
4.1 Reduction theory

Let Q(x, y) = ax2 + bxy + cy2 be a binary quadratic form (a, b, c ∈ Z). The discriminant of Q is
∆ = ∆Q = b2 − 4ac. This is a fundamental invariant of the form Q.

Exercise 4.1. Show there is a binary quadratic form of discriminant ∆ ∈ Z if and only if ∆ ≡

0, 1 mod 4. Consequently, any integer ≡ 0, 1 mod 4 is called a discriminant.

We say two forms ax2 + bxy + cy2 and Ax2 +Bxy +Cy2 are equivalent if there is an invertible
change of variables

x� = rx + sy, y� = tx + uy, r, s, t, u ∈ Z

such that
a(x�)2 + bx�y� + c(y�)2 = Ax2

+ Bxy + Cy2.

Note that the change of variables being invertible means the matrix
�

r s
t u

�
∈ GL2(Z).

In fact, in terms of matrices, we can write the above change of variables as
�

x�

y�

�
=

�
r s
t u

� �
x
y

�
.

Going further, observe that

�
x y

� �
a b/2

b/2 c

� �
x
y

�
= ax2

+ bxy + cy2,

so we can think of the quadratic form ax2 + bxy + cy2 as being the symmetric matrix
�

a b/2

b/2 c

�
.

It is easy to see that two quadratic forms ax2 + bxy + cy2 and Ax2 + Bxy + Cy2 are equivalent if
and only if �

A B/2

B/2 C

�
= τT

�
a b/2

b/2 c

�
τ (4.1)

for some τ ∈ GL2(Z).

Note that the discriminant of ax2 + bxy + cy2 is −4disc

�
a b/2

b/2 c

�
.

Lemma 4.1.1. Two equivalent forms have the same discriminant.

Proof. Just take the matrix discriminant of Equation (4.1) and use the fact that any element of
GL2(Z) has discriminant ±1.

What this means then is that GL2(Z) acts on the space F∆ of binary quadratic forms of dis-
criminant ∆ for any ∆. The importance of equivalent forms is in the following.

We say Q(x, y) ∈ F∆ represents an integer n if Q(x, y) = n for some x, y ∈ Z.

Lemma 4.1.2. Two equivalent forms represent the same integers.
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Proof. This is obvious from the definition of equivalence—just make the change of variables!

To prove some basic results, it will be helpful to have more refined notions of equivalence and
representations of integers.

Definition 4.1.3. We say two forms ax2+bxy+cy2 and Ax2+Bxy+Cy2 are properly equivalent

if they satisfy Equation (4.1) for some τ ∈ SL2(Z). In this case we will write ax2 + bxy + cy2 ∼

Ax2 + Bxy + Cy2.

Recall SL2(Z) means 2×2 integer matrices of determinant 1, so GL2(Z) = SL2(Z)∪

�
0 1

1 0

�
SL2(Z)

since GL2(Z) consists of matrices of determinant ±1 In other words the quotient GL2(Z)/SL2(Z)

consists of two cosets. We can take
�

1 0

0 1

�
and

�
0 1

1 0

�
as a set of representatives for these cosets.

Clearly proper equivalence implies equivalence but the converse is not true. In fact, the notion
of proper equivalence turns out to give a nicer theory as we will see below.∗

Example 4.1.4. Using the matrix
�

1 0

0 −1

�
we see ax2 + bxy + cy2 is always equivalent to ax2 −

bxy + cy2. Sometimes they are properly equivalent (e.g., 2x2 ± 2xy + 3y2—see exercise below) and
sometimes they are not (e.g., 3x2 ± 2xy + 5y2—see exercise below).

Exercise 4.2. Determine the discriminants of Q1(x, y) = 2x2 + 2xy + 3y2, Q2(x, y) = 2x2− 2xy +

3y2, Q3(x, y) = 3x2 + 2xy + 5y2 and Q4(x, y) = 3x2 − 2xy + 5y2. Show Q1 and Q2 are properly
equivalent but Q3 and Q4 are not. (If you have trouble, see the theorem below.)

Exercise 4.3. Fix a, b, c ∈ Z and let Q1(x, y) = ax2 + bxy + cy2 and Q2(x, y) = cx2 + bxy + ay2.
(i) Show Q1 and Q2 are equivalent.
(ii) If b = 0 show Q1 and Q2 are properly equivalent.
(iii) Can you find a, b, c so that Q1 and Q2 are equivalent by not properly equivalent? (One often

calls this improper equivalence.)

There are three types of binary quadratic forms Q(x, y) = ax2 + bxy + cy2 based on the sign of
the discriminant ∆ = b2 − 4ac:

1) If ∆ = 0, then Q factors into two linear forms and we say Q is degenerate. Otherwise Q
is nondegenerate. If ∆ = b2 − 4ac = 0, then Q(x, y) = (

√
ax +

√
cy)2 and it is easy to see what

numbers Q represents. Hence, one may just consider nondegenerate forms.

2) If ∆ < 0, then Q(x, y) has no real roots. In other words, considering x, y real, the graph of
z = Q(x, y) in R3 never crosses the z = 0 plane. Hence Q(x, y) takes on either only positive values
or negative values (and zero if x = y = 0). Accordingly we say, Q is either a positive definite

form (e.g., x2 + y2) or a negative definite form (e.g., −x2 − y2). Note positive definite implies
a, c > 0 and negative definite implies a, c < 0. (This is not if and only if: x2− 100000xy + y2 is not
positive definite.) Since −Q will be positive definite whenever Q is negative definite, it suffices to
study the positive definite case.

∗
For this reason, many authors use the term “equivalence of forms” to mean proper equivalence. If you consult

other references, take note of this.
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3) If ∆ > 0, then Q(x, y) has a real root and Q(x, y) takes on positive and negative values
for x, y ∈ Z. In this case, we say Q is an indefinite form. Note whenever a and c have different
sign (or one is 0), Q must be indefinite. The theory of indefinite forms is similar to the theory of
(positive) definite forms, but there are some technical differences which make it more complicated.
For simplicity, as well as the fact that positive definite forms tend to be of more interest, we will
restrict our study to positive definite forms, though we will make some comments about what
happens for indefinite forms along the way.

Hence, from now on, we assume all our forms are positive definite (in particular have
discriminant ∆ < 0) unless otherwise stated.

Definition 4.1.5. Let Q(x, y) = ax2+bxy+cy2 be a (positive definite) form. We say Q is reduced

if
|b| ≤ a ≤ c

and b ≥ 0 if a = c or a = |b|.

Lagrange introduced the notion of reduced forms, and the point is the following.

Theorem 4.1.6. Any (positive definite) form Q is properly equivalent to a unique reduced form.

Proof. First we will show Q is properly equivalent to a reduced form ax2 + bxy + cy2. Suppose |b|
is minimal such that there is a form R(x, y) = ax2 + bxy + cy2 with Q ∼ R. If |b| > a, then there
exists m ∈ Z such that |2am + b| < |b|. But this implies

R�
(x, y) = R(x + my, y) = ax2

+ (2am + b)xy + (am2
+ bm + c)y2

∼ R(x, y) = ax2
+ bxy + cy2,

so R� ∼ Q has smaller xy coefficient than ax2 + bxy + cy2, contradicting the choice of R. Hence
|b| ≤ a and similarly |b| ≤ c. If necessary, we may replace R(x, y) with R(y,−x) = cx2 − bxy + ay2

to assume |b| ≤ a ≤ c.
We also need to show we can take b ≥ 0 if a = c or a = |b|. If a = c, then the xy-coefficient

of either R(x, y) or R(y,−x) is nonnegative, so we may assume b ≥ 0. Similarly if b = −a, then
R(x+ y, y) = ax2 + ax+ cy2, so again we may assume b ≥ 0 (in fact b > 0 since a > 0). This shows
Q is properly equivalent to some reduced form R(x, y) = ax2 + bxy + cy2.

Now we show that this R is unique. Suppose not, so Q ∼ S where S = dx2 + exy + fy2 is also
reduced. Interchanging R and S if necessary, we may assume a ≥ d. Recall R ∼ S means we can
write

S(x, y) = R(rx + sy, tx + uy) = a(rx + sy)
2
+ b(rx + sy)(tx + uy) + c(tx + uy)

2

with r, s, t, u ∈ Z such that ru− st = 1.
Since S clearly represents d and, we know R ∼ S, we know R represents d. Thus

d = ax2
0 + bx0y0 + cy2

0 ≥ a(x2
0 + y2

0) + bx0y0 ≥ a(x2
0 + y2

0)− a|x0y0| ≥ a|x0y0|

for some x0, y0 ∈ Z. Since d ≤ a we must either have x0y0 = 0 or |x0y0| = 1. We will finish the
proof in three cases.

First suppose y0 = 0. Then d = ax2
0 together with d ≤ a means x2

0 = 1 and d = a. Then the
x2-coefficient of S(x, y) is

ar2
+ brt + ct2 = R(r, t) = d = a.
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Observe the minimum nonzero value of a reduced form R(x, y) is obtained precisely when (x, y) =

(±1, 0), so we must have r = ±1, t = 0.† (Hence the minimum positive value of a reduced form is
the x2-coefficient, in this case a.) Further ru−st = ru = 1 implies u = r−1. Then the xy-coefficient
of S(x, y) is

2ars + bru = 2ars + b = b± 2as = e.

Since S is reduced, we have |e| ≤ d = a, but the only was this can happen is if s = 0 (which means
R = S) or if b = a and s = ±1, which means e = −d, which we have excluded from our definition
of reduced. This shows uniqueness when y0 = 0.

Next suppose x0 = 0. Similar to the above, we see d = c and looking at the x2-coefficient of
S(x, y) one can conclude r = 0, s = t = ±1 as the second smallest minimum nonzero value of a
reduced form R(x, y) is c and is obtained precisely when (x, y) = (0,±1)‡—see Remark below. This
means the xy-coefficient of S(x, y) must be b + 2cu. Then |e| = |b + 2cu| ≤ a ≤ c means either
u = 0 (so R = S) or b = a = c and u = −1 in which case S(x, y) = ax2 − axy + ay2, which is not
reduced.

Finally suppose |x0y0| = 1. The above inequalities for d say a ≥ d ≥ a|x0y0| so a = d. The rest
follows like the y0 = 0 case.

Remark. It should be fairly obvious that for a reduced form R(x, y) = ax2+bxy+cy2 the minimum
nonzero value is obtained is a, which happen precisely when (x, y) = (±1, 0) (assuming a < c). It
may be less clear that the second smallest nonzero value obtained is c, but both of these assertions
follow from the simple exercise that R(x, y) ≥ (a− |b| + c) min(x2, y2). If you want, you can work
this out on your own, but I’m not assigning it as homework.

The above theorem tells us that if we want to study positive definite forms, it suffices to consider
reduced forms.

4.2 The mass formula

One of the most important early discoveries about quadratic forms is that they are better studied
collectively than individually. Precisely, we make the following

Definition 4.2.1. Let ∆ be a discriminant. The form class group Cl(∆) of discriminant ∆ is
the set of proper equivalence classes of forms of discriminant ∆, i.e., Cl(∆) = F∆/ ∼.

We will later see how to define a group structure on this, justifying the name. From the last
section, we know we can take a set of representatives for Cl(∆) to be the set of reduced forms of
discriminant ∆.

Proposition 4.2.2. For any discriminant ∆, the number h(∆) := |Cl(∆)| < ∞.

Proof. Note h(∆) is the number of reduced forms of discriminant ∆. If ax2 + bxy + cy2 is reduced
of discriminant ∆, then |b| ≤ a ≤ c so 4b2 ≤ 4ac = b2 + ∆, i.e., 3b2 ≤ |∆|. In other words, there are
only finitely many choices for b. Each choice for b determines ac, and the product ac determines a
finite number of choices for a and c.

†
If a = c, the minimum nonzero value of the form is also obtained at (0,±1), which corresponds to r = 0, t = ±1.

Though we technically omit this case here, we can actually absorb this situation into our argument for the subsequent

x0 = 0 case.
‡
Again, technically if a = c, this actually gives the minimum nonzero value of the form, but this does not affect

our argument.
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Using the notion of the class group, we can get a formula for the number of representations of
n by a quadratic form of discriminant ∆. It will be convenient to consider proper representations.

Definition 4.2.3. We say Q(x, y) ∈ F∆ properly represents n if n = Q(x, y) for some x, y ∈ Z
with gcd(x, y) = 1. In this case, the solution (x, y) is called a proper representation of n by Q.

Example 4.2.4. Let Q(x, y) = x2 + y2. Then Q represents 4 = 22 + 02 = Q(2, 0), but it does not
properly represent 4 since gcd(2, 0) = 2 and (±2, 0) and (0,±2) are the only solutions to Q(x, y) = 4.

On the other hand even though 25 has an improper representation by Q, namely 25 = 52 + 02 =

Q(5, 0) and gcd(5, 0) = 5, 25 also has a proper representation by Q: 25 = 32 + 42 = Q(3, 4) and
gcd(3, 4) = 1. Hence we say Q(x, y) properly represents 25.

Lemma 4.2.5. Q(x, y) represents n if and only if Q(x, y) properly represents m for some m|n such
that n

m is a square.

Proof. (⇒) Suppose Q(x, y) represents n. If Q properly represents n, we can just take m = n and
we are done. If not, then Q(x, y) = n for some x, y with gcd(x, y) = d > 1. Then Q(x/d, y/d) =

Q(x, y)/d2 is a proper representation of m = n/d2.
(⇐). Suppose Q(x, y) properly represents m where n = d2m. Then Q(dx, dy) = d2Q(x, y) =

d2m = n.

In other words, understanding what numbers are properly represented by Q tells us which num-
bers are represented by Q, since the latter numbers are just squares times the former numbers. Let
rQ(n) (resp. RQ(n)) denote the number of proper representations (resp. number of representations)
of Q by n.

Theorem 4.2.6. (Dirichlet’s mass formula, first version) Let d > 1 be squarefree and set
∆ = −4d. Let Q1, Q2, . . . , Qh be a set of representatives for the form class group Cl(∆). Then

rQ1(n) + rQ2(n) + · · ·+ rQh(n) = 2

�

p|n

�
1 +

�
∆

p

��

where p runs over prime divisors of n > 0 and gcd(n, ∆) = 1.

There are many different versions of the statement of this result, but the above one is the
most applicable to the forms x2 + dy2 (with d squarefree). The proof of the mass formula is quite
elementary, and we will omit it now, but John Paul will present a proof of the following version
later this semester.

Theorem 4.2.7. (Dirichlet’s mass formula, second version) Let ∆ be the discriminant of an
imaginary quadratic field, Q1, Q2, . . . , Qh a set of representatives for Cl(∆) and n > 0 such that
gcd(n, ∆) = 1. Then

RQ1(n) + RQ2(n) + · · ·+ RQh(n) = w
�

k|n

�
∆

k

�
,

where w is the number of units in the ring of integers of Q(
√

∆).

(Recall
�
∆
1

�
= 1 for any ∆.)

The first version of the mass formula immediately gives
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Corollary 4.2.8. Suppose ∆ = −4d with d > 1 squarefree. Then n > 0 relatively prime to ∆ is
properly represented by some form of discriminant ∆ if and only if

�
∆
p

�
= 1 for all primes p|n.

The point is that while it is difficult to study the numbers represented by an individual quadratic
form in general, it is relatively easy to understand which numbers are represented by some quadratic
form of discriminant ∆, for fixed ∆. However, if the class number h(∆) = 1, then the above formulas
are in fact formulas for a specific rQ(n) (resp. RQ(n)).

Example 4.2.9. Consider Q(x, y) = x2+y2. This has discriminant ∆ = −4, which is the discrimi-
nant of the quadratic field Q(i). If ax2+bxy+cy2 is a reduced form of discriminant −4, then 3b2 ≤ 4

(see proof of Proposition 4.2.2), so b = 0 or b = ±1. Clearly b = ±1 makes b2−4ac = 1−4ac = −4

unsolvable, so b = 0. Then we must have ac = 1 so a = c = 1 (since we are just working with posi-
tive definite forms). In particular the class number h(−4) = 1, and {Q} is a set of representatives
for Cl(∆).

Then the second version of Dirichlet’s mass formula reads

RQ(n) = 4

�

k|n

�
∆

k

�
,

for n odd. If n = p is prime, then for p ≡ 1 mod 4 we have

RQ(p) = 4

��
∆

1

�
+

�
∆

p

��
= 4(1 + 1) = 8

and if p ≡ 3 mod 4 we have

RQ(p) = 4

��
∆

1

�
+

�
∆

p

��
= 4(1− 1) = 0.

In other words, x2 + y2 represents an odd prime p if and only if p ≡ 1 mod 4. So Dirichlet’s mass
formula gives Fermat’s two square theorem as a special case.

Moreover, it tells us two more things about x2 + y2. If p = x2
0 + y2

0 is odd, then x0 �= y0 so
(±x0,±y0) and (±y0,±x0) are also solutions to Q(x, y) = p. This accounts for 8 solutions. Since
RQ(p) = 8, this means up to sign and interchanging x and y, p = x2

0 + y2
0 is the only way to write

p as a sum of 2 squares.
Recall Brahmagupta’s composition tells us the product of two numbers of the form x2 + y2 is

again of the form x2 + y2. Since 2 = 12 + 12 and p2 = p2 + 02 for any p, we know that n is of the
form x2 + y2 if any p|n with p ≡ 3 mod 4 occurs to an even power in the prime factorization of n.

In fact, these are the only n represented by x2 + y2, and we can actually prove this for n odd
using the mass formula. Indeed, suppose n is odd and not of the above form, i.e., there is a prime
p ≡ 3 mod 4 dividing n which occurs to an odd power in the prime factorization of n. Let D1 be
the set of divisors k of n such that p occurs to an even power in the prime factorization of k, and
let D2 = {pk : k ∈ D1}. Then D1 ∪D2 are the divisors of n and D1 and D2 are disjoint. So

RQ(n) = 4





�

k∈D1

�
∆

k

�
+

�

pk∈D2

�
∆

pk

�


 = 4

�

k∈D1

��
∆

k

�
+

�
∆

p

��
∆

k

��
= 0

since
�
∆
p

�
= −1.
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Exercise 4.4. Determine the reduced forms of discriminant ∆ for ∆ = −3,−8,−12,−20,−24. In
particular, determine h(∆) for these ∆.

Exercise 4.5. Use Dirichlet’s mass formula and Brahmagupta’s composition law to determine to
which odd numbers are of the form x2 + 2y2.

Exercise 4.6. Use Dirichlet’s mass formula, Brahmagupta’s composition law and (i) to determine
to which numbers prime to 6 are of the form x2 + 3y2.

4.3 The form class group

The idea behind Gauss’s composition of binary quadratic forms comes from Brahmagupta compo-
sition, which says the product of two numbers of the form x2 + dy2 is again of the form x2 + dy2.
Precisely, Brahmagupta’s composition law is

(x2
1 + dy2

1)(x
2
2 + dy2

2) = (x1x2 − dy1y2)
2
+ d(x1y2 + x2y1)

2
= X2

+ dY 2

where X = x1x2−dy1y2, Y = x1y2+x2y1. Gauss’s composition says that if Q1 and Q2 are quadratic
forms of discriminant ∆, then there is a form Q3 of the same discriminant such that

Q1(x1, y1)Q2(x2, y2) = Q3(X,Y )

where X,Y are some (homogeneous) quadratic expressions in x1, y1, x2 and y2. In other words, the
product of a number of represented by Q1 with a number represented by Q2 is represented by Q3.
We will write this composition as

Q1 ◦Q2 = Q3

and this will make Cl(∆) into a finite abelian group.
However, the explicit determination of X, Y and the coefficients of Q3 in Gauss’s composition

is rather complicated and we will not describe it explicitly. Instead, we will approach Gauss com-
position via ideals. But to get a feeling of how this composition can be done without ideal, we will
briefly explain Dirichlet’s approach to Gauss composition.

Two forms Q1(x, y) = a1x2 + b1xy + c2y2 and Q2(x, y) = a2x2 + b2xy + c2y2 of discriminant
∆ are called united if gcd(a1, a2,

b1+b2
2 ) = 1. If they are united, there exist B,C ∈ Z such that

a1x2 + b1xy + c2y2 ∼ a1x2 + Bxy + a2Cy2 and a2x2 + b2xy + c2y2 ∼ a2x2 + Bxy + a1Cy2. Then
the Dirichlet composition is defined to be

Q1 ◦Q2 = a1a2x
2
+ Bxy + Cy2.

To see that this follows our notion of what composition should be, observe

(a1x
2
+ Bxy + a2Cy2

)(a2x
2
+ Bxy + a1Cy2

) = a1a2X
2
+ BXY + CY 2

where X = x1x2 − Cy1y2 and Y = a1x1y2 + a2x2y1 + By1y2. One can check that the latter form
has discriminant ∆. Note that Dirichlet composition does not define composition of any two forms
of discriminant ∆ (only united forms), but it is enough to define a composition (or multiplication)
law on the proper equivalences classes Cl(∆).

Now we will present the approach to Gauss’s composition via ideals. For simplicity we will
work with forms whose discriminant ∆ is the discriminant of a quadratic field. We say ∆ is a
fundamental discriminant if ∆ = ∆K for some quadratic field K.
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Exercise 4.7. Let ∆ be the discriminant of Q(x, y) = ax2 + bxy + cy2. Show if ∆ is a fundamental
discriminant, then Q is primitive, i.e., gcd(a, b, c) = 1.

We remark that in working with quadratic forms, one often restricts to primitive forms, since
any form is just a multiple of a primitive form.

From now on, for the rest of this section we assume ∆ < 0 is a fundamental discriminant.
Let K = Q(

√
∆) be the imaginary quadratic field of discriminant ∆.

Definition 4.3.1. Let I be an ideal of OK with ordered Z-basis {α, β}. Then the quadratic form

associated to I is
QI(x, y) = N(αx + βy)/N(I) = ax2

+ bxy + cy2.

Here the first norm is the norm of the element αx + βy ∈ OK , and the second is of course the
ideal norm. Explicitly we have

N(αx + βy) = N(α)x2
+ Tr(αβ)xy + N(β)y2

so a = N(α)/N(I), b = Tr(αβ)/N(I) and c = N(β)/N(I) in the definition above. Technically, the
form QI depends upon the choice of an ordered Z-basis for I, but it is not too difficult to see that
a different basis will lead to a properly equivalent form. Further QI has discriminant ∆.

Example 4.3.2. Let ∆ = −4 so K = Q(i). Consider the ideals I = �1, i� = Z[i] and J =

�1 + i, 1− i� = (1 + i) of OK . Then

QI(x, y) = N(x + iy)/N(I) = N(x + iy) = x2
+ y2

and
QJ (x, y) = N((1 + i)x + (1− i)y)/N(J ) = (2x2

+ Tr(2i) + 2y2
)/2 = x2

+ y2.

So we see different (but equivalent) ideals may lead to the same form.

Exercise 4.8. Let ∆ = −20 so K = Q(
√
−5) and consider the ideals I = �2, 1 +

√
−5� and

J = �3, 1 +
√
−5�. Compute QI and QJ . Check they have discriminant ∆. Are they properly

equivalent?

Definition 4.3.3. Let Q(x, y) = ax2 + bxy + cy2 be a form of discriminant ∆. The ideal of OK

associated to Q is

IQ = (a,
b−

√
∆

2
).

Lemma 4.3.4. For any form Q, QIQ = Q. In other words, if we take the ideal IQ = (a, b−
√

∆
2 )

associated to Q(x, y) = ax2 + bxy + cy2, then the form N(ax +
b−
√

∆
2 y)/N(IQ) associated to IQ

equals Q.

This lemma says the association I �→ QI is a right inverse to Q �→ IQ. The proof is elementary.
However the converse is not true in general. What we can say is the following

Lemma 4.3.5. Let I be an ideal of OK and let QI be the associated form. If J = IQI is the ideal
associated to QI , then J ∼ I.
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Then we can define multiplication of forms QI and QJ associated to ideals by QI ◦QJ = QIJ .
Upon showing the map ClK → Cl(∆) induced by I �→ QI is surjective, this defines a multiplication
on the form class group Cl(∆). Precisely, one gets

Theorem 4.3.6. We have an isomorphism

ClK � Cl(∆)

I � QI

IQ � Q.

Proofs may be found in [Cohn]. The proof are not difficult, but we omit them in the interest of
time.

Exercise 4.9. Show x2 +
−∆
4 y2 is the identity of Cl(∆) if ∆ ≡ 0 mod 4 and x2 − xy +

1−∆
4 y2 is

the identity of Cl(∆) if ∆ ≡ 1 mod 4.

Exercise 4.10. Show Q2(x, y) = ax2 − bxy + cy2 is the inverse of Q1(x, y) = ax2 + bxy + cy2. We
know Q1 and Q2 are always equivalent by a transformation of determinant −1, namely (x, y) �→

(x,−y). Deduce that Q1 ∼ Q2 if and only if Q1 has order 2 in Cl(∆Q1).

Exercise 4.11. We say Q(x, y) = ax2 + bxy + cy2 is ambiguous if a|b. Show if Q is ambiguous,
then Q has order 1 or 2 in Cl(∆Q).

In fact it can be shown that Q has order ≤ 2 in the form class group if and only if Q ∼ Q� for
some ambiguous form Q�. In this case, the reduced form in the proper equivalence class of Q is
either ambiguous (so b = a or b = 0) or of the form ax2 + bxy + ay2.

Exercise 4.12. Determine all reduced forms of discriminant ∆ = −84. Use this to deduce Q(
√
−21)

has class group isomorphic to V4 = C2 × C2.

4.4 Genus theory

As in the previous section, let K be an imaginary quadratic field of discriminant ∆. Dirichlet’s
mass formula tells us which numbers are represented by some form in F∆, but it doesn’t tell us
which numbers are represented by a specific form of discriminant ∆. The problem of distinguishing
between forms (or rather equivalence classes of forms) of discriminant ∆ is not at all a simple
problem in general, however there is a simple approach which gives a complete solution when the
class group is isomorphic to Cr

2 .
To motivate genus theory, let’s consider our favorite example.

Example 4.4.1. Let ∆ = −20 so K = Q(
√
−5). The reduced forms of discriminant ∆ are

Q1(x, y) = x2 + 5y2 and Q2(x, y) = 2x2 + 2xy + 3y2. Hence ClK � Cl(∆) has order 2, so must be
isomorphic to C2. From the exercises in the previous section, Q1 is the identity and Q2 has order
2 in Cl(∆).

First let us determine the primes represented by Q1 and Q2. By the mass formula (first version)
we know

RQ1(p) + RQ2(p) = rQ1(p) + rQ2(p) = 2(1 +

�
∆

p

�
) =

�
4 p ≡ 1, 3, 7, 9 mod 20

0 p ≡ 11, 13, 17, 19 mod 20
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for p � ∆. (Note for p prime, RQ(p) = rQ(p) for any form Q.) Note that if RQ1(p) > 0 for p � 20,
then RQ1(p) ≥ 4 because if (x, y) is a solution to x2 + 5y2 = p, then so are (±x,±y), which gives 4

different solutions as long as p �= 5. In other words, any p ≡ 1, 3, 7, 9 mod 20 is represented either
by Q1 or Q2, but not both.

However, looking at what numbers relatively prime to 20 are of the form x2 + 5y2 mod 20 we
see 3 and 7 are not possible. Similarly, simple computations show that 1 and 9 are not of the form
2x2 + 2xy + 3y2 mod 20. (In fact, it suffices to observe x2 + 5y2 does not represent 3 mod 4 and
2x2 + 2xy + 3y2 does not represent 1 mod 4.) Hence we have

p is represented by

�
Q1 ⇐⇒ p = 5 or p ≡ 1, 9 mod 20

Q2 ⇐⇒ p = 2 or p ≡ 3, 7 mod 20

Now we can ask what integers n > 0 are represented by Q1. By the mass formula (first form),
we know if Q1 represents n, then n cannot be divisible by any prime p such that

�
∆
p

�
= −1, i.e.,

any p ≡ 11, 13, 17, 19 mod 20. Write n =
�

pei
i ·

�
q
fj

j where each pi is represented by Q1 and each
qj is represented by Q2. Gauss’s composition says n is represented by

�
i Q

ei
1 ·

�
j Q

fj

2 (where the
multiplication here denotes Gauss composition). In other words, n is represented by Q1 if

�
fj is

even and n is represented by Q2 if
�

fj is odd.
We would like to say the above statement about which n’s are represented by Q1 and which

are represented by Q2 is if and only if. Note that Q1 represents 0, 1, 2 mod 4 and 0, 1, 4 mod 5,
where as Q2 represents 0, 2, 3 mod 4 and 0, 2, 3 mod 5. The only overlap here are the numbers
≡ 0, 2 mod 4 and ≡ 0 mod 5. Hence Q1 and Q2 cannot represent the same numbers, except possibly
for numbers divisible by 10. The case where n is not prime to the discriminant is more subtle, and
we will not prove this, but it turns out Q1 and Q2 never represent the same numbers, so the above
characterization of numbers represented by Q1 (or Q2) is if and only if.

Genus theory allow us to generalize the above example to separate (at least partially) represen-
tations by different forms of discriminant ∆.

Definition 4.4.2. Let Q1, Q2 ∈ F∆. We say Q1 and Q2 are in the same genus if they represent
the same values mod ∆. The principal genus is the genus containing the identity of the form class
group.

It is a theorem that Q1 and Q2 are in the same genus if and only if Q1 and Q2 represent the
same values mod m for every m. What is more important for us however, is that forms in different
genera (the plural of genus) represent disjoint sets of numbers in (Z/∆Z)×. This is the content of
the following proposition.

Proposition 4.4.3. Regard χ∆ =
�
∆
·

�
as a real character of (Z/∆Z)×. Let H = kerχ∆. Let Q0

(resp. Q) be in the prinicipal genus (resp. any genus) of F∆ and H0 (resp. HQ) denote the set of
values in (Z/∆Z)× represented by Q0 (resp Q). Then H0 is a subgroup of H and HQ is a coset of
H0 in H.

(Note that H being the kernel of a group homomorphism, is a subgroup of (Z/∆Z)×.)
For instance, in the above example, with Q0 = x2 + 5y2 and Q = 2x2 + 2xy + 3y2, we have

H = {1, 3, 7, 9} ⊆ (Z/20Z)×, H0 = {1, 9} and HQ = {3, 7} = 3 {1, 9}.
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Proof. Let n ∈ (Z/∆Z)×. If n is represented by a form of discriminant ∆, we have n ∈ H = kerχ∆

by Dirichlet’s mass formula. To see that H0 is a subgroup of H, observe it must be closed under
multiplication by Gauss composition. To show it is closed under inversion, note by Exercise 4.9, we
can assume Q0 = x2−

∆
4 y2 or x2+xy+

1−∆
4 y2. Using either Brahmagupta or Dirichlet composition,

it is straightforward to explicitly check H0 is closed under inverses (and is nonempty—it contains
1).

It follows from Gauss composition that HQ must be a translate of H0 in H.

Since the cosets of H0 in H are disjoint, the integers n relatively prime to ∆ can only be
represented by forms in a single genus of F∆. In particular, if we want to determine which numbers
are of the form x2 + dy2 (say relatively prime to ∆ = −4d), we can at least say n are represented
by some form in the principal genus. In particular, if, up to equivalence, x2 + dy2 is the only form
in the principal genus, we can say exactly which primes are represented by x2 + dy2 by (i) the
mass formula and (ii) considerations mod ∆. In this case, we say ∆ has one class per genus (see
exercise below).

Exercise 4.13. Let Q1, . . . , Qh denote representatives for Cl(∆). Using Gauss composition, show
the number of Qi in a given genus is the same for each genus.

Exercise 4.14. Pick representatives Q1, Q2 for Cl(−24). Determine what values Q1 and Q2 rep-
resent mod 24. Using this with Dirichlet’s mass formula, determine all primes represented by Q1

and all primes represented by Q2. In particular, you should get a determination of all primes of the
form x2 + 6y2.

Now of course it’s natural to ask, for which discriminants ∆ do we have one class per genus?
It’s clearly true if the class number h(∆) = 1. We know there are only 9 fundamental discriminants
∆ < 0 with class number 1 (Gauss’s class number problem), and this was easy to determine.
Conversely, it is still an unsettled problem (also posed by Gauss) for which ∆ have one class per
genus. It is conjectured that there are precisely 65 fundamental discriminants (and 101 arbitrary
negative discriminants) ∆ < 0 with one class per genus. It is not too difficult to show the following.

Theorem 4.4.4. The principal genus of Cl(∆) consists of the subgroup of squares of Cl(∆).

Corollary 4.4.5. ∆ has one class per genus if and only if Cl(∆) � Cr
2 for some r ≥ 0.

We remark that for a specific r, we can compute all imaginary quadratic fields with class group
Cr

2 . There shouldn’t be any for large enough r, and this is the most difficult part.
In the case of one class per genus, one can always determine the primes of the form x2 + dy2

by simple congruence conditions. However, at least conjecturally, this only happens finitely many
times (for negative ∆). In the rest of the cases, the determination of primes of the form x2 + dy2 is
more complicated.

Example 4.4.6. Consider Q0 = x2 +14y2. This has discriminant ∆ = −56 and corresponds to the
field K = Q(

√
−14). There are 3 other reduced forms of discriminant −56, given by Q1 = 2x2+7y2,

Q2 = 3x2 + 2xy + 5y2 and Q3 = 3x2 − 2xy + 5y2. It is easy to check the (form) class group
Cl(∆) � C4 (see exercise below). One can show p = x2 + 14y2 if and only if (i)

�
−14

p

�
= 1, and (ii)

(x2 + 1)2 ≡ 8 mod p has a solution. See [Cox]. We will discuss this briefly in the next chapter.

Exercise 4.15. Check that Q2 ◦Q2 ∼ Q3 ◦Q3 ∼ Q1. Conclude Cl(−56) � C4.
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