Number Theory Fall 2009 Homework 3 Due: Wed. Sep. 16, start of class

Reading

Stillwell goes pretty quickly through the material on groups, as will we. Therefore, if you are not familiar with them already, you may want to do a little reading on your own (say pickup a book on algebra from the library that looks nice, or google introduction to group theory) to see more examples.

Written assignment

3.2 Congruence classes and their arithmetic

Exercise 3.1. Exercises 3.1.3, 3.1.4 (no proof needed for 3.1.4).

Exercise 3.2. Write $a = a_k \cdot 10^k + a_{k-1} \cdot 10^{k-1} + \cdots + a_1 \cdot 10 + a_0$. Prove that a is divisible by 11 if and only if the sum of the odd digits (a_k where k odd) minus the sum of the even digits (a_k where k even) is. (Hint: see Exercises 3.2.2, 3.2.3.)

(Optional, i.e., 0 points) There are several methods for testing divisibility by 7, though they are more complicated. Can you figure any out?

Exercise 3.3. Write down addition and multiplication tables for $\mathbb{Z}/6\mathbb{Z}$.

3.3 Inverses mod p

Definition 3.1. Let G be a set with a binary operation \cdot ., *i.e.*, \cdot is a function from $G \times G \to G$, expressed as $(g,h) \mapsto g \cdot h$. If G satisfies the following properties,

(i) \cdot is associative: $(g \cdot h) \cdot k = g \cdot (h \cdot k)$ for all $g, h, k \in G$;

(ii) there is an identity $1 \in G$ such that $1 \cdot g = g \cdot 1 = g$ for all $g \in G$;

(iii) every $g \in G$ has an inverse g^{-1} such that $g^{-1} \cdot g = g \cdot g^{-1} = 1$;

then we say (G, \cdot) (or just G) is a group. If (i) through (iii) and

(iv) \cdot is commutative: $g \cdot h = h \cdot g$ for all $g, h \in G$

also hold, we say (G, \cdot) (or just G) is an **abelian group**. When the operation is understood, we typically write gh for $g \cdot h$.

Exercise 3.4. Rewrite what properties (i) through (iv) mean when our operation is written as + (called additive) and not \cdot (called multiplicative). Which properties fail for $(\mathbb{N}, +)$? What is the (additive) inverse of $8\mathbb{Z} + 5$ in the group $(\mathbb{Z}/8\mathbb{Z}, +)$?

Exercise 3.5. Prove $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is a finite abelian group. You may take for granted that multiplication is well defined on $\mathbb{Z}/n\mathbb{Z}$ (from the previous section) and associative, though you should say a sentence about why it is well defined on $(\mathbb{Z}/n\mathbb{Z})^{\times}$.