Number Theory Fall 2009 Homework 4 Due: Wed. Sep. 23, start of class

Instructions: For this assignment, you should do all problems by hand.

3.3 Inverses mod p

Exercise 3.6. Let $G = (\mathbb{Z}/7\mathbb{Z})^{\times}$. We represent the elements of G by $1, 2, \ldots, 6$.

(i) Write down the multiplication table for G.

(ii) Let $H = \{1, 6\}$. Show H is a subgroup of G. (It suffices to check H is closed under multiplication and each element of H has an inverse in H. In other words, you may use the first lemma of the next section.)

(iii) Determine the cosets of H in G.

(iv) Repeat (ii) and (iii) for the set $H = \{1, 2, 4\}$.

3.4 Fermat's little theorem

Exercise 3.7. Check that the powers of a cyclically repeat in this example.

(i) With the notation in the previous exercise (in $(\mathbb{Z}/7\mathbb{Z})^{\times}$), compute 3^k for $1 \leq k \leq 10$.

(ii) What is the cyclic subgroup of $(\mathbb{Z}/7\mathbb{Z})^{\times}$ generated by 3? What about generated by 2?

Exercise 3.8. Use the formula $a^{-1} \equiv a^{p-2} \mod p$ to compute the inverse of 5 mod 11.

3.5 Congruence theorems of Wilson and Lagrange

Exercise 3.9. Exercises 3.5.1, 3.5.2, 3.5.3. (Correction: 3.5.1 should say if n > 5 is not prime, show n|(n-1)!)

Exercise 3.10. Let $P(x) = x^2 + 1$. Clearly P(x) = 0 is not solvable in \mathbb{Z} . However $P(x) \equiv 0 \mod 5$ is solvable mod 5. Determine all solutions.

3.6 Inverses mod k

Exercise 3.11. For $2 \le k \le 7$ and k = 9, do the following. Write down the elements in $(\mathbb{Z}/k\mathbb{Z})^{\times}$ and state the order of the group. For each $a \in (\mathbb{Z}/k\mathbb{Z})^{\times}$, find the smallest n such that $a^n = 1$. Determine if $(\mathbb{Z}/k\mathbb{Z})^{\times}$ is cyclic or not. If it is cyclic, state an element that generates the group.

Exercise 3.12. Show $\phi(p^j) = p^{j-1}(p-1)$ for $j \ge 1$. (Exercises 3.6.1, 3.6.2, 3.6.3.)

Exercise 3.13. We will show in Chapter 9 that if m and n are relatively prime, then $\phi(mn) = \phi(m)\phi(n)$. Check this in the special cases (i) m = 3 and n = 5 (Exercise 3.6.4), and (ii) m = 2 and n is an odd prime.

Exercise 3.14. Determine $\phi(60)$.

Exercise 3.15. Following the proof of Fermat's little theorem, prove Euler's theorem in the same way: For any invertible a mod k, we have $a^{\phi(k)} \equiv 1 \mod k$. (Cf. p. 56.)