
8 Adèles

Adèles and idèles were introduced in the early 20th century as an approach to class field theory,
which may be viewed as a vast generalization of quadratic reciprocity. First we introduce the notion
of adèles AQ and idèles A⇥

Q over Q. Then we will discuss p-adic numbers for arbitrary number fields
K, and use these to define the adèles AK and idèles A⇥

K of a number field K. One defines the
quotient group A⇥

K/K⇥ to be the idèle class group of K. Our goal will be to show that this is
essentially the ideal class group of K, and then use this to describe some of the main results of class
field theory.

8.1 AQ

The adèles of Q are the ring

AQ =

(
(↵2,↵3,↵5, . . . ;↵1) 2

Y

p

Qp ⇥ R : ↵p 2 Zp for a.a. p

)
.

Here “for a.a. (almost all)” p means for all but finitely many primes p.

Exercise 8.1. With addition and multiplication defined component-wise, show AQ is a ring.

Note that AQ puts together the information one gets from all the completions of Q, but the
whole direct product

Q
Qp ⇥ R is too large to work with by itself, so we only consider sequences

where almost all terms are p-adic integers. This is analogous to an infinite direct sum of vector
spaces Vi. Specifically,

L
1

i=1 Vi = {(vi) 2
Q

Vi : vi = 0 for a.a. i}. For instance if each Vi = R, then
a basis for

L
Vi is {ei} where ei = (0, . . . , 0, 1, 0, . . .) is the vector with a 1 in the i-th coordinate and

0’s elsewhere. If one removes the “for almost all i” condition, then (1, 1, 1, . . .) = e1 + e2 + e3 + · · ·

would be in the direct sum, but this is not a finite linear combination of basis elements.
Let us simplify now our notation slightly.
We call a nontrivial absolute value on Q a place of Q. Hence the places of Q are | · |v where v

is either a prime p or v = 1. The places v = p are called finite places, and the place v = 1 is
called the real place or infinite place.† Let Qv denote the completion of Q w.r.t. | · |v, so Qp still
denotes Qp and now Q1 denotes R. Let Zv denote the set {xv 2 Qv : |xv|v  1}, so that Zv = Zp

if v = p and Z1 = [�1, 1]. While Zp is the completion of Z in each Qp, Z1 admittedly has little
to do with Z. Nevertheless this notation is convenient. We also remark that Zv is compact inside
each Qv. In fact when v <1, i.e., v = p, Zv is open in Qv.

Now we can denote the adèles as

AQ =

n
(↵v) 2

Y
Qv : ↵v 2 Zv for a.a. v

o
.

While the condition ↵v 2 Zv for a.a. v may at first glance look stronger than the condition ↵p 2 Zp

for a.a. p because v = 1 is allowed, thinking about it for a second shows they are equivalent.
(Think about it for a second: ↵ 2 AQ means the local components ↵v can lie outside of Zv only for
v in some finite set S of places (S of course depends on ↵— it is like the “support” of an element

†It is standard to call places primes and still use the letter p, since they correspond to the usual primes and infinity.
Then the ordinary primes are called finite primes, and denoted by p < 1, and the infinite place is called the infinite
prime p = 1.
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y in the infinite direct sum R1
=
L

1

i=1R, which is the set of i for which the i-th component of
y is nonzero. We can always add the place 1 to S if it is not included, and S will still be finite,
meaning we have the condition ↵v can lie outside of Zv for v 2 S [ {1}.)

The following examples will tell us a little bit about AQ.

Example 8.1.1. Let x =
a
b 2 Q with a, b 2 Z. Let ↵ = (x, x, x, . . .). Note that 1

b 2 Zp for any p
s.t. p - b. Hence x =

a
b 2 Zp for any p s.t. p - b, i.e., x = ↵v 2 Zv for almost all v. Thus ↵ 2 AQ.

Hence we have an (injective) ring homomorphism from Q! AQ given by

x 7! (x, x, x, . . .).

So the additive identity of AQ is (0, 0, 0, . . .) and the multiplicative identity of AQ is 1 = (1, 1, 1, . . .).
We will typically identify elements of Q with their image in AQ under this map.

Example 8.1.2. Let ↵ = (1, 0, 0, 0, . . .),� = (0, 1, 1, 1, . . .). Since each component ↵v,�v 2 Zv for
all v, we have ↵,� 2 AQ. Then ↵� = (0, 0, 0, . . .) = 0 2 AQ. In other words, ↵ and � are zero
divisors in AQ, so AQ is not an integral domain.

Proposition 8.1.3. For ↵ = (↵v) 2 AQ, let |↵| =
Q

v |↵v|v. Then | · | : AQ ! R satisfies
(i) |↵| � 0

(ii) |↵�| = |↵||�|

Proof. First note that |↵| is well defined: since ↵ = (↵v) 2 AQ satisfies ↵v 2 Zv for almost all v,
we have |↵v|v  1 for almost all v, and therefore the infinite product |↵| =

Q
v |↵|v converges. It is

clear that |↵| � 0.
Further (ii) follows immediately because it does for each |↵|v.

Example 8.1.4. Taking ↵ = (1, 0, 0, 0, . . .) from the previous example, we see |↵| = |1|2
Q

v 6=2 |0|v =

0, so | · | can be zero on nonzero elements. Therefore, | · | cannot technically be an absolute value.
Of course, our earlier definition of absolute values was only for integral domains because any mul-
tiplicative homomorphism | · | : R ! R for a non-integral domain must be 0 on some zero divisors.
(↵� = 0 implies |↵||�| = |↵�| = 0 so either |↵| or |�| is 0.)

However we can even find ↵ 2 AQ which is not a zero divisor such that |↵| = 0. Namely consider
↵ = (↵v) where ↵p = p and ↵1 = 1. Each component ↵v 2 Zv so ↵ 2 AQ, but

↵ =

Y

p

|p|p · |1|1 =

Y

p

1

p
= 0.

In fact, another crucial property of absolute values fails also, namely the triangle inequality.

Exercise 8.2. Find ↵,� 2 AQ such that |↵+ �| > |↵|+ |�|.

Example 8.1.5. Let x 2 Q and ↵ = (x, x, x, . . .). If x = 0, then |↵| = 0. Otherwise |↵| = 1 by
Exercise 6.11.

The fact that AQ is not an integral domain makes it a little hard to work with, but the idèles

A⇥

Q = {↵ 2 AQ : ↵ invertible}, namely the multiplicative subgroup of AQ, become a nice space to
work with.

Proposition 8.1.6. The idèle group A⇥

Q = {(↵v) 2
Q

v Q⇥
v : ↵v 2 Z⇥

v for a.a. v} .
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Note that technically we did not define Z⇥
v for v = 1, but as above including or removing a

single place v =1 from a “for all but finitely many” condition does not change anything. However,
if one wishes, one can set Z⇥

v = {↵v 2 Q⇥
v : |↵v|v = 1} so Zv = Zp for v = p and Zv = {�1, 1} for

v =1.

Proof. Let ↵ = (↵v) 2 A⇥

Q. It is clear that ↵v 2 Q⇥
v for all v, otherwise some component will be

zero.
Let � = (�v) = ↵�1

2 AQ. Since �v 2 Zv and ↵v 2 Zv for almost all v, there is a finite set S of
places v such that ↵v,�v 2 Zv for all v 62 S. Then ↵� = (1, 1, 1, . . .) means ↵v�v = 1 for all v, so
↵v,�v 2 Z⇥

v for all v 62 S, i.e., ↵v 2 Z⇥
v for a.a. v.

This proves ✓. ◆ is straightforward—see the next exercise.

Exercise 8.3. Let ↵ = (↵v) 2 AQ such that ↵v 6= 0 for all v and ↵v 2 Zv for almost all v. Show
there is a � 2 AQ such that ↵� = 1 = (1, 1, 1, . . .).

One can use the topologies on Qv and Q⇥
v to define topologies on the additive group of adèles

and multiplicative group of idèles, to make them both into topological groups. (We already defined
the topology on Qv in terms of a basis of neighborhoods. One can do the same thing for Q⇥

v , or just
give Q⇥

v the subspace topology from Q⇥
v ✓ Qv. Both methods give the same topology.) To define a

topology on a group, it suffices to specify a basis of open neighborhoods of the identity.
A basis of open neighborhoods of 0 in AQ is given by a collection of sets of the form

Y

v2S

Uv

Y

v 62S

Zv ✓ AQ

where S is a finite set of places containing 1 and for each v 2 S, Uv is an open neighborhood of 0
in Qv. Note the requirement that 1 2 S is because Z1 = [�1, 1] is a closed set in Q1 = R, so we
do not want v =1 occurring in the product on the right.

Similarly, a basis of open neighborhoods of 1 in A⇥

Q is given by a collections of sets of the form
Y

v2S

Uv

Y

v 62S

Z⇥

v ✓ AQ

where S is a finite set of places containing 1 and for each v 2 S, Uv is an open neighborhood of 1
in Q⇥

v .
We remark that one can also form a topology of AQ by taking the product topology on

Q
Qv,

and put the subspace topology on AQ. This is different than the topology we described above, and
this topology induced by the product topology is too strong for our purposes. Similar remarks are
true for the topology on A⇥

Q. Further, the topology on A⇥

Q is not the subspace topology induced from
the inclusion A⇥

Q ✓ AQ, as the open sets in the subspace topology will be too large. For example,

Exercise 8.4. Consider the open set U = R ⇥
Q

p Zp ✓ AQ. This is an open neighborhood of 1 in
AQ. Show the restriction U\A⇥

Q contains but does not equal the open neighborhood V = R⇥
⇥
Q

p Z⇥
p

of 1 in A⇥

Q.

A similar, but slightly more technical, argument shows that if V =
Q

v2S Uv
Q

v 62S Z⇥
v is an

open neighborhood of 1 in AQ (where as usual S is a finite set of places), then there is no open
neighborhood U of 1 in AQ whose restriction to A⇥

Q will be contained in V .
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Proposition 8.1.7. AQ and A⇥

Q are locally compact. Furthermore,
(i) a subset U of AQ is relatively compact if and only if U ✓

Q
v Kv where each Kv is compact

in Qv and Kv = Zv for almost all v; and
(ii) a subset U of A⇥

Q is relatively compact if and only if U ✓
Q

v Kv where each Kv is compact
in Q⇥

v and Kv = Z⇥
v for almost all v.

(Recall a set is called relatively compact if its closure is compact.)

Proposition 8.1.8. Q and Q⇥ are discrete subgroups of AQ and A⇥

Q.

Proposition 8.1.9. AQ/Q is compact with the quotient topology, and

AQ/Q ' lim
 �
n

R/nZ = {(a1, a2, a3, a4, . . .) : an 2 R/nZ, an 2 am +mZ if m|n} .

Thus just like Zp = lim
 �

Z/pnZ, we can view AQ/Q as a projective limit, i.e., as a way of putting
together all the R/nZ’s in a compatible way.

See [Ramakrishnan–Valenza] for proofs.

8.2 p-adic fields

There are several ways to treat the theory of p-adic fields, just like there are several ways to treat
the theory of p-adic numbers. One common way of defining them is as finite extensions of Qp.
However, I will opt for a concrete approach via completions w.r.t. absolute values, as it is in my
mind more natural.

Let K be a number field and p a prime ideal of K.
In the case K = Q and p = (p), one defines the p-adic absolute value by |x|p = p�m where

x = pma
b and a, b are relatively prime to p. If x = pma 2 Z, another way to say this is that

|x|p = p�m where m is the highest power of p that divides x, i.e., m is the unique integer such that

pm = (p)m ◆ (x) 6✓ pm+1
= (p)m+1.

In fact, using fractional ideals, we can say the same thing even if x 62 Z. Specifically, we have a
filtration of Q:

· · · ◆ p�2
◆ p�1

◆ p0 = Z ◆ p1 ◆ p2 ◆ · · ·

We define ordp(x) to be the largest m such that x (or (x) if you prefer) is contained in pm = (p)m,
and then set |x|p = p�ordp(x).

Now we return to the general case.

Definition 8.2.1. Let K be a number field and p be a prime ideal of K. For x 2 K, define the
p-adic valuation ordp(x) to be the largest integer m such that x 2 pm. Then the p-adic absolute

value on K is given by |x|p = N(p)�ordp(x).

Exercise 8.5. Let p be a prime ideal of K lying above a prime p of Q. Then for x 2 Q ✓ K, show
|x|p = |x|fp where f = f(p|p) is the inertial degree of p above p.

As in the case K = Q, these give, up to equivalence, all non-archimedean absolute values on K.
The archimedean values are slightly more complicated then the case of Q, and they are essentially
parametrized by Gal(K/Q). This is because if we want to restrict the usual absolute value on R or
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C to K, it depends upon the embedding of K into R or C, and the embeddings of K into C was
precisely our definition for the Galois group Gal(K/Q).

Let {�1, . . .�r} denote the set of real embeddings of K and {⌧1, ⌧1, . . . , ⌧s, ⌧ s} denote the set of
complex embeddings of K. Then we define the archimedean absolute values

|x|�i = |�i(x)|R

and
|x|⌧j = |⌧j(x)|C

where | · |R is the usual absolute value on R and |z|C = zz is the square of the usual absolute value
on C. It is immediate from the definition of equivalence that

�� cdot|C is equivalent to the usual
absolute value on C, but it is preferable for us to take this normalization, as |z|C is more like a norm
than

p
| · |C. In particular it maps Z[i] into Z. For instance |1 + i|C = (1 + i)(1� i) = 2, but if we

use the usual absolute value, then |1 + i| =
p
2.

Example 8.2.2. Let K = Q(
p
3). Then Gal(K/Q) = {�1,�2} where �1(

p
3) =

p
3 and �2(

p
3) =

�
p
3. Then

|1 +
p
3|�1 = |1 +

p
3|R 6= |1�

p
3|R = |1 +

p
3|�2 .

Example 8.2.3. Let K = Q(
p
�3). Then Gal(K/Q) = {⌧, ⌧} where ⌧(

p
�3) = i

p
3. Then

|1 +
p
�3|⌧ = |1 + i

p
3|C = |1� i

p
3|C = |1 +

p
�3|⌧ .

In general, no absolute values corresponding to two different �i’s or ⌧j ’s will be equivalent, but
we will always have | · |⌧j = | · |⌧ j since |z|C = |z|C.

Theorem 8.2.4. The places (equivalence classes of non-trivial absolute values) on K are precisely
given by

(i) v = p where p is a prime ideal of K (non-archimedean places)
(ii) v = �i where �i is a real embedding of K (real places)
(iii) v = ⌧j where ⌧j runs over the set of complex embedding of K, up to complex conjugation

(complex places).

Definition 8.2.5. For a place v of K, let Kv denote the completion of K with respect to | · |v. Let
OKv = {x 2 Kv : |x|v  1} and O

⇥

Kv
= {x 2 Kv : |x|v = 1}.

If v = p is a non-archimedean place, we call Kv the p-adic numbers and OKv the p-adic

integers over K.

If K = Q and p = (p) this coincides with our previous definitions. Most of the results on p-adic
numbers over Q extend to p-adic numbers over K, but due to time constraints we will not explain
these in detail except where we need to. A similar remark is true for the theory of adèles and idèles,
which we can now define.

Definition 8.2.6. The adèles of K are

AK = {↵ = (↵v) : ↵v 2 Kv for all v, ↵v 2 Zv for a.a. v} ⇢
Y

v

Kv.

Similarly, the idèles of K are

A⇥

K =
�
↵ = (↵v) : ↵v 2 K⇥

v for all v, ↵v 2 Z⇥

v for a.a. v
 
⇢

Y

v

K⇥

v .

In both statements, v runs over the set of places of K.
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As with Q, K and K⇥ embed diagonally into AK and A⇥

K , and in this way we will regard K
and K⇥ as additive and multiplicative subgroups of AK and A⇥

K . One defines the absolute value
on AK or A⇥

K by
|↵| = |↵|AK =

Y

v

|↵v|v

where ↵ = (↵v) 2 AK . We will usually simply denote the absolute value on AK by |·|, but sometimes
we will use | · |AK for clarity.

Definition 8.2.7. The idèle class group of K is CK = A⇥

K/K⇥.

While AK/K is compact, it is not the case that A⇥

K/K⇥ is, owing to the fact that the open sets
of A⇥

K are much smaller than the open sets of AK (see above remarks about the difference between
the topologies on AQ and A⇥

Q). However one can prove the following.

Theorem 8.2.8. Let A1
K ⇢ A⇥

K be the subgroup of idèles of K having absolute value 1. Then
K⇥
✓ A1

K and the norm 1 idèle class group

C1
K = A1

K/K⇥

is compact.

Recall in the case K = Q, you proved in Exercise 6.11 that the adèlic absolute value |(x, x, x, . . .)|AQ =

1 for x 2 Q⇥. A similar argument shows that |x|AK = |(x, x, x, . . .)|AK = 1 for any x 2 K⇥, which
means K⇥

✓ A1
K .

Definition 8.2.9. The 1-idèles are defined to be

A⇥

K,1 =
�
(↵v) 2 A⇥

K : ↵v 2 O
⇥

Kv
for all v <1

 
✓ A⇥

K

Exercise 8.6. Check A⇥

K,1 is a subgroup of A⇥

K . Show its intersection with the subgroup K⇥, i.e.
A⇥

K,1 \K⇥, is the group of units O
⇥

K (regarded as a subgroup of A⇥

K).

Theorem 8.2.10. The map

A⇥

K ! ClK

↵ = (↵v) 7!
Y

pordp(↵p)

is a surjective homomorphism with kernel K⇥
· A⇥

K,1. In particular, this defines an isomorphism

CK/A⇥

K,1 ' ClK

of the idèle class group mod the 1-idèles with Dedekind’s ideal class group.

Proof. Note that if ↵p 2 O
⇥

Kp
, then ordp(↵p) = 0 so pordp(↵p) = (1) = OK . Since ↵ 2 A⇥

K means
↵p 2 O

⇥

Kp
for all but finitely many p, the product in the definition of the homomorphism is in fact

a finite product so the definition makes sense. It is then obvious it is a homomorphism.

Exercise 8.7. (i) Show for A⇥

K,1 is in the kernel of the above map into ClK
(ii) Show K⇥ is kernel of the above map into ClK . (Hint: show if x 2 O

⇥

K , then the ideal
(x) = xOK =

Q
pordp(x).)
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It is not much more difficult to show that these subgroups give the whole kernel.
To complete the proof, one needs to show the above map is surjective. Let I be an arbitrary

ideal in ClK , and write the prime ideal factorization as I =
Q

p2S pep where S is some finite set of
primes. Then we can construct an idèle ↵ = (↵v) where ↵v = 1 if v 62 S and ↵p = $

ep
p . Here $p is

a uniformizer of OKp , i.e., ordp($p) = 1. To see that such a $p always exists, just take $p 2 OK

such that $p 2 p but $p 62 p2.

This leads us to a topological proof of

Corollary 8.2.11. The ideal class group ClK is finite.

Proof. We consider the above map restricted to A1
K . It is easy to see that this is still surjective—in

our construction of ↵ above, we were free to do what we want at the infinite places so we can ensure
|↵| = 1. Hence we have an isomorphism

C1
K/A1

K,1 ' ClK

where A1
K,1 = A⇥

K,1 \ A⇥

K . However C1
K is compact, and A1

K,1 is an open subset. Hence the
quotient ClK is both compact and discrete, whence finite.

8.3 Elements of class field theory

Class field theory is regarded as the crowning acheivement of algebraic number theory, just as
quadratic reciprocity was the crowning achievement of elementary number theory. Class field theory
is often described as a characterization of the abelian extensions of a number field, but its explicit
forms generalize quadratic and higher reciprocity laws.

What do we mean by higher reciprocity laws? Well the most basic way of thinking about
quadratic reciprocity is a way to tell if something is a square mod p. Cubic reciprocity is a way to
tell if something is a cube mod p, and similarly there are notions of biquadratic (4th power) and
higher reciprocity laws. Looked at from the point of view of rings of integers, quadratic reciprocity
tells us about the way primes split in quadratic extensions. So you might guess cubic reciprocity
should tell us about the way primes split in (normal) cubic extensions, and so on. In general, Artin
reciprocity (a more explicit form class field theory) tells us how primes split in abelian extensions.

Even to state the main theorems of class field theory is not so simple, and we still need to make
some more definitions.

Let L/K be an extension of number fields. Let P be a prime ideal of L lying above p, a prime
ideal of K. The decomposition group of L/K at P is

G(P|p) = {� 2 Gal(L/K) : �(P) = P} .

Recall that Gal(L/K) acts on the primes of L above p, so the G(P|p) is just the stabilizer of P.
Each element of G(P|p) extends to an automorphism of the completion LP which is trivial on Kp.
One can define Galois groups for extensions of local fields (LP/Kp is a finite extension of degree
f(P|p)) and show Gal(LP/Kp) ' G(P|p).

As in the case of number fields one can define a norm from LP to Kp given by

NP|p(x) = NLP/Kp
(x) =

Y

�2Gal(LP/Kp)

�(x).
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One can also do something similar for the archimedean, or infinite, places. In particular, if v is
an infinite place of L (i.e., an element of Gal(/Q), up to complex conjugation) and w is an infinite
place of K (i.e., an element of Gal(K/Q) up to complex conjugation), we write v|w if the embedding
v : L ,! C restricted to K gives the embedding w : K ,! C (up to complex conjugation). If v|w,
then Nv|w(z) = z if Lv = Kw = R or C, and Nv|w(z) = zz if Lv = C and Kw = R.

Using this, one can define a norm from A⇥

L to A⇥

K given by

NL/K((↵v)v) = (

Y

v|w

Nv|w(↵v))w

Exercise 8.8. Let x 2 L⇥ and regard x = (x, x, x, . . .) 2 A⇥

L . Show the idèlic norm NL/K(x) lies
in K⇥

✓ A⇥

K .

For a number field K, let K denote its algebraic closure, and for a group G let Gab denote is
abelianization (quotient via the commutator subgroup). Note that Gal(K/K)

ab “contains” the Ga-
lois group of any abelian extension L/K as a quotient. In fact, there is a maximal abelian extension
Kab of K inside K (infinite degree of course), and we will have Gal(Kab/K) = Gal(K/K)

ab. The
extension Kab contains all finite abelian extensions of K.

Now we can at least state some of the “non-explicit” assertions of class field theory:

Theorem 8.3.1. Let K be a number field. There is a homomorphism, called the Artin map,

✓K : CK ! Gal(Kab/K)

such that
(i) For every finite abelian extension L/K, let ✓L/K denote the composition of

✓L/K : CK
✓K
! Gal(Kab/K)! Gal(L/K)

Then ker ✓L/K = NL/K(CL), which yields an isomorphism

CK/(NL/KCL) = A⇥

K/(K⇥
·NL/K(A⇥

L )) ' Gal(L/K)

(ii) Given any open subgroup of N of CK of finite index, there is a finite abelian extension L of
K with N = ker ✓L/K . Hence

CK/N ' Gal(L/K).

There are also some functoriality results which say how the Artin maps ✓K and ✓L are related
for an extension L/K, but we will pass over these now.

Let ⇣n = e2⇡i/n.

Corollary 8.3.2. (Kronecker–Weber) Every abelian extension of Q is contained in Q(⇣n) for
some n.

An equivalent way to state this is that the maximal abelian extension Qab of Q in Q is the
compositum of the extensions Q(⇣n) for all n.

The basic idea of the proof is the following. Class field theory says the abelian extensions of Q
correspond to the open subgroups of the idèle class group CQ. To understand what these are, we
want to determine the structure of A⇥

Q. Specifically, one can show

A⇥

Q ' Q⇥
⇥ R>0 ⇥ Ẑ⇥
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where Ẑ⇥
= lim
 �

(Z/nZ)⇥ =
Q

p Z⇥
p . Consequently

CQ ' R>0 ⇥ Ẑ⇥.

Hence if U is an open subgroup of CQ with finite index, then U must be of the form U ' R>0 ⇥U 0

where U 0 is an open subgroup of finite index in Z⇥. (Since there are no nontrivial open subgroups
of finite index in R>0.) Then one uses a basis of neighborhoods for 1 in Ẑ⇥ to show that U must
contain NK/Q(CK) where K is some Q(⇣n). Consequently the extension corresponding to U must
contain K. (The functor from open subgroups of CK to abelian extensions of K is contravariant
(i.e., inclusion-reversing), just like the functor from subgroups of the absolute Galois group of K to
extensions of K.)

The above theorem of class field theory was established by Takagi, but the existence of a ho-
momorphism ✓K was given abstractly. It was Artin who was able to give it in an explicit fashion,
which we now briefly describe.

Let L/K be a Galois extension of number fields, p a prime of K and P a prime of L lying above
p. Let f = f(p|p) where p is the prime of Q lying under p, so the residue field OK/p has order
q = pf . The Frobenius map Frq : x 7! xq generates the Galois group Gal((OL/P)/(OK/p)). The
decomposition group maps to Gal((OL/P)/(OK/p)) via

� : G(P|p)! Gal((OL/P)/(OK/p))

by
� 7! (aP 7! �(a)P).

This is an isomorphism if P|p is unramified, and in this case and we let the Frobenius element

�P|p of Gal(P|p) ✓ Gal(L/K) be the inverse image �P|p = ��1
(Frq) of Frq in Gal(P|p).

Exercise 8.9. Let L/K be a Galois extension of number fields. Let P and P0 be primes of L lying
above p. Show the decomposition groups G(P|p) and G(P0

|p) are conjugate in Gal(L/K).

We regard each Frobenius element �P|p 2 Gal(P|p) as an element of Gal(L/K). The above
exercise implies for two primes P and P0 of L above p, the Frobenius elements �P|p and �P0|p are
conjugate in Gal(L/K).

If L/K is abelian, then the conjugacy classes of Gal(L/K) are just single elements and the
Frobenius �P|p 2 Gal(L/K) does not depend upon the choice of prime P above p. Hence in this
case we define the Frobenius at p to be

�p =

✓
L/K

p

◆
:= �P|p 2 Gal(L/K)

where P is a prime of L above p. The symbol
�L/K

p

�
is called the Artin symbol.

One can similarly define the Artin symbol
�L/K

v

�
for any place v of K, which will be some

element of Gal(L/K). See [Neukirch] for the complete details.

Theorem 8.3.3. (Artin) Let L/K be a finite abelian extension of number fields. Let $p be a
uniformizer for OKp, i.e., an element of OKp such that ordp($p) = 1. Let xp = (↵v) 2 A⇥

K be the
idèle such that ↵v = $p for v = p and ↵v = 1 otherwise.
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We may take Artin map ✓K above such that

✓L/K(xp) = �p =

✓
L/K

p

◆

for all primes p of K which are unramified in L/K.

The Artin symbol can be used to describe n-th power reciprocity laws. In order to make sense
of this, we should define n-th power residue symbols

�
a
p

�
n
. This should be 1 if a is an n-th power

mod p. But if this is going to be multiplicative, it can’t simply be �1 if a is not an n-th power mod
p (think about the case n = 3). What we need is

�
a
p

�
n

should give a group homomorphism into the
n-th roots of unity, such that the kernel is precisely the set of n-th powers mod p. In fact because of
this, it won’t make sense to define n-th power residue symbols over Q (or Z), but only over number
fields which contain the n-th roots of unity.

Let µn denote the n-th roots of unity.

Definition 8.3.4. Let K be a number field containing µn and v be a place of K. The n-th Hilbert

symbol ✓
�,�

v

◆

n

: K⇥

v ⇥K⇥

v ! µn

is given by ✓
Kv(

n
p
b)/Kv

v

◆
n
p

b = �v(
n
p

b) =

✓
a, b

v

◆

n

n
p

b.

In other words, the Frobenius �v =
�Kv(

npb)/Kv

v

�
is an element of Gal(Kv(

n
p
b)/Kv). But the

conjugates of n
p
b in Kv(

n
p
b)/Kv are just n

p
b times the n-th roots of unity. Hence �v(

n
p
b) is some

n-th root of unity times n
p
b, and we let the n-th Hilbert symbol

�a,b
v

�
n

be that root of unity.

Theorem 8.3.5. Let K be a number field containing µn and v be a place of K. For a, b 2 K⇥, we
have Y

v

✓
a, b

v

◆

n

= 1.

Proof. We have
Y

v

✓
a, b

v

◆

n

n
p

b =
Y

v

✓
Kv(

n
p
b)/Kv

v

◆
n
p

b =
Y

v

✓K( npb)/K(a)
n
p

b.

However, any element of K⇥ is in the kernel of the Artin map ✓K( npb)/K , so the above must equal
n
p
b and the asserted product formula follows.

Definition 8.3.6. Let a 2 K⇥ where µn ✓ K. For p a prime of K, we define the n-th power

residue symbol to be ✓
a

p

◆

n

=

✓
a,$p

p

◆

n

where $p is a uniformizer for Kp. If b 2 K⇥, we set
✓
a

b

◆

n

=

Y

pi-n

✓
a

pi

◆ei

n

,

where (b) =
Q

peii ideal of K.
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It is not too hard to check that
✓
a

p

◆

n

= 1 () a ⌘ xn mod p

and more generally ✓
a

p

◆

n

⌘ a
N(p)�1

n mod p.

Theorem 8.3.7. (n-th power reciprocity) Suppose µn ✓ K⇥. If a, b 2 K⇥, then
✓
a

b

◆

n

=

✓
b

a

◆

n

Y

v|n1

✓
a, b

v

◆

n

.

This follows simply from the above product formula (the previous theorem). See [Neukirch].
In particular, if a and b are prime elements of OK (i.e., they generate prime ideals of OK), andQ

v|n1

�a,b
v

�
n
= 1, then a is an n-th power mod b if and only if b is an n-th power mod a.

Corollary 8.3.8. (Quadratic Reciprocity) Let K = Q and n = 2. Let a, b be odd coprime
integers. Then ✓

a

b

◆

2

✓
b

a

◆

2

= (�1)
a�1
2

b�1
2 (�1)

sgn(a)�1
2

sgn(b)�1
2 ,

and ✓
�1

b

◆

2

= (�1)
b�1
2 ,

✓
2

b

◆

2

= (�1)
b2�1

8 .

Corollary 8.3.9. (Cubic Reciprocity) Let K = Q(⇣3) and n = 3. Suppose p, q are primes (i.e.,
they generate prime ideals) in OK such that p, q ⌘ ±1 mod 3. (If (↵) is prime in OK which does
not lie above 3, then it has 6 associates, 2 of which are ⌘ ±1 mod 3.) Then if p and q lie above
different primes of Q, we have ✓

p

q

◆

3

=

✓
q

p

◆

3

.

Hence class field theory generalizes quadratic and higher reciprocity laws.

8.4 Non-abelian class field theory

The n-th power reciprocity law says that if p and q are prime elements of K � µn, then we can
determine whether p is an n-th power mod q based on whether or not q is an n-th power mod p. In
particular, we have ✓

p

q

◆

n

=

✓
q

p

◆

n

if the product
Q

v|n1

�p,q
v

�
n
= 1. The proof of this reciprocity law is essentially to look at the Artin

map
✓L/K : CK ! Gal(L/K)

for the extension L/K where L = K( n
p
a). Since this applies only to abelian extensions, we see

the need for the requirement that µn ✓ K from the point of view of class field theory. Specifically,
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assuming none of the n-roots of xn � a lie in K, the extension K( n
p
a)/K is abelian (in fact cyclic

of degree n) if and only if µn ⇢ K.
Hence if one wanted to extend the n-th power reciprocity law to Q, one would want some sort

of non-abelian version of class field theory. In fact, one might guess a reciprocity law roughly of the
following form: Let f(x) be an irreducible polynomial over Z. If p and q are odd primes not dividing
n, then one can determine when

f(x) ⌘ p is solvable mod q

in terms of when
f(x) ⌘ q is solvable mod p.

Indeed this is essentially what n-th power reciprocity says in the case f(x) = xn. Though it seems
likely that a “non-abelian reciprocity law” will be more complicated than this.

To put the notion of reciprocity in a little more imprecise way, recall that x2 ⌘ q mod p has
a solution, i.e., x2 � q has a root mod p, if and only if p is split in Q(

p
q). Similarly if p and q

are primes in K, then xn ⌘ q mod p has a solution if and only if xn � q has a root mod p, which
means p is split in K( n

p
q). If K( n

p
q)/K is Galois, i.e., if µn ⇢ K, we can in fact say xn ⌘ q mod p

if and only if p splits completely in K( n
p
q)/K. Hence we may think of n-th power reciprocity as

a description of which primes split in K( n
p
q)/K. Class field theory can then be thought of as a

description of which primes split in an abelian extension L/K. Thus non-abelian class field theory,
or a non-abelian reciprocity law, should be a description of which primes split in a non-abelian
extension L/K.

Before we think about what the statement of non-abelian class field theory should look like in
general, we sketch out an example.

Example 8.4.1. (Koike, 1985) Let f(x) be an irreducible polynomial of degree 3 over Q, and let
K be the splitting field of f(x). Assume Gal(K/Q) ' S3 and K contains an imaginary quadratic
extension. One can to associate to f(x) the elliptic curve

E : y2 = f(x)

as well as a corresponding modular form

F : H = {z 2 C : Im(z) > 0}! C

F (⌧) =
1X

n=1

ane
2⇡in⌧ ,

where the an’s are certain Fourier coefficients which determine the function F (⌧).
Let np be the number of solutions #E(Fp) to y2 ⌘ f(x) mod p. Then the precise correspondence

between E and F is that ap = p+ 1� np. One version of a non-abelian reciprocity law in this case
say that, apart from p lying in a finite set of primes,

p splits completely in K () ap = 2.

Hence we can describe the set of primes which split completely in K in terms of either (i) arithmetic
data associated to an elliptic curve, or (ii) arithmetic data associated to a modular form.
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Langlands’ conjecture

In order to think about how one might set up a general non-abelian class field theory, let’s go
back to understanding what (abelian) class field theory says. Class field theory says there is an
homomorphism from the idèle class group CK = AK/K⇥ to Gal(Kab/K), which satisfies certain
properties. In particular, we have an isomorphism CK/NL/KCL ' Gal(L/K) for any finite abelian
extension L/K.

If one wants to extend this to non-abelian extensions L/K, one might look for “non-abelian class
groups” G(K) such that G(K) is related to Gal(K/K) and, for any finite Galois extension L/K,
we have G(K)/NL/K(G(L)) ' Gal(L/K), where NL/K(G(L)) is a certain (normal?) subgroup of
G(K) associated to the “non-abelian class group” G(L) of L. It is not clear how such a “non-abelian
class group” could be constructed. However there are very specific conjectures for a non-abelian
generalization if look at the dual picture, i.e., put things in terms of group representations and
L-functions.

If G is a locally compact abelian group, we can consider the set of (unitary) characters, Ĝ,
consisting of continuous homomorphisms G ! S1. The set Ĝ is naturally made into a locally
compact abelian group, called the dual group of G. Pontryagin duality says that the dual group
of Ĝ is isomorphic to G in a canonical way. Thus, to study CK or Gal(Kab/K), it is equivalent
to study their dual groups. Characters ! : CK ! S1 are called idèle class characters or Hecke

characters. Characters � : Gal(Kab/K)! S1 are called 1-dimensional Galois representations.
More generally, an n-dimensional (complex) Galois representation is a continuous homomorphism
⇢ : Gal(K/K)! GLn(C). But a 1-dimensional representation (i.e., a character) of � : Gal(K/K)!

GL1(C) = C⇥ will have image in S1 factor through Gal(Kab/K), so this agrees with our definition
above.

Consider a 1-dimensional Galois representation � : Gal(Kab/K) ! C⇥. By composition with
the Artin map, we get a Hecke character

� ! = � � ✓K .

Since the Artin map is not an isomorphism, so one does not necessarily (in fact does not) get all
Hecke characters this way, but one gets all finite order Hecke characters this way. (A character !
is finite order if !m

= 1 for some natural number m.) Namely, continuity of � implies � has finite
image, so it factors through (the Galois group of) a finite abelian extension � : Gal(L/K) ! C⇥,
consequently ! will factor through CK/N , where N = NL/K(CL). For a finite abelian group G, the
group of characters Ĝ is actually (non-canonically) isomorphic to G, so the above correspondence
of 1-dimensional Galois representations with finite order Hecke characters gives a bijection (in fact
isomorphism) �

! : CK/N ! C⇥
 1�1
 !

�
� : Gal(L/K)! C⇥

 
.

This correspondence of Galois representations and finite order Hecke characters is equivalent to
abelian class field theory.

Now the natural guess for a “higher dimensional,” or non-abelian analogue of this would be
to get a correspondence with n-dimensional representations of Gal(K/K) for any n. (Again, by
continuity, any given representation will factor through a finite extension Gal(L/K). Moreover, if
n > 1 and the representation is irreducible, then L/K will not be abelian.) The question is, what
group should we pick on the left? This was an insight of Langlands (building on the work of many
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before him). Note that we can view the idèle class group as

CK = A⇥

K/K⇥
= GL1(K)\GL1(AK).

(Read the latter as GL1(AK) mod GL1(K). We typically write the mod on the left as above
however—we also sometimes write K⇥

\A⇥

K . Of course in this case our groups our abelian, so it
doesn’t matter which side we mod out on, but it will for the non-abelian groups below. The reason
for putting mod on the left is because we sometimes want to mod out by another subgroup on the
right—of course which goes on the left and which on the right is just a matter of convention.)

Conjecture 8.4.2. (Langlands) There is a (partial) 1� 1 correspondence

{automorphic representations ⇡ of GLn(K)\GLn(AK)}

1�1
99K
 �

�
n-dimensional representations ⇢ of Gal(K/K)

 
.

Roughly, an automorphic representation of a locally compact group G is a irreducible rep-
resentation of G on L2

(G). The diagonal subgroup GLn(K) ⇢ GLn(AK) is not normal (for n > 1),
so the quotient GLn(K)\GLn(AK) is not actually a group. Hence this requires some explanation.

First note if G is a finite group, L2
(G) is just the C-vector space of C-valued functions on G. We

can take for a basis {eg}g2G where eg is the characteristic function of g in G. Hence L2
(G) ' C[G],

the group algebra, and we know C[G] decomposes as a direct sum of the irreducible representations
of G.

When G is not finite, things are more complicated, but in any event G acts on the space L2
(G)

by right multiplication, i.e., g : f(x) ! f(xg) for any f 2 L2
(G). In fact if G = GLn(AK), G acts

on L2
(GLn(K)\GLn(AK)) in the same way. This representation, the right regular representation

on L2
(GLn(K)\GLn(AK)), decomposes into irreducible constituents. What we mean by an auto-

morphic representation of GLn(AK) (or GLn(K)\GLn(AK)) is one of these irreducible constituents.
The term automorphic means that the representation is realized on a space of automorphic forms,
which are functions on GLn(AK) invariant under GLn(K). When n > 1, automorphic representa-
tions are infinite-dimensional representations, and are studied using more harmonic analysis than
algebra, per say.

Langlands’ conjecture states that to each n-dimensional Galois representation ⇢ : Gal(K/K)!

GLn(C), there is associated (in a way we shall describe below) an automorphic representation
⇡ = ⇡(⇢) of GLn(AK). However in general there will be more automorphic representations than
n-dimensional Galois representations, i.e., not every automorphic representation will correspond
to a Galois representation. This is indicated by the dashed arrow going from left to right in the
conjecture above. This is true even when n = 1, the left hand side is just the set of Hecke characters
of CK , and and so one needs to restrict to finite order Hecke characters to get an honest 1 � 1

correspondence between these two sets of representations in this case.
This conjecture of Langlands suggests that the conjectural group G(K) should contain in some

way each GLn(K)\GLn(AK), so that the representations of G(K) correspond to all Galois repre-
sentations. However this situation is even more ambiguous than the state of Langlands’ conjecutre
above, and in any case understanding the conjecture above would be extraordinary progress to
developing a non-abelian class field theory. For these reasons, we will spend the rest of our time
trying to explain what the above conjecture means.

L-functions
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To describe the conjecture of Langlands above⇤, one needs to specify exactly how the represen-
tations should correspond. The answer comes via the construction of L-functions associated to each
representations. Let’s first see what happens in the case n = 1.

Suppose � is a 1-dimensional representation of Gal(K/K). Then � factors through a finite
abelian extension

� : Gal(L/K)! C⇥
= GL1(C).

If p is a prime of K, recall we have a Frobenius element �p 2 G(P|p) ✓ Gal(L/K) where P is a
prime of L above p. Then we define the L-function associated to � to be

L(s,�) =
Y

p unram

1

1� �(�p)N(p)�s
.

One can regard this as a generalization of the Dirichlet L-series, as specializing to the case K = Q
and L = Q(⇣m) gives the Dirichlet L-functions mod m.

On the other hand, if ! is a Hecke character

! : CK = K⇥
\A⇥

K ! C⇥,

we can view ! as a character of A⇥

K which is trivial on K⇥. This gives a character

!v : K⇥

v ! C⇥

for any place v of K simply by restricting to the v-component of A⇥

K . Specifically !v(xv) =

!(1, . . . , 1, xv, 1 . . .) where the xv occurs in the v-th place. Then one can think of ! =
Q

v !v.
When v = p, we say !p is unramified if !p is trivial on O

⇥

Kp
. Then one can define the Hecke

L-function

L(s,!) =
Y

!p unram

1

1� !p($p)N(p)�s
,

where $p is a uniformizer for OKp .
We say the Galois character � and the Hecke character ! correspond if

L(s,�) = L(s,!),

i.e. if �(�p) = !p($p) for each unramified p. This is the L-function interpretation of class field
theory. This explicit correspondence of L-functions is amounts the explicit description of the Artin
map.

Now we can define L-functions for higher-dimensional representations. Let

⇢ : Gal(K/K)! GLn(C)

be an n-dimensional Galois representation. Continuity of ⇢ means there is a finite extension L/K
such that ⇢ restricted to the subgroup Gal(K/L) is trivial, i.e., ⇢ factors through

⇢ : Gal(L/K)! GLn(C).
⇤This conjecture is also called the strong Artin conjecture or the modularity conjecture. Indeed Langlands

made a series of far-reaching related conjectures, so if one just says “Langlands conjecture,” it is not always clear
which one is being referred to.
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For any prime p of K and P of L with P|p, we have a surjective homomorphism

G(P|p)! Gal((OL/P)/(OK/p)).

Recall the group on the left, the decomposition group of P|p, is just the subgroup of Gal(L/K)

which stablizes P. If the inertial degree f(P|p) = 1, in particular if p is unramified in L/K, then this
map is an isomorphism and the group on the right is generated by Frq : x! xq where q = N(p). In
this case, the Frobenius element �P|p 2 G(P|p) ✓ Gal(L/K). Since all the primes of L lying above
p are conjugate in Gal(L/K), all the elements �P|p are conjugate as P ranges over the primes above
p. We let the Frobenius �p = �P|p for some P, so this is well-defined up to conjugacy. Of course
if L/K is abelian, each element is its own conjugacy class, and �p is well-defined as an element of
Gal(L/K).

Since almost all primes p of K are unramified, we can define the (partial) Artin L-function by

L(s, ⇢) =
Y

p unram

1

det(In � ⇢(�p)N(p)�s)
.

Note even though �p is only well defined up to conjugacy in Gal(L/K), the quantity det(In �
⇢(�p)N(p)�s

) is well defined because the determinant is invariant under conjugation. We say this is
a partial L-function because the full or completed Artin L-function is actually defined as a product
of terms over all places v (including the archimedean ones), but the partial and the full L-function
only differ by a product of finitely many terms (which are well understood). For simplicity we will
not define the full L-function, but just mention that at unramified primes p, one needs to take into
account the kernel of the map G(P|p) ! Gal((OL/P)/(OK/p)), called the inertial subgroup of
G(P|p).

Let ⇡ be an automorphic representation of GLn(AK) ⇢
Q

v GLn(Kv). Then ⇡ = ⌦⇡v where
each ⇡v is a representation of GLn(Kv). For v = p, we say ⇡p is unramified if ⇡p restricted to the
subgroup GLn(OKp) is trivial. At such a place, ⇡v is induced from n 1-dimensional representations
!1, . . . ,!n placed on the diagonal subgroup of GLn(Kv). Set

A(⇡v) = diag(!1($p), . . . ,!n($p)).

Then we define the (partial) automorphic L-function

L(s,⇡) =
Y

⇡p unram

1

det(In �A(⇡p)N(p)�s)
.

Now we can restate Langlands’ conjecture above in more precise terms

Conjecture 8.4.3. (Langlands) There is a (partial) 1� 1 correspondence

{automorphic representations ⇡ of GLn(AK)}

1�1
99K
 �

�
n-dimensional representations ⇢ of Gal(K/K)

 

such that
L(s,⇡) = L(s, ⇢),

i.e., for almost all primes p of K, we have

det(In �A(⇡p)N(p)�s
) = det(In � ⇢(�p)N(p)�s

).
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(If the local factors—called local L-factors or local L-functions—agree for L(s,⇡) and L(s, ⇢)
for almost all places, one can show that the local factors (in the completed L-functions) will all be
the same.)

The first application of Langlands program (this program of attaching automorphic representa-
tions to Galois representations, which has grown into a much more general setting than what we
have presented) is to the following.

Conjecture 8.4.4. (Artin) Let ⇢ : Gal(K/K) be an irreducible nontrivial Galois representation.
Then L(s, ⇢) is entire.

If ⇢ is trivial, then L(s, ⇢) = ⇣K(s), the Dedekind zeta function of K, has a pole at s = 1. If ⇢
is not trivial, Artin conjectures L(s, ⇢) is entire, i.e., it has no poles. (The L-function as defined,
converges for Re(s) large, but is known to have meromorphic continuation to the whole complex
plane.) If ⇢ is 1-dimensional, then this is known because ⇢ = � corresponds to a Hecke character !,
and the Hecke L-functions L(s,!) for nontrivial ! are known to be entire. It is also easy to see that
if ⇢ is induced from a 1-dimensional representation �, then L(s, ⇢) = L(s,�) so L(s, ⇢) is entire.

Not much was known about Artin’s conjecture for higher dimensional representations. However,
it is known that if ⇡ is a cuspidal automorphic representation, then L(s,⇡) is entire, so if ⇢$ ⇡, then
L(s, ⇢) is also entire. (Any automorphic representation corresponding to a nontrivial irreducible
Galois representation will be cuspidal.) Hence Langlands conjecture implies Artin’s conjecture,
wherefore the above conjecture of Langlands is sometimes called the strong Artin conjecture. (In
fact, the strong Artin conjecture and the Artin conjecture are known to be equivalent in the case of
2 or 3 dimensional representations. It is not clear if they should be equivalent in higher dimensions.)

The first success of the Langlands program is the following result.

Theorem 8.4.5. (Langlands, Tunnell) Suppose ⇢ : Gal(L/K) ! GL2(C) is an irreducible 2-
dimensional representation. If the image of ⇢ is solvable (a solvable subgroup of GL2(C)), then
⇢$ ⇡ for some cuspidal automorphic representation ⇡ of GL2(AK).

This gave new instances of Artin’s conjecture. We remark that Artin’s conjecture, together
with the Grand Riemann Hypothesis (the analogue of the Riemann Hypothesis for more general
L-functions), yields estimates for the error term in the prime number theorem.

However, there is a much more famous consequence of this theorem of Langlands and Tunnell—
Fermat’s Last Theorem. Very roughly, Frey, Ribet and Serre showed that Fermat’s Last Theorem
follows from the Taniyama–Shimura conjecture, which says that to each elliptic curve over Q, there
is an associated modular form, in the sense that their associated L-functions are equal. To prove
Taniyama–Shimura, one associates to an elliptic curve E a family of p-adic Galois representa-
tions ⇢p : Gal(Q/Q) ! GL2(Qp). This much is not difficult. Wiles essentially showed that (for
“semistable” E, which is sufficient for Fermat’s Last Theorem) one can (reduce to a case where one
can) further associate to E a 2-dimensional complex Galois representation ⇢ : Gal(Q/Q)! GL2(C),
where ⇢ has solvable image. Then Langlands–Tunnell applies, and ⇢ (and hence the elliptic curve
E) corresponds to an automorphic representation ⇡ of GL2(AQ). This representation ⇡ is naturally
associated to some modular form f , and this gave Taniyama–Shimura (for semistable curves, which
was enough for Fermat’s last theorem—the general case was finished later), and hence Fermat’s last
theorem.
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