
9 Quadratic Reciprocity

9.1 Primes x2 + y2, x2 + 2y2 and x2 + 3y2

Recall Fermat’s two square theorem (Theorem 6.18), which says if p is an odd prime, p = x2 + y2

if and only if p ≡ 1 mod 4.
Fermat generalized this to the following

Theorem 9.1. Let p be an odd prime. Then p = x2 + 2y2 if and only if p ≡ 1, 3 mod 8.

Theorem 9.2. Let p be prime. Then p = x2 + 3y2 if and only if p ≡ 1 mod 3.

How might we prove these two results?

Let’s recall our proof of Fermat’s two square theorem. One direction is easy: If p ≡ 3 mod 4, then
p 6= x2 + y2 by congruence conditions. For the other direction, suppose p ≡ 1 mod 4. Lagrange’s
Lemma 6.17 (which was proved with Wilson’s theorem) said that p|m2 + 1 for some m. Since
p|m2 + 1 = (m+ i)(m− i) but p - m± i in Z[i] (mp ±

i
p 6∈ Z[i]), this means p is not prime in Z[i] (by

the prime divisor property, which is equivalent to unique factorization). Then p has a nontrivial
factorization p = αβ in Z[i], so p2 = N(p) = N(α)N(β) =⇒ N(α) = N(β) = p, i.e., p = x2 + y2

where x+ yi = α.

Again, one direction of Theorems 9.1 and 9.2 are easy. If p ≡ 5, 7 mod 8, then p 6= x2 +2y2 and
if p ≡ 2 mod 3, then p 6= x2 + 3y2 (see Section 3.7). To prove the hard direction, one needs two
things:

(i) unique factorization in Z[
√
−2] and Z[ζ3], which was covered in Chapter 7; and

(ii) appropriate analogues of Lagrange’s Lemma 6.17.
In this chapter, we will prove a great generalization of Lagrange’s lemma, which is known as the

Law of Quadratic Reciprocity. This was first proven by Gauss, in many different ways, and might
be viewed as the pinnacle of elementary number theory. Along the way, we will also cover another
important result from elementary number theory—the Chinese Remainder Theorem.

9.2 Statement of Quadratic Reciprocity

Let p and q denote odd primes.

Definition 9.3. We say a is a square, or quadratic residue, mod p if x2 ≡ a mod p for some
x ∈ Z. Otherwise, we say a is a nonsquare, or quadratic nonresidue, mod p.

Example. The squares mod 4 are 0, 1; the nonsquares are 2, 3 (up to congruence). (Okay, you
might say 4 is not prime, but this example comes up often, and the definitions are the same for any
mod n.)

Example. Lagrange’s Lemma 6.17 says, if p ≡ 1 mod 4, then p|m2 + 1 for some m, i.e., m2 ≡
−1 mod p for some m, i.e., −1 is a square mod p.

We will soon see that these conditions are equivalent, i.e.,

p is a square mod 4 ⇐⇒ p ≡ 1 mod 4 ⇐⇒ −1 is a square mod p

(The first equivalence is because, up to congruence, only 0 and 1 are squares mod 4.)
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I stated things in this form because it looks somewhat similar to quadratic reciprocity, which
was originally conjectured by Euler in the following form:

If p and q are not both 3 mod 4, then

p is a square mod q ⇐⇒ q is a square mod p. (1)

If p ≡ q ≡ 3 mod 4, then

p is a square mod q ⇐⇒ q is not a square mod p. (2)

It is convenient to introduce some new notation, which will allow us to combine these two cases
into one.

Definition 9.4. Let a ∈ Z such that gcd(a, p) = 1 The Legendre symbol, or quadratic residue
symbol mod p is (

a

p

)
=

{
1 a is a square mod p
−1 else.

(One can extend this to all Z by setting
(
a
p

)
= 0 if gcd(a, p) = p, but we will not use this.) Note

we have defined the Legendre symbol as a map
( ·
p

)
: Z → {±1}, but since the value only depends

on the congruence class mod p, we may view it as a map(
·
p

)
: (Z/pZ)× → {±1} .

Hence we can rewrite (1) as (
p

q

)
=
(
q

p

)
and (2) as (

p

q

)
= −

(
q

p

)
This leads to the typical modern formulation of quadratic reciprocity.

Theorem 9.5. (Quadratic Reciprocity) Let p, q be odd primes. Then(
p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
.

This is equivalent to Euler’s version because p−1
2

q−1
2 is even unless p ≡ q ≡ 3 mod 4. (Note the

statement in the text,
(p
q

)(q
p

)
= (−1)

p−1
2

q−1
2 , is not valid when p = q.)

Example. Note that (
5
p

)
= (−1)p−1

(
p

5

)
=
(
p

5

)
.

The squares mod 5 are 0, 1, 4. Hence 5 is a square mod p if and only if p = 5 or p ≡ 1, 4, mod 5.

Exercise 9.1. Use quadratic reciprocity to determine for which primes p is 7 a square mod p.
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9.3 Euler’s criterion

Again, let p be an odd prime. Denote by �p ⊆ (Z/pZ)× be the nonzero congruence classes which
are squares mod p, e.g., �5 = {1, 4}. Hence for any a ∈ (Z/pZ)×, we may say

(
a
p

)
= 1 if and only

if a ∈ �p.

Exercise 9.2. Show �p is a subgroup of (Z/pZ)×. Show the map σ : (Z/pZ)× → (Z/pZ) given by
σ(x) = x2 is 2-to-1. Conclude the subgroup �p has index 2 in (Z/pZ)×, i.e., |�p| = p−1

2 .

Note this exercise tells us that exactly half of the elements in (Z/pZ)× are squares and half are
nonsquares. The squares and nonsquares are then the two cosets (remember cosets?) of (Z/pZ)×

with respect to the subgroup �p.

Proposition 9.6. (Euler’s criterion) Let a ∈ (Z/pZ)×. Then(
a

p

)
≡ a

p−1
2 mod p.

Proof. Consider the map from (Z/pZ)× → (Z/pZ)× given by

φ(a) ≡ a
p−1
2 mod p

Note that φ(a) ≡ 1 mod p if a ∈ �p. This is because we can write a ≡ x2 mod p so

φ(a) ≡ φ(x2) ≡ xp−1 mod p

by Fermat’s little theorem. By the previous exercise, the squares mod p give p−1
2 solutions to the

polynomial congruence φ(a) ≡ a
p−1
2 ≡ 1 mod p. By Lagrange’s theorem on polynomial congruence

solutions (Section 3.5), this is all of them.
Hence φ(a) ≡ a

p−1
2 ≡ 1 mod p if and only if a ∈ �p, i.e., if and only if

(
a
p

)
= 1. If

(
a
p

)
= 1 we

are done. If
(
a
p

)
= −1, then a

p−1
2 6≡ 1 mod p, but its square is ap−1 ≡ 1 mod p, hence it must be

≡ −1 mod p. Thus in either case, Euler’s criterion holds.

Proposition 9.7. The map
( ·
p

)
: (Z/pZ)× → {±1} is multiplicative, i.e.,

(
ab
p

)
=
(
a
p

)(
b
p

)
, i.e., it is a

group homomorphism. Its kernel is �p.

Recall the kernel of a multiplicative map χ : G → C× is defined to be the set of all a such that
χ(a) = 1.

Note: A group homomorphism χ : G → C× is called a (group) character. Hence the Legendre
symbol is also called the Legendre character or quadratic residue character.

Proof. Multiplicatively follows from Euler’s criterion:(
ab

p

)
≡ (ab)

p−1
2 ≡ a

p−1
2 b

p−1
2 ≡

(
a

p

)(
b

p

)
mod p.

Since congruence mod p distinguishes between 1 and −1, we can conclude
(
ab
p

)
=
(
a
p

)(
b
p

)
.

The statement that �p is the kernel of
( ·
p

)
is immediate from the definitions of �p and the

Legendre symbol.
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Exercise 9.3. Explicitly write down the values of
( ·
p

)
for p = 7, 11, 13. In each case, write down

what the subgroup �p of (Z/pZ)× is.

Proposition 9.8. (First supplementary law)(
−1
p

)
= 1 ⇐⇒ −1 ∈ �p ⇐⇒ p ≡ 1 mod 4.

Proof. By Euler’s criterion, we have(
−1
p

)
≡ (−1)

p−1
2 ≡

{
1 mod p p ≡ 1 mod 4
−1 mod p p ≡ 3 mod 4.

Exercise 9.4. Give a proof of the first supplementary law which does not require Euler’s criterion
as follows. We know if p ≡ 1 mod 4, then −1 ∈ �p by Lagrange’s lemma. So it suffices to show
that −1 6∈ �p for p ≡ 3 mod 4. Show this using Exercise 9.2.

The reason this is called the first supplementary law (to quadratic reciprocity) is the following.
A common question that arises in number theory is to evaluate some Legendre symbol

(
a
p

)
for some

a ∈ Z. Quadratic reciprocity tells us how to do it if a is odd and positive. To take care of a < 0,
we need the first supplementary law, and to take care of a even, we need one more supplementary
law for

(
2
p

)
. We will do this next, and then show how to put everything together to calculate any

Legendre symbol.

9.4 The value of
(
2
p

)
Again, p is an odd prime.

Proposition 9.9. (Second supplementary law)(
2
p

)
= 1 ⇐⇒ 2 ∈ �p ⇐⇒ p ≡ ±1 mod 8.

Proof. The text proves the cases p ≡ 1, 5 mod 8 with an crazy mess of congruences, leaving an
equally complicated mess of congruences for the p ≡ 3, 7 mod 8 cases in the exercises. You can read
that/do the exercise if you want, but I’ll show you one and a half algebraic number theory proofs
of theorem.

The first half of a proof assumes unique factorization (or rather the prime divisor property) in
Z[
√

2] (which is true, and we should get to next semester).
Suppose 2 ≡ x2 mod p. Then p|x2−2 = (x+

√
2)(x−

√
2), but p does not divide either term on

the right. Hence p must not be prime in Z[
√

2] (prime divisor property), i.e., there is a nontrivial
factorization p = αβ in Z[

√
2]. Thus p2 = N(p) = N(α)N(β), which means N(α) = N(β) = p.

Writing α = a − b
√

2, we see p = a2 − 2b2. The squares mod 8 are 0, 1, 4, so we must have
p ≡ ±1 mod 8.

If one tries to do the other direction in a similar way, it is more complicated and involves using
(essentially) Z[

√
±p]. See Cohn’s Advanced Number Theory. I won’t even sketch this, but I wanted
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to point out the above argument for the (⇒) since it’s an argument that we’ve used several times
now.

There is a much more clever proof of the proposition using the 8-th roots of unity in Ono’s
Introduction to Algebraic Number Theory. It involves a couple things we haven’t really covered yet,
but I think you can probably follow the idea anyway, and it shows some of the power of roots of unity.
It goes as follows. Let ζ = ζ8 = e2πi/8 =

√
i and η = ζ+ζ−1. Then η2 = ζ2 +2+ζ−2 = i+2− i = 2,

i.e., η =
√

2. Hence
2

p−1
2 = ηp−1 = ηpη−1 = (ζ + ζ−1)pη−1.

But

(ζ + ζ−1)p ≡ ζp + ζ−p ≡

{
ζ + ζ−1 ≡ η mod p p ≡ ±1 mod 8
ζ3 + ζ−3 ≡ −η mod p p ≡ ±3 mod 8.

Here we have extended the mod notation to a more general ring of (algebraic) integers, namely
Z[ζ], which is not a problem (except possibly psychologically—again α ≡ β mod p means p|β − α
in Z[ζ]). Therefore

2
p−1
2 = (ζ + ζ−1)pη−1 ≡

{
1 mod p p ≡ ±1 mod 8
−1 mod p p ≡ ±3 mod 8,

which proves the proposition by Euler’s criterion.

In the ζ8 proof, we used the fact that (ζ + ζ−1)p ≡ ζp + ζ−p mod p. Prove the equivalent
statement for integers (your proof should apply to this case also):

Exercise 9.5. Let a, b ∈ N. Show for p prime

(a+ b)p ≡ ap + bp mod p.

Show by example this is not true for p not prime.

9.5 The story so far

Before we prove quadratic reciprocity, let’s see how we can compute any Legendre symbol using
quadratic reciprocity and the first and second supplementary laws.

Example. (
12
23

)
=
(

2
23

)2( 3
23

)
= −

(
23
3

)
= −

(
2
3

)
= 1.

I.e., 12 is a square mod 23, which is not obvious without computing the squares mod 23. The first
step was from multiplicativity, the second by quadratic reciprocity, the third by reduction mod 3, and
the fourth by either the second supplementary law or just knowing what the squares are mod 3. An
alternate way to do it is(

12
23

)
=
(
−11
23

)
=
(
−1
23

)(
11
23

)
= (−1)(−1)

(
23
11

)
=
(

1
11

)
= 1.

Here the first step is by congruence mod 23, the second by multiplicativity, the third by both the
first supplementary law and quadratic reciprocity, the fourth by congruence mod 11, and the last is
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because 1 is always a square mod p. In this case both ways are of about equal difficulty, but sometimes
one way is considerably simpler, e.g., if we had

(
22
23

)
it’s easiest to write it as

(−1
23

)
and use the first

supplementary law.

Note that using this trick of writing
(
a
p

)
=
(p−a
p

)
we can always get away with not using the

second supplementary law for computing a specific Legendre symbol. This is because we only need
the second law if a is even, in which case p− a is odd. One could also get away without using the
first supplementary law, e.g.,

(−3
59

)
=
(
56
59

)
=
(
115
59

)
, but this makes things considerably more difficult.

I just wanted to point out that the supplementary laws are useful, but not necessary to compute
specific Legendre symbols. However, we will need the supplementary laws when we want to prove
general theorems—e.g., to determine which primes are of the form x2 + 2y2 or x2 + 3y2.

Example.(
30
59

)
=
(

2
59

)(
3
59

)(
5
59

)
= (−1)(−1)

(
59
3

)(
59
5

)
=
(

2
3

)(
4
5

)
= −1 · 1 = −1,

i.e., 30 is not a square mod 59.

Exercise 9.6. Compute
(
24
61

)
,
(
30
61

)
, and

(
31
61

)
.

9.6 The Chinese remainder theorem

The original form of the Chinese remainder theorem, which was found in Sun Tzu’s (the Art of War
guy) mathematical treatise dating to the 3rd century, is as follows:

Let m,n ∈ N. If gcd(m,n) = 1, then each x = 0, 1, 2, . . . ,mn−1 has a distinct pair of remainders
(x mod m,x mod n).

Example. Do m = 3, n = 5.

From the example, we observe that the the remainders x mod m repeat with period m and
x mod n repeat with period n, so you will never get the same pair again until these periods match
up, which happens at mn since gcd(m,n) = 1. This is the proof of the Chinese remainder theorem.

You might wonder what the Chinese call the Chinese remainder theorem. Maybe just the
remainder theorem? like the French just call French onion soup “onion soup,” Canadians just call
Canadian bacon “bacon,” or Feynman just called the Feynman integral “the integral.” I looked it
up on Chinese Wikipedia, and apparently they also call it the Chinese remainder theorem. I guess
they’re pretty proud of it. In the past it had many different names—“Sun Tzu’s Theorem” is the
only one I can read, which was also they used to call the theorem in Japan.

9.7 The full Chinese remainder theorem

A slight modification of the above Chinese remainder theorem tells us

(x mod m,x mod n) = (y mod m, y mod n) ⇐⇒ x ≡ y mod mn.

The above argument tells us that the pairs of remainders on the left are different when x 6≡
y mod mn, but the converse is obvious

x ≡ y mod mn ⇐⇒ x− y ≡ 0 mod mn =⇒ x− y ≡ 0 mod m and x− y ≡ 0 mod n.
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Hence we may rephrase the Chinese remainder theorem as statement that the map

α : Z/mnZ→ Z/mZ× Z/nZ

given by
α(a) = (a mod m, a mod n)

is 1-1 and onto.1 The full Chinese remainder theorem says that α is a ring homomorphism, i.e.,
α(0) = (0, 0), α(1) = (1, 1),

α(a+ b) = α(a) + α(b)

and
α(ab) = α(a)α(b).

These facts are immediate from congruence arithmetic. Check it:

Exercise 9.7. Let gcd(m,n) = 1 and α : (Z/mnZ) → (Z/mZ) × (Z/nZ) be given by α(a, b) =
(a mod m, b mod n). Check that α(0) = (0, 0), α(1) = (1, 1), α(a + b) = α(a) + α(b) and α(ab) =
α(a)α(b). This means α is a ring homomorphism.

In summary, we have

Theorem 9.10. (Chinese remainder theorem) Suppose gcd(m,n) = 1. The map α : (Z/mnZ)→
(Z/mZ) × (Z/nZ) is a ring isomorphism, i.e., it is 1-1 and onto, α(0) = (0, 0), α(1) = (1, 1),
α(a+ b) = α(a) + α(b) and α(ab) = α(a)α(b).

Corollary 9.11. Suppose gcd(m,n) = 1. Then

(Z/mnZ)× ' (Z/mZ)× × (Z/nZ)×.

In particular φ(mn) = φ(m)φ(n), where φ denotes Euler’s φ-function.

This says that the multiplicative group modmn is isomorphic to the product of the multiplicative
groups mod m and mod n. If you don’t know what the product of two groups means, don’t worry.
What the corollary means should be clear from the proof. But for the record if G and H are two
groups, their product G × H is the group of elements (g, h) where g ∈ G, h ∈ H and the group
multiplication is defined by (g, h)(g′, h′) = (gg′, hh′). (Isomorphic means that two groups are really
the same: precisely, that there is a bijective homomorphism from one to the other. A homomorphism
is a function f : G→ H which respects the group multiplication, i.e., f(gg′) = f(g)f(g′).)

Proof. The corollary essentially makes the following claim:

x ∈ (Z/mnZ)× ⇐⇒ x ∈ (Z/mZ)× and x ∈ (Z/nZ)×.

Again we have slightly abused notation here—what we mean precisely is an integer x is invertible
mod mn if and only if it is both mod m and mod n. This is true because x is relatively prime to
mn if and only if it is relatively prime to m and n.

To see this gives the statement of the corollary, observe that it means the following: if we restrict
the map α : Z/mnZ→ Z/mZ×Z/nZ to (Z/mnZ)×, we get a bijection of the group (Z/mnZ)× with
the product group (Z/mZ)× × (Z/nZ)×. Since α is multiplicative, it is a group isomorphism.

Exercise 9.8. Exercises 9.7.1, 9.7.2.
1We never defined what a mod m means if a ∈ Z/mnZ, but it should be obvious. If we want to be more precise,

we can read this statement for a ∈ Z, not a ∈ Z/mnZ, but since it clearly only depends on the value a mod mn, it
indeed defines a function on Z/mnZ.
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9.8 Proof of quadratic reciprocity

Proof. Let p, q be distinct odd primes. Set P =
{

1 ≤ x ≤ pq−1
2 | gcd(x, pq) = 1

}
, so (Z/pqZ)× =

P ∪ −P , where −P = {−x|x ∈ P}. We consider
∏
x∈P x mod p and mod q.

Note that P consists of q−1
2 full sequences 1, 2, . . . , p−1 mod p and the half sequence 1, 2, . . . , p−1

2 mod p
minus the multiples q, 2q, . . . , p−1

2 q of q. Hence∏
x∈P

x ≡ ((p− 1)!)
q−1
2

(
p− 1

2

)
!/q

p−1
2

(
p− 1

2

)
! ≡ (−1)

q−1
2

(
q

p

)
mod p,

where the second equivalence comes from Wilson’s theorem, along with the fact that 1/q
p−1
2 ≡

±1 ≡ q
p−1
2 ≡

(q
p

)
mod p, using Euler’s criterion. Similarly

∏
x∈P

x ≡ (−1)
p−1
2

(
p

q

)
mod q.

In other words ∏
x∈P

α(x) ≡
(

(−1)
q−1
2

(
q

p

)
, (−1)

p−1
2

(
p

q

))
mod (p, q) (3)

On the other hand, since (Z/pqZ)× = P ∪ −P , the Chinese Remainder Theorem says that
α(P ) = {α(x)|x ∈ P} contains exactly one of (a, b) and (−a,−b) for each 1 ≤ a ≤ p − 1 and
1 ≤ b ≤ q−1

2 . Hence∏
x∈P

α(x) ≡ ±
(

(p− 1)!
q−1
2 ,

(
q − 1

2

)
!p−1

)
≡
(

(−1)
q−1
2 ,

(
q − 1

2

)
!p−1

)
mod (p, q).

Note that

−1 ≡ (q − 1)! ≡ 1 · 2 · · · q − 1
2
· (−1)(−2) · · · (−q − 1

2
) ≡ (−1)

q−1
2

(
q − 1

2

)
!2 mod q,

hence (
q − 1

2

)
!p−1 ≡

((
q − 1

2

)
!2
) p−1

2

≡
(
(−1)(−1)

q−1
2

) p−1
2 ≡ (−1)

p−1
2 (−1)

p−1
2

q−1
2 mod q.

Thus ∏
x∈P

α(x) ≡ ±
(
(−1)

q−1
2 , (−1)

p−1
2 (−1)

p−1
2

q−1
2

)
mod (p, q). (4)

Dividing (3) by (4), we get

(1, 1) ≡ ±
((

q

p

)
, (−1)

p−1
2

q−1
2

(
p

q

))
mod (p, q).

This means (
q

p

)
= (−1)

p−1
2

q−1
2

(
p

q

)
,

which is precisely the Quadratic Reciprocity Law.
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The following exercises are related to our proof of quadratic reciprocity.

Exercise 9.9. Let p, q be distinct odd primes. Determine the elements x ∈ (Z/pqZ)× such that
x2 ≡ 1 mod pq. (Hint: think about the Chinese Remainder Theorem). Using this, prove that∏
x∈(Z/pqZ)× x ≡ 1 mod pq in the same way we proved Wilson’s Theorem.

Exercise 9.10. As in the proof, set

P =
{

1 ≤ x ≤ pq − 1
2
| gcd(x, pq) = 1

}
.

Deduce from the previous exercise that
(∏

x∈P x
)2 ≡ 1 mod pq.

Note that if one knew
∏
x∈P x ≡ ±1 mod pq, this would say

∏
x∈P α(x) ≡ ±(1, 1) mod (p, q),

hence (3) would mean (−1)
q−1
2

(q
p

)
= (−1)

p−1
2

(p
q

)
, which is not true. (In the previous exercise, you

determined which elements square to 1, and it’s not just ±1 anymore.) As we see from (4), the
actual determination of

∏
x∈P α(x) (even up to ±1) is more complicated. This is an example of how

working mod pq is more complicated than working mod p.

Now we can sketch the proofs of Theorems 9.1.

Proof. (of Theorem 9.1) First suppose p is an odd prime of the form x2 + 2y2. Then examining the
squares mod 8 shows p ≡ 1, 3 mod 8. This is the easy direction of Theorem 9.1.

To prove the converse, we first claim that p = x2 + 2y2 if and only if p is not prime in Z[
√
−2],

which we know has unique factorization from Chapter 7. If p = x2+2y2 then (x+y
√
−2)(x−y

√
−2)

is a non-trivial factorization of p in Z[
√
−2] so it is not prime. Conversely, if p factors non-trivially

in Z[
√
−2], say p = αβ, then p2 = N(α)N(β) implies N(α) = x2 + 2y2 = p where α = x+ y

√
−2.

(Actually, we only need the “if” direction of this claim.)
Now suppose p ≡ 1, 3 mod 8. Then we claim p|m2 + 2 for some m. This follow from the two

supplementary laws of quadratic reciprocity: p|m2 + 2 iff m2 ≡ −2 mod p iff
(−2
p

)
=
(−1
p

)(
2
p

)
= 1,

which is true. Since p|(m +
√
−2)(m −

√
−2), but p - m ±

√
−2 in Z[

√
−2], p is not prime by the

prime divisor property. This proves the Theorem.

Note that we did not actually need quadratic reciprocity—just the supplementary laws. We do
however for Theorem 9.2, which is homework.

Exercise 9.11. (Proof of Theorem 9.2) Let p > 3 be prime. (i) Show p = x2 + 3y2 implies
p ≡ 1 mod 3. (ii) Show p = X2 − XY + Y 2 with X ≡ Y mod 2 if and only if p is not prime in
Z[ζ3]. (iii) Find half-integers a, b, c, d ∈ 1

2Z such that X2−XY +Y 2 = x2 +3y2 where x = aX+bY ,
y = cX + dY . (iv) Deduce that p = x2 + 3y2 if and only if p is not prime in Z[ζ3]. (v) Suppose
p ≡ 1 mod 3. Using quadratic reciprocity, show p|m2 + 3 for some m. Conclude p is of the form
x2 + 3y2.

9.9 Discussion

Worthwhile reading. I am thinking about trying to cover some higher reciprocity laws in the second
semester, so let me know if you think it sounds interesting.
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