Throughout this set, \(V \) denotes a vector space. All of the exercises are fundamental, though for preparation purposes, I’ve included many more than I will be able to fit on an exam. I’ve starred a few which I think you should pay special attention to.

1. Go over the problems on your quiz and previous homeworks, and make sure you can do them correctly.
 Done.

True/False

Circle T or F.

2. T F Any two nonzero vectors in \(\mathbb{R}^3 \) are linearly independent.
 False. They could be scalar multiples of each other.

3. T F A minimal spanning set for \(V \) is a basis for \(V \).
 True. A minimal spanning set means it is LI.

4. T F Any subspace of \(\mathbb{R}^2 \) is either a line through the origin or \(\mathbb{R}^2 \).
 False. These are all the \(1 \)- and \(2 \)- dimensional subspaces, but there is also the 0-dimensional subspace, i.e., just the origin.

5. T F The span of two nonzero vectors is either a line through the origin or a plane through the origin.
 True. The span must either be a 1- or 2- dimensional subspace of \(\mathbb{R}^2 \).

6. T F The set of polynomials in \(x \) of degree at most 5 form a vector space.
 True. This example was in the text and in lecture.

7. T F There is a linear transformation from \(\mathbb{R}^2 \to \mathbb{R}^3 \) whose image is the cone \(x^2 + y^2 = z^2 \).
 False. The image is not a subspace of \(\mathbb{R}^3 \).

8. T F There is a linear transformation from \(\mathbb{R}^3 \to \mathbb{R}^2 \) whose image is the line \(y = x + 1 \).
 False. The image is not a subspace of \(\mathbb{R}^3 \).

9. T F There is a linear transformation from \(\mathbb{R}^2 \to \mathbb{R}^3 \) whose image is the plane \(z = x + y \).
 True. For example \(A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \) works, since the columns form a basis for this plane.

10. T F There is a linear transformation from \(\mathbb{R}^2 \to \mathbb{R}^3 \) whose image is \(\mathbb{R}^3 \).
 False. The rank (dimension of the image = 3 here) must be at most the dimension of the domain (2 here).

Questions

11. If \(S = \{v_1, v_2, \ldots, v_k\} \subseteq V \), define \(\text{span}(S) \).
 Answer in words: the set of all linear combinations of \(v_1, \ldots, v_k \).
 Answer in symbols: \(\text{span}(S) = \{a_1v_1 + a_2v_2 + \cdots + a_kv_k : a_1, \ldots, a_k \in \mathbb{R}\} \).

12. With \(S \) as above, define what it means for \(S \) to be a basis of \(V \).
span(S) = V and S is LI.

13. With S as above, define what it means for S to be linearly independent.

The equations

\[a_1 v_1 + a_2 v_2 + \cdots + a_k v_k = 0 \]

has only the trivial solution

\[a_1 = a_2 = \cdots = a_k = 0. \]

14. Find two different bases for \(\mathbb{R}^2 \) (no proof needed).

For example \(S_1 = \left\{ \begin{pmatrix} 1 \\ 2 \\ 3/4 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \) and \(S_2 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 17026 \\ 1 \end{pmatrix} \right\} \).

15. Consider the basis \(S = \{ t^2 + 1, t + 1, 3t^2 - t \} \) for the space of polynomials of degree at most 2. If \([v]_S = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} \), find \(v \).

\[v = 3(t^2 + 1) + 2(t + 1) - 1(3t^2 - t) = 3t + 6. \]

16. Consider the basis \(S = \left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} \right\} \) of \(\mathbb{R}^4 \). If \(v = \begin{pmatrix} 4 \\ 6 \end{pmatrix} \), find \([v]_S \).

We want to write \(v = \begin{pmatrix} 4 \\ 6 \end{pmatrix} = a \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix} + b \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix} \), i.e., solve \(\begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix} \). Solving this, we see \(a = \frac{8}{3} \) and \(b = \frac{2}{3} \), so \([v]_S = \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 8/3 \\ 2/3 \end{pmatrix} \).

Problems

Show your work.

17. Show that the set of vectors of the form \(\begin{pmatrix} a \\ b \\ a + b \end{pmatrix} \) in \(\mathbb{R}^3 \) forms a subspace of \(\mathbb{R}^3 \). Find a basis for this space (no proof needed). What is its dimension? Describe this space geometrically.

Let \(W = \left\{ \begin{pmatrix} a \\ b \\ a + b \end{pmatrix} \right\} \). Let \(\begin{pmatrix} a \\ b \\ a + b \end{pmatrix}, \begin{pmatrix} a' \\ b' \\ a' + b' \end{pmatrix} \in W \) and \(c \in \mathbb{R} \). Then

\[\begin{pmatrix} a \\ b \\ a + b \end{pmatrix} + \begin{pmatrix} a' \\ b' \\ a' + b' \end{pmatrix} = \begin{pmatrix} a + a' \\ b + b' \\ (a + a') + (b + b') \end{pmatrix} \in W \]

and

\[c \begin{pmatrix} a \\ b \\ a + b \end{pmatrix} = \begin{pmatrix} ca \\ cb \\ ca + cb \end{pmatrix} \in W, \]

i.e., \(W \) is closed under addition and scalar multiplication, and therefore a subspace of \(\mathbb{R}^3 \).

Alternatively, observe \(\begin{pmatrix} a \\ b \\ a + b \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \), i.e., \(W = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\} \) and therefore is a subspace of \(\mathbb{R}^3 \). (Recall \(\text{span}(S) \) is always a subspace.)
The above shows \(\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\} \) is a basis for \(W \). Its dimension is 2, and geometrically it is the plane in \(\mathbb{R}^3 \) determined by \(\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} \). A nicer way to describe geometrically is simply as the plane \(z = x + y \) (\(W \) is the set of vectors whose 3rd coordinate is the sum of the first 2.)

18. Do the same as the previous problem for the subset \(\{(x, y, z) : x + y + z = 0\} \) of \(\mathbb{R}^3 \).

Similar to above, I’ll omit the solution, and just observe you can write this as the space \(W = \left\{ \begin{pmatrix} a \\ b \\ -a - b \end{pmatrix} \right\} \).

19. Is \(\{(x, y, z) : 2x - 3y + z = 1\} \) a subspace of \(\mathbb{R}^3 \)?

No. It does not contain the origin.

20.* Let \(A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \).

(a) Find a basis for the image of \(A \).
(b) Find a basis for the kernel of \(A \).
(c) Determine rank \(A \) and nullity \(A \).

It row reduces to the identity, so all columns are linearly independent. Recall for this, and subsequent problems, the image of \(A \) is just the span of the columns of \(A \).

Therefore

(a) Any basis for \(\mathbb{R}^3 \) is a basis for \(A \), e.g., the standard basis, or \(\left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\} \).

(b) By the rank nullity theorem (or the row reduced form) the kernel is trivial, i.e., \(\ker A = \{0\} \), so a basis is the empty set.

(c) \(\text{rank}(A) = 3 \) and \(\text{nullity}(A) = 0 \).

Note: I believe we didn’t actually say the basis or \(\{0\} \) is the empty set in class, so it probably wouldn’t be on the exam like this. I meant to give a matrix of rank 2. So on the exam, I might either ask just for the kernel (not a basis) or make sure the kernel is nontrivial.

21. Do the same as the previous problem for \(A = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 2 & -2 & 1 & 1 \\ -2 & -2 & -1 & 1 \\ 3 & 3 & 0 & -1 \end{pmatrix} \).

It row reduces to

\[
\begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & 3 & -3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.
\]

Therefore

(a) the first three columns of \(A \) form a basis for the image;
(b) the kernel is the set of \(\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \) with \(w \) free, \(z = \frac{1}{3} w \), \(y = \frac{1}{2} w \) and \(x = -\frac{1}{6} w \), i.e., \(\ker A = \left\{ \begin{pmatrix} -1/6 \\ 1/2 \\ 1/3 \\ w \end{pmatrix} \right\} \) so a basis is \(\begin{pmatrix} 1/2 \\ 1/3 \\ w \end{pmatrix} \); and
(c) \(\text{rank}(A) = 3 \) and \(\text{nullity}(A) = 1 \).
22. Find a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 whose image is the set of vectors of the form $\begin{pmatrix} a \\ 2b-a \\ b \end{pmatrix}$.

Note $\begin{pmatrix} 2b-a \\ b \end{pmatrix} = a \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$, i.e., we want the image to be the span of $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$. Hence

$$A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \\ 0 & 1 \end{pmatrix}$$

does the job.

23. Find a linear transformation from \mathbb{R}^3 to \mathbb{R}^3 whose image is the plane $z = x + y$.

We need a basis for this plane, so take two vectors in the plane which are not LI, say $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. Now we need a 3×3 matrix who columns spans this plane, e.g.,

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

(Remark: this plane is the space from #17.)

24.* Let $u, v \in V$. Show $\{u, v\}$ is linearly dependent if and only if $u = cv$ or $v = cu$ for some $c \in \mathbb{R}$.

Proof. (\Rightarrow) Suppose $\{u, v\}$ is linearly dependent. This means $au + bv = 0$ for a, b not both 0. If $a \neq 0$ then $u = -\frac{b}{a}v$. Otherwise, $a = 0$ so $bv = 0$ with $b \neq 0$, i.e., $v = 0$ so $v = 0 \cdot u$.

(\Leftarrow) Now suppose $u = cv$ or $v = cu$. If $u = cv$, then $u + (-c)v = 0$, i.e., u and v are linearly dependent. The case $v = cu$ is similar.

25. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Suppose A is a projection (i.e., its image is a line or a point). Show $\det A := ad - bc = 0$.

Proof. If A is a projection, this means its rank is 0 or 1, i.e., the columns of A are linearly dependent. If either column is all zeroes, it is clear $\det A = 0$. Otherwise $\begin{pmatrix} a \\ b \end{pmatrix} = k \begin{pmatrix} c \\ d \end{pmatrix}$ for some k. Then $\det(A) = ad - bc = a(kb) - b(ka) = 0$.

26.* Let $A : \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation. Suppose the kernel of A is a plane in \mathbb{R}^4. What can you say about the image of A?

$\ker(A)$ being a plane means $\text{nullity}(A) = 2$, so by the Rank-Nullity Theorem, $\text{rank}(A) = 2$, i.e., the image of A is a plane (through the origin) in \mathbb{R}^3.
