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Abstract. Let E/F be a quadratic extension of number fields andD a quater-
nion algebra over F containing E. Let πD be a cuspidal automorphic represen-

tation of GL(n,D) and π its Jacquet–Langlands transfer to GL(2n). Guo and

Jacquet conjectured that if πD is distinguished by GL(n,E), then π is sym-
plectic and L(1/2, πE) 6= 0, where πE is the base change of π to E. When n is

odd, Guo and Jacquet also conjectured a converse. The converse does not al-

ways hold when n is even, but we conjecture it holds if and only if certain local
root number conditions are satisfied, which is if and only if the corresponding

generic representation of the split special orthogonal group SO(2n + 1) has a

special E-Bessel model. We use the theta correspondence to relate E-Bessel
periods on SO(5) with GL(2, E) periods on GL(2, D), and deduce part of our

conjecture when n = 2.

1. Introduction

Let F be a number field and A its adele ring. Let G and H be algebraic groups
defined over F with common center Z, and suppose H is a closed subgroup of G. In
this paper, a (cuspidal) automorphic representation means an irreducible unitary
(cuspidal) automorphic representation. We say a cuspidal representation π of G(A)
with trivial central character is H-distinguished if the period integral

PH(φ) :=

∫
Z(A)H(F )\H(A)

φ(h) dh

defines a nonzero linear form on π.
Let E/F be a quadratic extension of number fields and X(E :F ) denote the

set of isomorphism classes of quaternion algebras over F which split over E. For
D ∈ X(E :F ), let JL = JLD denote the Jacquet–Langlands correspondence of rep-
resentations from an inner form GL(n,D) to GL(2n) defined by Badulescu [2] and
Badulescu–Renard [3], and LJD denote its inverse. For a cuspidal representation
π of GL(2n,A), πE denotes the base change of π to GL(2n,AE), and X(E :F :π)
denotes the set of D ∈ X(E :F ) for which πD = LJD(π) exists as a (necessarily
cuspidal) representation of GL(n,D)(A). Note since the matrix algebra M2 lies in
X(E :F ), X(E :F :π) also contains M2, in which case LJM2

(π) = π. Recall that a
cuspidal representation π of GL(2n) is called symplectic if L(s, π,Λ2) has a pole at
s = 1, which is equivalent to being a lift from a generic cuspidal representation of
the split orthogonal group SO(2n + 1) by the descent of Ginzburg–Rallis–Soudry
(see [18]) or Arthur’s trace formula [1].
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For each D ∈ X(E :F ), fix an embedding E ↪→ D, which gives an embedding
GL(n,E) ↪→ GL(n,D).

Conjecture 1 (Guo–Jacquet [19]). (1) Fix D ∈ X(E :F ). Let πD be a cuspidal
representation of GL(n,D)(A) with trivial central character which has a cuspidal
transfer π = JL(πD) to GL(2n,A). If πD is GL(n,E)-distinguished, then π is
symplectic and L(1/2, πE) 6= 0.

(2) Suppose n is odd. Let π be a cuspidal representation of GL(2n,A) with
trivial central character. If π is symplectic and L(1/2, πE) 6= 0, then there exists
a D ∈ X(E :F :π) such that the representation πD = LJD(π) of GL(n,D)(A) is
GL(n,E)-distinguished.

We call part (2) the converse direction of the Guo–Jacquet conjecture, and our
goal here is to study the converse direction for n even, though our Conjecture 3
below also partially refines the Guo–Jacquet converse when n is odd.

A few remarks on this conjecture are in order. First, the case n = 1 was already
established by Waldspurger [34]. Waldspurger further proved that, when n = 1,
there is a unique such D in part (2), and by work of Tunnell [32] and Saito [31],
this D can be determined uniquely in terms of local root numbers. For n > 1 odd,
it is also reasonable to expect that the D in part (2) is unique and is determined
by root numbers. On the other hand, for n even when the converse direction of the
Guo–Jacquet conjecture holds, we have the following non-uniqueness conjecture.

Conjecture 2 (Feigon–Martin–Whitehouse [4]). Suppose n is even. Let π be a
symplectic cuspidal representation of GL(2n,A). If there exists D ∈ X(E :F :π)
such that LJD(π) is GL(n,E)-distinguished, then LJD(π) is GL(n,E)-distinguished
for all D ∈ X(E :F :π).

Conjectures 1(1) and 2 are proved in [4] using a simple relative trace formula,
under the assumptions that π is supercuspidal at some place split in E, and E/F
is split at all even and archimedean places.

There are a couple of reasons the D in the converse direction might be unique
for n odd, but not for n even. The first reason, geometric, is due to the fact
that when one considers the relevant relative trace formula comparison for this
problem, the “regular elliptic” double GL(n,E)-double cosets for GL(n,D), as D
varies in X(E :F ), correspond to distinct GL(n)\GL(2n)/GL(n)-double cosets pre-
cisely when n is odd (see [19] and [4]). Specifically, for D1, D2 distinct elements
of X(E :F ), the regular elliptic GL(n,E)-double cosets for GL(n,D1) match with
those for GL(n,D2) when n is even. This allows for the relative trace formula
comparison between GL(n,E)-periods on GL(n,D1) and and GL(n,E)-periods on
GL(n,D2) to get the results on Conjecture 2 in [4].

The second reason is spectral. The uniqueness when n = 1 (and the analo-
gous uniqueness in the orthogonal Gross–Prasad conjectures) follows from local
dichotomy: if πv and πD,v are corresponding local representations of GL(2, Fv) and
GL(1, Dv), then exactly one of πv and πD,v is GL(1, Ev)-distinguished. Prasad
(cf. [29]) observed that local dichotomy is related to the character identity χπv

=
−χπD,v

. The analogous character identity for representations πv and πD,v of
GL(2n, Fv) and GL(n,Dv) is, however, χπ,v = (−1)nχπD,v

. This suggests one
may have local dichotomy in our situation if and only if n is odd. In fact, at least
when πD,v is a discrete series representation, this is a special case of a conjecture
of Prasad and Takloo–Bighash [30, Conjecture 1].
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Now we will formulate a conjecture which will tell us when the converse to the
Guo–Jacquet conjecture should hold for n even. This conjecture is already sug-
gested by the work of (Gan)–Gross–Prasad [17], [11], Mao–Rallis [25] and Valverde
[33]. First we make some necessary definitions.

The E-Bessel subgroup RE of the split special orthogonal group SO(2n + 1) is
a (unique up to conjugacy) spherical subgroup of the form SO(2)S where S is a
certain unipotent subgroup of SO(2n + 1) and here SO(2, F ) ' E×/F×. Fix a
certain character ψE of S and extend it to a character of RE so that the SO(2)-
action is trivial. We refer to [6, pp. 92–93] for a precise definition of (RE , ψE),

where it is denoted by (Rλ, χλ) with E = F
(√

λ
)

. We say a representation σ of

SO(2n+ 1,A) has a (special) E-Bessel model (or is (RE , ψE)-distinguished) if the
period

PRE ,ψE
(φ) :=

∫
RE(F )\RE(A)

φ(r)ψE(r) dr

is not identically zero on σ.
In [16], Gross and Prasad associated certain local symplectic root number char-

acters to a pair of representations σv ⊗ τv of SO(2n + 1, Fv) × SO(W,Fv) where
W is an even-dimensional orthogonal space. These characters are characters of
the component group of the Langlands parameter associated to σv ⊗ τv (a finite
elementary abelian 2-group). When SO(W ) ' SO(2) and τv is trivial, we denote
this character restricted to the the component group of the Langlands parameter
associated to σv by χσ,v. See Section 5 for the precise defintion.

Conjecture 3. Let π be a cuspidal representation of GL(2n,A) corresponding to
a generic cuspidal representation σ of SO(2n+ 1,A). The following are equivalent:

(1) π is GL(n,E)-distinguished;
(2) σ has a special E-Bessel model; and
(3) L(1/2, πE) 6= 0 and the local root number characters χσ,v are trivial for all

v.

In particular, if π is GL(n,E)-distinguished, we have ε(1/2, πE,v) = 1 for all v.

We note this agrees with the above-mentioned results of Waldspurger, Tunnell
and Saito when n = 1. This, combined with Conjecture 2, provides a local root
number criterion for when the converse to the Guo–Jacquet conjecture holds for n
even. It also suggests that when n is odd, if local dichotomy is true, that the D
in Conjecture 1(2) may be determined by local root number conditions, as in the
n = 1 case and, more generally, the (Gan)–Gross–Prasad conjectures.

The equivalence of (2) and (3) is a particular case of the (Gan)–Gross–Prasad
conjectures for SO(2n+1)×SO(2) using the fact that L(s, πE) = L(s, σ×1E), where
1E denotes the trivial representation of SO(2). Specifically, the Vogan L-packet Πσ

of σ consists of the automorphic representations of pure inner forms of SO(2n+ 1)
with identical Langlands parameter as σ, and Πσ is conjecturally parameterized by
the irreducible characters of the component group of σ. The local Gross–Prasad
conjecture [17] tells us there is at most one σ′ ∈ Πσ such that σ′ has a special
E-Bessel model (in the sense that is locally does everywhere), and that σ′ = σ if
and only if χσ,v is trivial for all v. Then the global Gan–Gross–Prasad conjecture
[11] says that σ satisfying these local conditions has a global E-Bessel model if and
only if L(1/2, σ × 1E) 6= 0.
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We note that the condition on ε(1/2, πE,v) = 1 at the end of the conjecture is
a consequence of the local root number condition in (3) together with the local
Langlands correspondence. In fact, for n = 1, these local epsilon factor conditions
for πE are precisely the local root number conditions in (3). For general n, the
condition that ε(1/2, πE,v) = 1 for all v means that the member σ′ of the Vogan
L-packet of σ which locally everywhere has an E-Bessel model is actually a repre-
sentation of SO(2n+ 1), rather than just a pure inner form of SO(2n+ 1), but for
n > 1 the conditions ε(1/2, πEv ) = 1 do not suffice to guarantee σ′ is the generic
representation σ of SO(2n+ 1).

Since the local Gross–Prasad conjecutures are now (essentially) known for or-
thogonal pairs (Waldspurger [35], Moeglin–Waldspurger [27]), the equivalence of (2)
and (3) would follow from the SO(2n+1)×SO(2) case of global Gan–Gross–Prasad
(modulo some standard conjectures taken for granted in [35] and [27].)

Our first main result is

Theorem 4. When n = 2, conditions (1) and (2) of Conjecture 3 are equivalent.

We prove this by using the theta correspondence for GSp(4) and GSO(3, 3) to
express the E-Bessel period on a generic representation σ of SO(5) in terms of the
GL(2, E)-period for the corresponding π on GL(4). We in fact do this for twisted
periods, i.e., periods twisted by characters of GL(1, E). See (12) and (14) for the
definition of these periods. This period relation was initially announced over 17
years ago by the first author, and has also recently appeared independently in the
work of Prasad and Takloo–Bighash [30, Section 13].

Now we derive a couple of consequences, which implicitly assume certain not-
yet-proven (but likely soon to be) results briefly discussed below. The first is

Corollary 5. When n = 2, part (1) of Conjecture 3 implies that χσ,v is trivial for
all v, as asserted in part (3).

This is a consequence of the above theorem together with the local Gross–Prasad
conjecture on epsilon factors for SO(5)× SO(2). As remarked above, local Gross–
Prasad conjectures are known in greater generality by [35] and [27] modulo certain
standard conjectures related to tempered L-packets and local twisted trace formu-
las. For the specific case of SO(5)× SO(2), the local Gross–Prasad conjectures are
known unconditionally apart from even residual characteristic by Prasad–Takloo-
Bighash [30].

Furthermore, the present authors [7] proved the global Gan–Gross–Prasad con-
jecture for SO(5)× SO(2) (which essentially coincides with a conjecture of the first
author and Shalika [9]) where one takes the trivial representation on SO(2), under
some local hypotheses analogous to the above result of [4]. The proof uses a simple
version of the first relative trace formula proposed in [9] together with the corre-
sponding fundamental lemma proved in [8]. The results of [7] however depend on
the abovementioned not-yet-proven assumptions made in [35], [27], as well as the
stabilization of the trace formula assumed in [1]. (No such assumptions are needed
for the analogous results in [4] on Conjectures 1(1) and 2.) Admitting the same
assumptions gives the following consequence of Theorem 4 and [7].

Corollary 6. Suppose n = 2 and E is split at all archimedean places. Let σ be
a generic, everywhere locally tempered cuspidal representation of SO(5,A) which is
supercuspidal at some place split in E and corresponds to a cuspidal π on GL(4,A).
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Then Conjecture 3 holds for π and σ, and Conjecture 1(1) holds for πD = LJD(π)
for any D ∈ X(E :F :π).

As in Gan–Takeda [13], we can in fact consider more generally a theta corre-
spondence for GSp(4) and GSO(VD) where VD is a 6-dimensional quadratic space
associated to D. Note that GSO(VD) is closely related to GL(2, D). Consequently,
at least when D is split at each infinite place, we show that, for a cuspidal πD
of GL(2, D) with theta lift Θ(πD) on GSp(4), Θ(πD) having a (twisted) E-Bessel
period is equivalent to πD having a (twisted) GL(2, E)-period. (See also [30, Sec-
tion 13].) When D is ramified at some infinite place, then one needs to replace
Θ(πD) with the theta lift Θ(πD)+ on GSp(4)+, which is a finite index subgroup of
GSp(4), as Θ(πD) is not necessarily irreducible in this case. In any case, this gives
a criterion for the converse to Jacquet–Guo when n = 2.

Theorem 7. Suppose π is a cuspidal symplectic representation of GL(4,A). Then
there exists D ∈ X(E :F :π) such that πD = LJD(π) is GL(2, E)-distinguished if
and only if the theta lift Θ(πD)+ to GSp(4,A)+ for some D ∈ X(E :F :π) has a
special E-Bessel model.

In particular, admitting the assumptions in [35] and [27] for the local Gross–
Prasad conjectures, the converse to Jacquet–Guo when n = 2 can only hold when
ε(1/2, πE,v) = 1 for all v, which is the final assertion in Conjecture 3.

Now assume D is split at each infinite place, in which case GSp(4)+ = GSp(4).
The passage from Theorem 7 to Conjecture 2 should be related to the transfer
of Shalika models between GL(2, D) and GL(4). Namely, in light of the local
Gross–Prasad conjectures and the fact that Θ(π) is generic if nonzero, one wants
to show that, if some πD is GL(2, E)-distinguished, then Θ(πD) is generic for all
D ∈ X(E :F :π), which is equivalent to πD having a Shalika model [13, Cor 3.2].
If this were the case, then all Θ(πD) would be identical by strong multiplicity one
for generic representations of GSp(4) [24]. At least, this gives the following partial
result towards Conjecture 2.

Theorem 8. Let D ∈ X(E :F ) be split at each infinite place. Suppose πD is
a cuspidal representation of GL(2, D)(A) such that πD has a Shalika model and
π = JL(πD) is also cuspidal. Then πD is GL(2, E)-distinguished if and only if π is.

Hence, Conjecture 2 for n = 2 would follow from Theorem 8 if the following
were true: if πD is GL(2, E)-distinguished for some D ∈ X(E :F :π) split at each
archimedean place, then πD has a Shalika model for all D ∈ X(E :F :π). Jacquet
and the second author [21] conjectured that, for cuspidal representations πD of
GL(2, D) and π = JL(πD) of GL(4), a Shalika model for πD implies a Shalika
model for π. In [13], Gan–Takeda proved this, and also showed the converse holds
if and only if πD avoids certain local obstructions (being a principal series induced
from two representations of D×v with trivial central character at places where D
ramifies). Consequently, Conjecture 2 says that if πD is GL(2, E)-distinguished, it
should also avoid the local obstructions in [13]. We do not address this here.

Now we discuss evidence for Conjecture 3 when n > 2.
First we remark that for arbitrary n, a global argument of Prasad [29] in the

study of trilinear forms for GL(2) suggests the following principle: when the nonva-
nishing of periods is related to the nonvanishing of L-values, an epsilon factor crite-
rion is required for the nonvanishing of a given period. In our particular case, this
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idea, together with the Guo–Jacquet conjecture, is suggestive of the final statement
in Conjecture 3 about ε(1/2, πE,v). In other words, in light of the (Gan)–Gross–
Prasad conjectures, π being GL(n,E)-distinguished should imply some functorial
transfer σ′ of π to the split SO(2n + 1) has an E-Bessel model. The more refined
notion that this σ′ should be the generic representation of SO(2n+ 1) is suggested
by previous work on relative trace formula identities, which we now describe.

Let σ be a cuspidal representation of SO(2n + 1,A) which corresponds to a

cuspidal representation π̃ of S̃p(2n,A) via the theta correspondence. Here we take

Sp(2n) =

{
g ∈ GL(2n) | g

(
0 w
−w 0

)
tg =

(
0 w
−w 0

)}
, w =

 1
. .

.

1

 .

Let N ′ be the standard maximal upper unipotent subgroup of Sp(2n) and T
the standard maximal split torus. We may take for a set of representatives of the
T (F )-conjugacy classes of nondegenerate characters of N ′(A) the characters

θ′τ (n) = ψ(n1,2 + · · ·+ nn−1,n + τnn,n+1), n = (nij)

where τ ∈ F×/(F×)2.
Mao and Rallis [25] proved a relative trace identity of the following form

(1) RTFSO(2n+1)(RE , ψE ;U,ψ) = RTF
S̃p(2n)

(N ′, θ′−1
τ ;N ′, θ′),

where E = F (
√
τ), U now denotes the standard maximal unipotent in SO(2n+ 1),

ψ is a nondegenerate character of U , and θ′ = θ′1. Here the notation in (1) means

that for suitable matching functions f on SO(2n+ 1,A) and f ′ on S̃p(2n,A) with
associated kernels Kf and Kf ′ one has∫

RE(F )\RE(A)

∫
U(F )\U(A)

Kf (r, u)ψE(r)ψ(u) dr du

=

∫
N ′(F )\N ′(A)

∫
N ′(F )\N ′(A)

Kf ′(n1, n2)θ′−1
τ (n1)θ′(n2) dn1 dn2.

On the other hand, in his thesis, Valverde [33] proved a relative trace identity of
the following form

(2) RTFGL(2n)(GL(n,E), 1;N, θ) = RTF
S̃p(2n)

(N ′, θ′−1
τ ;N ′, θ′),

where N is the standard maximal unipotent of GL(2n) with a nondegenerate char-
acter θ and E = F (

√
τ). Combining these relative trace identities gives a third one

of the form

(3) RTFSO(2n+1)(RE , ψE ;U,ψ) = RTFGL(2n)(GL(n,E), 1;N, θ).

One expects that a refinement of this identity will give a period relation of the form

(4) |PRE ,ψE
(ϕ)W(ϕ)|2 = |PGL(n,E)(φ)W(φ)|2,

where ϕ and φ are respectively certain automorphic forms lying in cuspidal rep-
resentations σ of SO(2n + 1) and π of GL(2n) which correspond, and W denotes
the appropriate Whittaker period on both groups. In light of the Whittaker period
appearing on the left hand side, (4) means that a nonzero GL(n,E) period on (the
necessarily symplectic) π should be equivalent to the a nonzero special E-Bessel
period on the associated generic representation σ of SO(2n + 1). This is precisely
the equivalence of (1) with (2) in Conjecture 3.
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We remark that the Bessel period on the left side of (4) should be related to
L(1/2, σ × 1E) by the Gross–Prasad conjectures and the GL(n,E)-period on the
right side of (4) should be related to L(1/2, πE) by the Guo–Jacquet conjecture.
See [33] for an expected L-value formula from combining (3) with the Guo–Jacquet
conjecture.

Acknowledgements. The first author was partially supported by JSPS Grant-
in-Aid for Scientific Research (C) 22540029 and (C) 25400020. The second author
was partially supported by Simons Foundation Collaboration Grant 240605. We
are grateful to Dipendra Prasad for pointing out [30, Conjecture 1] and Shuichiro
Takeda for informing us of [15]. We also thank Kazuki Morimoto and the referee
for some useful comments.

The passion, devotion and enthusiasm for mathematics Steve Rallis had shown
over the years were and are still a source of great inspiration to us. The first author
will never forget the encouragement he received from Steve when his mathematical
career was in jeopardy.

2. Preliminaries

2.1. Accidental isomorphism. Here we follow Gan–Takeda [13]. Let F be a
number field and D be a quaternion algebra over F . We consider the quadratic
space

(VD, qD) = (D,ND)⊕H

where H is the hyperbolic plane and ND denotes the reduced norm on D. We realize
(VD, qD) concretely as

VD =

{
(a, b;x) :=

(
a x
x̄ b

)
| a, b ∈ F, x ∈ D

}
with

qD (a, b;x) = −det

(
a x
x̄ b

)
= −ab+ ND (x) .

Let

GO (VD) = {h ∈ GL (VD) | qD (h (X)) = λD (h) qD (X), ∀X ∈ VD}

where λD is the similitude. We have
{

(deth) (λD (h))
−3
}2

= 1 for h ∈ GO (VD)

and the connected component GSO (VD) of GO (VD) is given by

GSO (VD) =
{
h ∈ GSO (VD) | (deth) (λD (h))

−3
= 1
}
.

We have a homomorphism ϕ : GL (2, D)×GL(1)→ GSO (VD) such that

ϕ (g, z) ·X = z g X tḡ for g ∈ GL (2, D), z ∈ GL(1) and X ∈ VD.

Here λD (ϕ (g, z)) = N (g) · z2 where N denotes the reduced norm on the central
simple algebra M2 (D). Indeed we have

(5) (GL (2, D)×GL(1)) /Kerϕ
ϕ
' GSO (VD)

where Kerϕ =
{(
z, z−2

)
| z ∈ GL(1)

}
.
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2.2. GL (2, E) ⊂ GL (2, D). For E a quadratic extension of F , let X(E :F ) denote
the isomorphism classes of quaternion algebras over F which split over E. As a set
of representatives of X(E :F ), we may take

Dε =

{(
α βε
β̄ ᾱ

)
| α, β ∈ E

}
, ε ∈ F×/NE/F

(
E×
)
.

Here ᾱ denotes the conjugate over F for α ∈ E and we identify α ∈ E with

(
α 0
0 ᾱ

)
in Dε.

Suppose that D = Dε. Let us define a subspace V
(0)
D of VD by

V
(0)
D =

v0 (β) :=

 0
(

0 εβ
β̄ 0

)(
0 −εβ
−β̄ 0

)
0

 | β ∈ E
 .

Then we have VD = V
(0)
D ⊕ V (1)

D where

V
(1)
D =

(
V

(0)
D

)⊥
=
{
X ∈M2 (E) | X = tX̄

}
,

i.e. the set of 2 by 2 Hermitian matrices.

Lemma 9. (1) For (g, z) ∈ GL (2, D) × GL(1), we have ϕ (g, z) · V (0)
D = V

(0)
D

if and only if g ∈ GL (2, E).
(2) For (g, z) ∈ GL (2, E)×GL(1), we have

ϕ (g, z) · v0 (β) = v0 (βz det g) for v0 (β) ∈ V (0)
D ;

ϕ (g, z) ·X = z g X tḡ for X ∈ V (1)
D .

Here ḡ is the conjugate over F of g ∈ GL (2, E).

Proof. Let us write g ∈ GL (2, D) as g =

(
a11 a12

a21 a22

)
with aij =

(
αij εβij
β̄ij ᾱij

)
∈ Dε.

By a direct computation, we have

ϕ (g, z) · v0 (β) =

(
a X
X̄ b

)
, X =

(
γ εδ
δ̄ γ̄

)
where

a = zε trE/F
((
β̄11α12 − α11β̄12

)
β
)

;

b = zε trE/F
((
β̄21α22 − α21β̄22

)
β
)

;

γ = zε
(
α12β̄21 − α11β̄22

)
β + zε (β11ᾱ22 − β12ᾱ21) β̄;

δ = z (α11α22 − α12α21)β − zε (β11β22 − β12β21) β̄.

Here we note that for s, t ∈ E, we have sβ + tβ̄ = 0 for all β ∈ E if and only if

s = t = 0. Thus ϕ (g, z) · V (0)
D = V

(0)
D implies(

α11 α12

α21 α22

)(
β̄12 β̄22

−β̄11 −β̄21

)
=

(
0 0
0 0

)
and det

(
α11 α12

α21 α22

)
6= 0.

Hence β11 = β12 = β21 = β22 = 0, i.e. g ∈ GL (2, E). The rest is clear. �
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2.3. Theta correspondence for similitudes. Let W be the space of four dimen-
sional row vectors over F with the symplectic form

〈w1, w2〉 = w1

(
0 12

−12 0

)
tw2 for w1, w2 ∈W.

Then the symplectic similitude group GSp (W ) is defined by

GSp (W ) = {g ∈ GL(4) | 〈w1g, w2g〉 = ν (g) 〈w1, w2〉 (∀w1, w2 ∈W )} .

Let WD = VD ⊗F W . Then WD is equipped with a symplectic form:

� , �= ( , )⊗ 〈 , 〉

where

(v1, v2) = qD (v1 + v2)− qD (v1)− qD (v2) for v1, v2 ∈ VD.
The group GSp (W) acts on W from the right and we have a homomorphism:

i : GSp (W )×GSO (VD)→ GSp (W)

defined by

(v ⊗ w) · i (g, h) = h−1v ⊗ wg.
Concerning similitudes we have

νW (i (g, h)) = ν (g) · λD (h)
−1
.

Now let

RD = i−1 (Sp (W)) = {(g, h) ∈ GSp (W )×GSO (VD) | ν (g) = λD (h)} .

Clearly Sp (W )× SO (VD) is a subgroup of RD.
Let us fix a non-trivial character ψ of A/F and consider the Weil representation

ωD of Sp (W,A) on the Schwartz-Bruhat space S = S ((VD ⊕ VD) (A)). We recall
that for φ ∈ S we have:

ωD (m (g))φ (v1, v2) = |det g|3 · φ ((v1, v2) g) , m (g) =

(
g 0
0 tg−1

)
;(6)

ωD (u (b))φ (v1, v2) = ψ

[
1

2
tr (Gr (v1, v2) b)

]
· φ (v1, v2) , u (b) =

(
12 b
0 12

)
.(7)

Here Gr (v1, v2) denotes the Gram matrix, i.e. Gr (v1, v2) =

(
(v1, v1) (v1, v2)
(v1, v2) (v2, v2)

)
.

For h ∈ GSO (VD,A) and φ ∈ S, let

L (h)φ (v1, v2) = |λD (h)|−3 · φ
(
h−1v1, h

−1v2

)
.

By Harris–Kudla [20, Lemma 5.1.2], for g ∈ Sp (W,A) and h ∈ GSO (VD,A), we
have

(8) L
(
h−1

)
ωD (g) L (h) = ωD

[(
12 0
0 λD (h) 12

)−1

g

(
12 0
0 λD (h) 12

)]
.

Since the group RD is isomorphic to Sp (W ) o GSO (VD) via

RD 3 (g, h) 7→
(
g

(
12 0

0 ν (g)
−1

12

)
, h

)
∈ Sp (W ) o GSO (VD)
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where GSO (VD) acts on Sp (W ) by (8), we may define a representation of RD (A)
on S, which we denote as ωD by abuse of notation, as the following by (8):

(9) ωD (g, h)φ (v1, v2) = ωD

(
g

(
12 0

0 ν (g)
−1

12

))
L (h)φ (v1, v2) .

For φ ∈ S, a theta function θφ : RD (A)→ C is defined by

θφ (r) =
∑

x∈(VD⊕VD)(F )

ωD (r)φ (x) .

Suppose that πD is a cuspidal representation of GL2 (D) (A) with central charac-
ter µ2. By (5), we may regard πD�µ as a cuspidal representation of GSO (VD) (A).
Here we note that the central character of πD � µ is µ.

We define the subgroup G (A)
+

= GSp (4,A)
+

of GSp (W ) (A) by

G (A)
+

= {g ∈ GSp (W ) (A) | ∃h ∈ GSO (VD) (A) such that ν (g) = λD (h)} .

Then for f ∈ πD � µ and φ ∈ S, we define θ (φ, f) : G (A)
+ → C by

(10) θ (φ, f) (g) =

∫
SO(VD)(F )\SO(VD)(A)

θφ (g, hhg) f (hhg) dh.

Here hg is an element of GSO (VD,A) satisfying ν (g) = λD (hg) and the right hand
side of (10) does not depend on the choice of hg. Then we have

θ (φ, f) (γg) = θ (φ, f) (g) for γ ∈ G (F )
+

:= GSp (W ) (F ) ∩G (A)
+

and

(11) θ (φ, f) (zg) = µ (z) θ (φ, f) (g) for z ∈ Z (A)

where Z is the center of GSp (W ).

Let Θ (πD � µ)
+

be the set of θ (φ, f), where φ and f run over S and πD respec-
tively. This is irreducible as a G+ (A)-module by Gan [10, Proposition 2.5] together
with the necessary local Howe conjecture proved in this case by Gan-Takeda [14].

We have G (A)
+

= GSp (W ) (A) if and only if D splits at all archimedean places

of F as discussed in Gan-Takeda [13, Remark 2.3]. When G (A)
+ ( GSp (W ) (A),

we extend θ (φ, f) to a function of GSp (W ) (A) by insisting that it is left GSp (W ) (F )

invariant and zero outside GSp (W ) (F ) G (A)
+

. Let Θ (πD � µ) be the repre-
sentation of GSp (W ) (A) whose space is spanned by GSp (W ) (A) translates of
θ (φ, f), where φ and f run over S and πD respectively. We note that when

G (A)
+ ( GSp (W ) (A), the representation Θ (πD � µ) is of finite multiplicity but

not necessarily irreducible.

3. Pull Back of the Bessel Period

We take η ∈ E× such that E = F (η) and η2 = d ∈ F . Let us define a torus T
of GL2 by

T =
{
g ∈ GL2 | tr Sd r = det r · Sd

}
where Sd =

(
1 0
0 −d

)
.

Then we have

T =

{(
a bd
b a

)
| a2 − b2d ∈ GL1

}
' E×

10



where we identify r =

(
a bd
b a

)
with a+ bη ∈ E×. We regard T also as a subgroup

of GSp (W ) via

T 3 r 7→
(
r 0
0 det r · tr−1

)
∈ GSp (W ) .

Let U be the unipotent radical of the Siegel parabolic subgroup of GSp (W ), i.e.

U =

{
u (b) =

(
12 b
0 12

)
| b = tb

}
.

Let Ω be a character of T (A) /T (F ) such that Ω |Z(A) ·µ = 1 and χ be a non-
trivial character of A/F . For an automorphic form Φ on GSp (W ) with central
character µ, we define a Bessel period of type (E,Ω) by

(12) BE,Ω,χ (Φ) =

∫
Z(A)T (F )\T (A)

∫
U(F )\U(A)

Ω (r)χE (u)Φ (ur) du dr

where χE is a character of U (A) defined by

χE (u (b)) = χ [tr (Sd b)] .

For λ ∈ F×, let χ′ be a character of A/F given by χ′ (x) = χ (λx). Then we have

BE,Ω,χ′ (Φ) = BE,Ω,χ
(
R

(
12 0
0 λ · 12

)
Φ

)
where R denotes the right regular representation. Thus the dependence on χ is not
essential.

The first named author announced the following proposition at the Special Ses-
sion on Theta Correspondences and Automorphic Forms in AMS Spring Central
Sectional Meeting #909, Iowa City, March, 1996. After writing this paper, we
realized this result has recently appeared independently in [30, Theorem 11].

Proposition 10. Let D = Dε ∈ X(E :F ). Let πD be a cuspidal representation of
GL (2, D) whose central character is µ2, so that we may consider the representation
πD � µ of GSO (VD). We identify f ∈ πD with an element of πD � µ defined by

f (ϕ (g, z)) = f (g)µ (z) for (g, z) ∈ GL (2, D) (A)×GL (1,A).

Let Ω be a character of T (A) /T (F ) such that Ω |Z(A) ·µ = 1. Let χ be a
character of A/F defined by χ (x) = ψ (εx) where ψ is the character used for theta
correspondence. Then we have

(13) BE,Ω,χ (θ (φ, f)) =

∫
G1(A)\G0(A)

L (ϕ (h0))φ (x0)PD,Ω [(πD � µ) (h0) f ] dh0.

Here
G0 =

{
(g, z) ∈ GL (2, D)×GL(1) | N (g) · z2 = 1

}
,

G1 = {(g, z) ∈ GL (2, E)×GL(1) | z · det g = 1} ,

x0 =
(
v

(0)
1 , v

(0)
2

)
with

v
(0)
1 =

(
0 ( 0 ε

1 0 )(
0 −ε
−1 0

)
0

)
and v

(0)
2 =

(
0

( 0 εη
−η 0

)( 0 −εη
η 0

)
0

)
,

and

(14) PD,Ω (f ′) =

∫
A×GL(2,E)\GL(2,AE)

f ′ (h) Ω (deth) dh for f ′ ∈ πD.
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Proof. For simplicity, we shall write B for BE,Ω,χ. Let us define I : G (A)
+ → C by

I (g) =

∫
U(F )\U(A)

χE (u) θ (φ, f) (ug) du

so that we may write

B (θ (φ, f)) =

∫
Z(A)T (F )\T (A)

Ω (r) I (r) dr.

We have

I (g) =

∫
SO(VD)(F )\SO(VD)(A)∫

U(F )\U(A)

χE (u)
∑

x∈(VD⊕VD)(F )

ωD (ug, hhg)φ (x) f (hhg) du

 dh.

By (7), the inner integral becomes∑
x∈X0

ωD (g, hhg)φ (x) f (hhg)

where

X0 =

{
x = (v1, v2) ∈ (VD ⊕ VD) (F ) | Gr (v1, v2) = −

(
2ε 0
0 −2εd

)}
.

Since xo ∈ X0 and the group SO (VD) (F ) acts transitively onX0 by Witt’s theorem,
we have ∑

x∈X0

ωD (g, hhg)φ (x) f (hhg)

=
∑

γ∈SO
(
V

(1)
D

)
(F )\SO(VD)(F )

ωD (g, hhg)φ
(
γ−1x0

)
f (hhg)

=
∑

γ∈SO
(
V

(1)
D

)
(F )\SO(VD)(F )

ωD (g, γhhg)φ (x0) f (hhg) ,

where we identify SO
(
V

(1)
D

)
with the group of elements g ∈ SO (VD) such that

g |
V

(0)
D

= 1. By telescoping the integral, we have

I (g) =

∫
SO
(
V

(1)
D

)
(A)\SO(VD)(A)

ωD (g, hhg)φ (x0)(∫
SO
(
V

(1)
D

)
(F )\SO

(
V

(1)
D

)
(A)

f (h1hhg) dh1

)
dh.

For r =

(
a bd
b a

)
∈ T , we identify r with a+ bη ∈ E× and let

hr = ϕ

((
r 0
0 1

)
, 1

)
∈ GSO (VD) .
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Then we have

B (θ (φ, f)) =

∫
Z(A)T (F )\T (A)

Ω (r)

∫
SO
(
V

(1)
D

)
(A)\SO(VD)(A)

ωD (r, hhr)φ (x0)∫
SO
(
V

(1)
D

)
(F )\SO

(
V

(1)
D

)
(A)

f (h1hhr) dh1 dh dr.

Since (
v

(0)
1 , v

(0)
2

)(a bd
b a

)
=
(
av

(0)
1 + bv

(0)
2 , bdv

(0)
1 + av

(0)
2

)
= hr

(
v

(0)
1 , v

(0)
2

)
,

we have

ωD (r, hhr)φ (x0) = ωD

(
r 0
0 tr−1

)
L (hhr)φ (x0)

= |det r|3 L (hhr)φ (x0r)

= L
(
h−1
r hhr

)
φ (x0) .

Thus by the change of variable h 7→ hrhh
−1
r , we have

B (θ (φ, fD)) =

∫
SO
(
V

(1)
D

)
(A)\SO(VD)(A)

L (h)φ (x0) P ′ ((πD � µ) (h) f) dh,

where

P ′ (f ′) =

∫
A×E×\A×E

Ω (r)

∫
SO
(
V

(1)
D

)
(F )\SO

(
V

(1)
D

)
(A)

f ′ (h1hr) dh1 dr

for f ′ ∈ πD�µ. By Lemma 9, we have G1 = ϕ−1
(

SO
(
V

(1)
D

))
and we may identify

G1 with {g ∈ GL (2, E) | det g ∈ GL (1, F )}. Hence

P ′ (f ′) =

∫
A×E×\A×E

Ω (r)

∫
A×G1(F )\G1(A)

f ′
(
g1

(
r 0
0 1

))
µ (det g1)

−1
dg1 dr.

Further we have

G1 ∩
{(

r 0
0 1

)
| r ∈ E×

}
=

{(
r 0
0 1

)
| r ∈ F×

}
and hence

P ′ (f ′) =

∫
A×GL(2,E)\GL(2,AE)

f ′ (h) Ω (deth) dh = PD,Ω (f ′) .

The rest is clear since G0 = ϕ−1 (SO (VD)). �

Corollary 11. The cuspidal representation πD has period PD,Ω if and only if

Θ (πD � µ)
+

has Bessel period BE,Ω,χ.

Proof. This follows from the pull-back formula (13) by a standard argument such
as the one in Gan and Savin [12, pp. 2718–2719]. �
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4. Proofs of theorems

To conclude our results as stated in the introduction, we apply a result of Gan–
Takeda [13]. We note that while they assume D is split at each archimedean place
because this assumption is present in Badulescu [2], their work is now valid for
arbitrary D by the results of Badulescu–Renard [3] on the archimedean Jacquet–
Langlands correspondence. We will also use strong multiplicity one for generic
representations of GSp(4). This was proved by Jiang–Soudry [24], where they had
to assume the base field was totally real to use the second-term Siegel–Weil identity.
By recent work of Gan–Takeda–Qiu [15], this is now valid over arbitrary number
fields.

Proof of Theorem 4. First note the hypothesis in Conjecture 3 that π corresponds
to a generic cuspidal representation σ implies L(s, π,Λ2) has a pole at s = 1
(Ginzburg–Rallis–Soudry descent [18]), which is equivalent to π having a Shalika
model by a result of Jacquet–Shalika [22], cf. [23, Theorem 2.2]. On the other
hand, by [13, Corollary 3.2], this is equivalent to Θ(π� 1) being generic. By strong
multiplicity one for generic representations of GSp(4) [24], the irreducible repre-
sentation Θ(π � 1) is isomorphic to σ, viewed as a representation of GSp(4) with
trivial central character. Now apply Corollary 11 with µ = 1 for D split. �

Proof of Theorem 7. Immediate from Corollary 11. �

Proof of Theorem 8. By Corollary 11 with µ = 1, πD is GL(2, E)-distinguished
if and only if Θ (πD � 1) has a special E-Bessel period, and similarly for π and
Θ (π � 1). By assumption πD has a Shalika model, which implies π does [13].
Hence Θ (πD � 1) and Θ (π � 1) are both generic. Moreover, by strong multiplicity
one for generic representations of GSp(4) [24], they must be equal. �

5. Local root numbers and Gross–Prasad conjectures

In this section, we describe the local root number and epsilon factor conditions
in Conjecture 3. Further details may be found in [16], [17] and [11].

Let k be a local field of characteristic not 2, and let K be either a quadratic field
extension or split (k⊕k). Denote by κ the quadratic character of k× associated to K
(the trivial character if K = k⊕k). Let V be a split orthogonal space of dimension
2n+ 1 over k, and W a 2-dimensional orthogonal space so that SO(W ) is isomor-
phic to the group of norm 1 elements of K. Fix an irreducible admissible generic
representation σ of SO(V ). This is conjecturally associated to a Langlands param-
eter ϕ1 : WD(k)→ Sp(M1), where WD(k) is the Weil–Deligne group of k and M1

is a complex symplectic space of dimension 2n. (The Langlands parametrization
should follow from ongoing work of Arthur and the Paris school; see Arthur’s book
[1] and recent works of Moeglin and Waldspurger, e.g., [26], [36], [28].) The trivial
character 1K of SO(W ) has Langlands parameter ϕ2 : WD(k) → O(M2), where
M2 is a 2-dimensional complex orthogonal space, and ϕ2 ' 1⊕ κ, where 1 denotes
the trivial representation.

Let Cϕ1
(resp. Cϕ2

) denote the centralizer of the image of ϕ1 (resp. ϕ2) in
Sp(M1) (resp. SO(M2)). The component group of φi is Aϕi = Cϕi/C

0
ϕi

, which is
a finite elementary abelian 2-group. In particular, Aϕ2 is {±1} if η 6= 1 (i.e., K/k
is a field extension), or the trivial group if η = 1. Let ϕ = ϕ1 ⊗ ϕ2 : WD(k) →
Sp(M1)×O(M2). The component group of ϕ is Aϕ = Aϕ1

×Aϕ2
.
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For a symplectic representation M of the Weil group W (k), it is well known how
to associate a root number ε0(M,ψ) with respect to an additive character ψ. If
M is a symplectic representation of WD(k), consider ε0(M) by restricting M to
W (k). If k is archimedean, set ε(M) = ε0(M). If k is nonarchimedean with residue
order q and M has nilpotent endomorphism N , we set

ε(M) = ε0(M) det(−Fr · q−1/2|M I,N ),

where I the inertia subgroup of W (k), Fr is the geometric Frobenius, and M I,N =
M I/(kerN ∩M I). The root number ε(M) = ±1 and is independent of the choice
of ψ.

Gross and Prasad [16, Section 10] define a symplectic root number character of
Aϕ as follows. We can realize any a = (a1, a2) ∈ Aϕ as an element of order 2 in
Cϕ = Cϕ1

× Cϕ2
⊂ Sp(M1)× SO(M2). For an operator x acting on a vector space

M , let Mx denote the (−1)-eigenspace of this action. Then, for a as above, set

χ(a) = ε((M1 ⊗M2)a) det(M2)(−1)dimM
a1
1 /2 det(Ma2

2 )(−1)dimM1/2.

This gives a well-defined character of Aϕ.
The pure inner forms of SO(V ) are the set of SO(V ′) where V ′ is an orthogonal

space of dimension 2n+1 and trivial discriminant. When K is split, SO(W ) has no
nontrivial pure inner forms; otherwise SO(W ) has one nontrivial pure inner form.
The Vogan L-packet Πϕ consists of irreducible admissible representations σ′⊗ τ ′ of
a pure inner form SO(V ′)× SO(W ′) which have Langlands parameter ϕ, and it is
(conjecturally) parameterized by the irreducible characters of Aϕ in such a way that
σ ⊗ 1K corresponds to the trivial representation. The refined local Gross–Prasad
conjecture [17] in our case says there is exactly one element σ′⊗ τ ′ ∈ Πϕ such that
σ′ has the τ ′-Bessel model, and that it is precisely the element of Πϕ corresponding
to χ under the Vogan parametrization. Fix this σ′.

In our case, to determine if σ has a local SO(W )-Bessel model, i.e., σ = σ′, it
suffices to look at the restriction

χσ(a1) = ε(Ma1
1 ⊗M2)κ(−1)dimM

a1
1 /2

of χ to the first component Aϕ1 . To see this, we remark that the Vogan parametriza-
tion is such that the distinguished representation σ′ lives on SO(V ) if and only if
χ(−1, 1) = χσ(−1) = 1. Since χ(−1,−1) = 1, we see χ(1,−1) = 1 (which implies
τ ′ must be the representation 1K on SO(W )) and that χσ(a1) = 1 for all a1 ∈ Aϕ1

implies χ(a) = 1 for all a ∈ Aϕ. This completes our description of the local root
number condition in Conjecture 3(3).

The condition on epsilon factors at the end of Conjecture 3 comes from looking
at the specific condition

(15) χσ(−1) = ε(M1 ⊗M2)κ(−1)n = 1,

i.e., that σ′ is a representation of SO(V ). Via local Langlands conjectures, (15)
says that when condition (2) of Conjecture 3 holds, we should have

(16) ε(1/2, πv × 1E,v) = κv(−1)n,

for all places v of F . Here κv is the quadratic character attached to Ev/Fv.
Recall that our assertion at the end of Conjecture 3 is the alternate statement

that ε(1/2, πE,v) = 1 for all v. We claim that this should be the same as (16). There
is nothing to show at split places, so assume K/k is a field extension. Denote the
restriction of M1 to WD(K) by M1,K . Denote by 1W (k) and 1W (K) the trivial
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representations of W (k) and W (K). Then inductivity for epsilon factors of virtual
representations of virtual degree 0 tells us

ε(M1,K)ε(1W (K))
−2n = ε(M1 ⊗M2)ε(1W (k))

−2nε(κ)−2n.

In other words,

ε(M1,K) = ε(M1 ⊗M2)ε(κ)−2n = ε(M1 ⊗M2)κ(−1)n,

which combined with (15) and local Langlands conjectures, implies the claim.
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