if pg; (more or less) corresponds to a weight-two normalized eigenform f mod I, i.e., that Equation (1)
holds mod [ for nearly all p. In this case we’ll say that pp ; is modular (of weight two).

Theorem 1. (Wiles) If pp 5 is irreducible and modular (of weight two), then pg, (and hence E) is modular.

(Due to Conrad, et al., you probably don’t even need that E is semistable.) Pretty much, either pg 5 or
PE,s is irreducible. Using his unpatented “3-5 switch”, Wiles shows it suffices to assume pp 5 is irreducible.
A theorem of Langlands and Tunnell then applies to show that pg 3 is actually modular. This is wherein
lies the connection with automorphic forms and what we shall discuss in the final section.

3. WHY EAT MODULAR WHEN YOU CAN HAVE AUTOMORPHIC EVERY DAY OF THE WEEK?

The annoying thing about modular forms is their modularity. Say f : $ — C is a modular form on
I’ = SLy(Z) of weight w. Let

ila2) = derlg) ez ) L g= (0 1),

The modularity condition then means f(yz) = j(v;2)*f(2) for v € . This isn’t too bad if w = 0, but 1
think you’ll agree we’d all be better off without this j term. So let’s get rid of it.
Not only does SLy(Z) act on $, so does GLo(R)*. Note

Staber,my {i} = Z- K ,Z = Z(GLy(R)*) , K =S0(2).
So $ ~ Z\GLs(R)* /K. Lift f to a function F' on GLy(R)™ so that
F(g)=[flg-1) , F(zgk)=F(9), z€ 2, ke K.

Let ¢(g) = j(g;4)""“F(g). Then

(i) ¢(vg) = ¢(g),7 €T

(i) v(z9) = ¢lg), z € Z ’

(i) ¢(gke) = €™%0(g), ko = (_Czisfe 222) €K

(iiii) ¢(g) is an eigenfunction for the invariant differential operators Z on GLa(R).

(v) for any norm on GL2(R)™, |¢o(g)| < C||g||" for some C, .

Then ¢ : ZI'\GLz(R)™ — C is an automorphic form on GLy(R)*. Condition (iiii) corresponds to
holomorphy of f and (v) to holomorphy of f at co. If you have a good imagination, I'm sure you can guess
that things go similarly for T" a discrete subgroup of GLo(R)™.

Since we claim to be doing number theory, we should probably get some other fields involved now. Let A
be the adéles of Q so we have a restricted direct product decomposition GLg(A) = GLa(R) x [ GL2(Q,).
Let K = KooKy C GLy(A) where Koo = O(2) and Ky = [[ GL2(Z,). (K, Koo, Ky are maximal compact
subgroups in their respective GLo ambient groups, and K¢ is open.) As every Japanese 3rd grader knows,

F\GLQ(R)Jr = GLQ(Q)\GLQ(A)/Kf, SO
ZR)M\GLy(R)" = Z(A)GL2(Q)\GL2(A)/ Ky,
where Z(F') means Z(GL2(F')). So our automorphic form ¢ is actually a function of the quotient on the

right.
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Pictorially, we have a parallelo-diagram

GLz(Q)\GMy c
Z(A)GL2(Q\GL2(A)/ Ky —= Z(R)I'\GLa(R)*

Thus we may think of ¢ as a function of GL2(A) such that

(0) p(zg) = w(z)p(g), z € Z(GL2(A)), w(z) =1

(i) [automorphy] v(vg) = »(g), v € GL2(Q)

(ii) [K-finite] p(gkoks) = e™%0(g), kg € KL = SO(2), ky € Ky; and in fact, (¢(gk)|k € K) is finite
dimensional

(iii) | Z-finite] (X ¢(g)|X € Z) is finite dimensional

(iiii) [moderate growth| for any norm on GLa(A), |o(g)| < C||g||" for some C,r.

Note ¢ is smooth, i.e., C* at oo and locally constant at the finite places. Any smooth function ¢ : GLa(A)

character w in condition (o) might not be 1, just as there are modular forms with nontrivial character. We

Wﬂl Say SO iS a C’u,sp ?OTm if
/@ A (( :E) ) v -

(Recall that classically, cuspidality states

ao—/olf(x+iy)d:c_/01f<<(1) 313>-iy>d:1:—0.)

Denote the vector space of K-finite automorphic (resp., cusp) forms by A (resp., Ag). Unfortunately, we
don’t quite get “automorphic” representations of GL2(A) on A but we do get ones of a Hecke algebra. On the
other hand, one can define smooth automorphic forms and L? automorphic forms which relax the condition
of K-finiteness which do afford “automorphic” representations of GLo(A). Using L? automorphic forms you
can get representations of GLy(A) on the space of K-finite cusp forms, but we won’t worry about this.

GL2(A) acts by right translation on the space of cusp forms. Given a cusp form ¢ which is an eigenform
in some sense, let 7 = V,, be the representation of GL2(A) spanned by ¢. Any such representation 7 is
called a cuspidal automorphic representation of GLy(A). More generally', any irreducible representation of
GL2(A) on the space of cusp forms is a cuspidal automorphic representation 7, but it’s a big deal (called
Multiplicity One) that (for GL,) m = V,, for some cusp form ¢.

When I started off writing this, I thought I could define some things and present a bit of the relevant theory,
but somehow things degenerated and chaos ensued, like a Chesterton novel (or so I'm told). So don’t feel
bad if none of this makes sense, and if perhaps automorphy doesn’t sound like such a great idea anymore.
But the point is that things called automorphic forms can be defined on GL, (Ar) (or other algebraic
groups more generally) and over any number field F', and (for GL,,) they correspond to other things called
automorphic representations of GL,, (Ar), which have meromorphic L-functions (actually entire for cuspidal
representations). Langlands conjectured that any irreducible Galois representation p : Gp — GL,(C)
corresponds to a cuspidal automorphic representation 7 of GL,(Ar) on some space of cusp forms (in the
sense that they have L-functions which agree almost everywhere). This is called, among other things, the
strong Artin conjecture and does indeed imply Artin’s conjecture that L(s, p) is entire for p # 1 irreducible.
The Langlands-Tunnell theorem stated in the next section (and what we need) is a special case of the strong
Artin conjecture.

Note that modular forms and Maass forms are essentially automorphic forms (or representations) for
n = 2, FF = Q. In fact, an irreducible two-dimensional Galois representation p should correspond to a
modular form if p is odd and a Maass form if p is even.

(v) [cuspidality]

1By the end of this sentence, I seem to say that it’s not more general at all, so I don’t know why I wrote any of this.
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4. HURRAY HURRAY! AUTOMORPHY SAVES THE DAY!

Theorem 2. (Langlands-Tunnell) Let p : Gg — GL2(C) be a continuous representation. If the image of p
is solvable, then p corresponds to an automorphic representation © of GLo(A) in the sense that Ly(s,p) =
L, (s, ) for almost all primes p.

This is a great theorem, and if I had time to prove it, you’d reprimand yourself for ever having doubted
automophy. See for example Rogawski’s article “Functoriality and the Artin Conjecture,” Proc. Symp. Pure
Math. 61 (1997). It’s also available on his website.

(For those who know the background, here’s a recap of Langlands’s proof of the tetrahedral case. Let
o : Gr — GLy(C) be a tetrahedral representation. Then there is a normal cubic extension K/F such that
ok is modular. Say ox <> II. There are three representations my, 71, m2 of GLa(Ar) whose base change
m;k to K is II. One of these should actually correspond to o. There is a unique m = m; whose central
character matches with the determinant of o. Then one proves Sym?(¢) <> Sym?(7). This combined with
the correspondence ox < 7w allows one to conclude that, at any unramified place v, either o, < m, or
o(Fr,) € A4 has order divisible by 6. But A4 has no elements of order 6, so in fact o < 7.)

We want to deduce that pp 5 is modular when it is irreducible. If it is irreducible, then it is absolutely
irreducible, i.e., irreducible over Fs. Furthermore, it is odd. Then the following result applies.

Corollary 1. Let 7 : Gg — GL2(F3) be an odd, absolutely irreducible representation. Then p corresponds
to a weight-two normalized eigenform f.

I'll now try to outline how this goes. It’s fortunate that GLo(F3) embeds inside GLo(C), and in a way
that (more or less) respects trace and determinant. Specifically, we can define a faithful honomorphism
¥ : GLy(F3) — GL2(C) by

dT D=0 e Y=L e

Then in fact ¢ : GLa(F3) — GL2(Z(iv/2)). Note 3 = (1 — iy/2) is a prime of Z(iv/2) above 3 (since
(1 —iv/2)(1 +iv/2) = 3) and you can check that

tr(¢(g)) = tr(g) mod 3, det(¢(g)) = det(g) mod 3.
Now we can extend p to a representation p : Gg — GL2(C) as

Go —2 GL,(C)

Sk
GLy(F3)

Note that p is an odd, continuous, irreducible Galois representation with solvable image. It is odd because
p is odd and v preserves determinants mod 3. It is continuous because it evidently has finite image. It’s
irreducible because its image is non-abelian (or else p would not be absolutely irreducible). It has solvable
image because PGL2(F3) ~ Sy (and hence GL2(F3)) is solvable.

By the Langlands-Tunnell theorem, p corresponds to some cuspidal automorphic representation 7 of
GL2(A). So in fact p corresponds to a weight-one eigenform f. So p corresponds to f mod 3. We want to
show that p corresponds to a normalized eigenform of weight two. The idea is to multiply f by an Eisenstein
series of weight one. Let x be the “mod 3” character, and

B(z) = Biy(2) =146 3 3 x(d)e?™=.

n=1 d|n

Then E = 1 mod 3 (i.e., each Fourier coefficient except for the constant term is 0 mod 3), so ¢ = fF is
a normalized weight-two form. However, it’s highly unlikely that g is actually an eigenform, but it will be
a “mod 3 eigenform,” meaning that 7,9 = T,,f = anf = a,g mod 3 for all n. A result of Deligne and
Serre, which I won’t state, applies in this case to say there’s another normalized weight-two form h which is
an eigenform and A = g mod 3 (i.e., their Fourier coefficients are the same mod 3). Then h is the desired
modular form.



