Number Theory Fall 2009 Homework 6 Due: Wed. Oct. 14, start of class

5.1 Side and diagonal numbers

Exercise 5.1. If $n \in \mathbb{N}$ is a square, show the only solutions of $x^2 - ny^2 = 1$ are $(\pm 1, 0)$. (Cf. Exercises 5.1.3, 5.1.4.)

5.2 The equation $x^2 - 2y^2 = 1$

Exercise 5.2. Check the following composition rule holds:

$$(x_1^2 - 2y_1^2)(x_2^2 - 2y_2^2) = x_3^2 - 2y_3^2$$

where

$$x_3 = x_1 x_2 + 2y_1 y_2, \ y_3 = x_1 y_2 + y_1 x_2.$$

Exercise 5.3. Compute $(3,2)^4$. Use this to obtain a decimal approximation for $\sqrt{2}$. To how many digits is it accurate? (Use a calculator/computer.)

5.4 The general Pell equation and $\mathbb{Z}[\sqrt{n}]$

For everyone's benefit, we'll skip Exercise 5.4 from my notes.

Exercise 5.5. Find the fundamental solution (x_0, y_0) to $x^2 - 5y^2 = 1$. What is the fundamental +unit of $\mathbb{Z}[\sqrt{5}]$? Compute the solutions given by the square and the cube of (x_0, y_0) . What rational number decimal approximations to $\sqrt{5}$ do they yield? To how many digits are they accurate? (Use a calculator.)

Exercise 5.6. Exercises 5.4.4, 5.4.5.

5.5 *Quadratic forms

Exercise 5.7. Let $Q(x, y) = x^2 + xy - y^2$). Fact (don't prove it): the solutions to Q(x, y) = 1 are given by (F_{2n+1}, F_{2n+2}) where F_n is the n-th Fibonacci number (cf. Exercise 5.8.4; $F_1 = F_2 = 1$). On the other hand, the solutions are generated by the powers of the fundamental +unit of $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$, $\epsilon = 1 + \frac{1+\sqrt{5}}{2} = \frac{3+\sqrt{5}}{2}$. Check that $\left(\frac{3+\sqrt{5}}{2}\right)^n = F_{2n-1} + F_{2n}\frac{1+\sqrt{5}}{2}$ holds for n = 1, 2, 3.

6.1 The Gaussian integers

Exercise 6.1. Exercises 6.1.1, 6.1.2 (be precise), 6.1.3.

6.2 Divisibility and primes in $\mathbb{Z}[i]$ and \mathbb{Z}

Definition 6.4. Let $\alpha, \beta \in \mathbb{Z}[i]$. We say α divides β , or $\beta | \alpha$, if

$$\beta = \alpha \gamma$$

for some $\gamma \in \mathbb{Z}[i]$. We say α is a Gaussian prime, or prime in $\mathbb{Z}[i]$, if the only divisors of α are $\pm 1, \pm i, \pm \alpha$ and $\pm i\alpha$, i.e., if the only divisiors of α , up to units, are 1 and α .

Exercise 6.2. Let $\alpha \in \mathbb{Z}[i]$. Show α is a unit of $\mathbb{Z}[i]$ if and only if α is invertible in $\mathbb{Z}[i]$, i.e., $\alpha\beta = 1$ for some $\beta \in \mathbb{Z}[i]$. (Hint: use the multiplicative property of the norm.) In fact, this is the general definition of a unit in a ring: something is a unit means its invertible (in the ring). The units always form a multiplicative group. The units of \mathbb{Z} are just ± 1 . The role of $\{1, -1, i, -i\}$ in $\mathbb{Z}[i]$ is exactly analogous to the role of ± 1 in \mathbb{Z} .

The text defines α to be a Gaussian prime to be an element of $\mathbb{Z}[i]$ such that α is not a product of two elements of smaller norm. The following exercise shows our definition and the book's are equivalent.

Exercise 6.3. Using the definition of Gaussian prime we gave in class, show the following is true: α is a Gaussian prime if and only if $\beta | \alpha$ implies $N(\beta) = 1$ or $N(\beta) = N(\alpha)$. (Cf. Exercise 6.2.1. Hint: look at the example from class.) Conclude that if $N(\alpha)$ is prime in \mathbb{Z} , α is a Gaussian prime.

Exercise 6.4. Show there are no elements in $\mathbb{Z}[i]$ whose norm is of the form 4n+3. Conclude that if p = 4n+3 is prime in \mathbb{Z} , then p is also a Gaussian prime. (Cf. Section 6.3)