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Introduction

Graph theory is a branch of discrete mathematics (more specifically, combinatorics) whose origin
is generally attributed to Leonard Euler’s solution of the Königsberg bridge problem in 1736. At
the time, there were two islands in the river Pregel, and 7 bridges connecting the islands to each
other and to each bank of the river. As legend goes, for leisure, people would try to find a path
in the city of Königsberg which traversed each of the 7 bridges exactly once (see Figure 1). Euler
represented this abstractly as a graph⇤, and showed by elementary means that no such path exists.

Figure 1: The Seven Bridges of Königsberg (Source: Wikimedia Commons)

Intuitively, a graph is just a set of objects which are connected in some way. The objects are
called vertices or nodes. Pictorially, we usually draw the vertices as circles, and draw a line between
two vertices if they are connected or related (in whatever context we have in mind). These lines
are called edges or links.

Here are a few examples of abstract graphs.
This is a graph with 8 vertices connected in a circle.

⇤In this course, graph does not mean the graph of a function, as in calculus. It is unfortunate, but these two very
basic objects in mathematics have the same name.
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This is a graph on 5 vertices, where all pairs of vertices are connected.
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Here is a “random graph” on 15 vertices generated by a computer—in this case, each pair of
vertices had a 15% chance of being connected.
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Note that the physical location of the vertices in the drawings are unimportant, only which
vertices are connected matters. For example, the following two graphs are the same.

1 2

3

1 2 3

Graphs naturally arise in many ways, as they are a convenient way to visualize various situations
or complex symptoms. In fact graphs are nearly ubiquitous in mathematics as they can be used to
represent di↵erent aspects of all kinds of mathematical structures. Consequently, graphs are also
prevalent in many scientific fields, where they are often called networks. Technically the two terms
are interchangeable, but one typically uses the term network when one is thinking about social or
technological connections.

Here are a few examples of situations where graphs arise.

Geometry/Topology: Polygons are vertices and edges in the plane, and can be thought of as
graphs. Note that the graph is not the same as the underlying polygon—things like edge length
and vertex angles are not considered in the graph. So in some sense, the graphs of a polygon is the
polygon without its geometry. This is perhaps not so interesting for polygons, but one can do the
same for polyhedra (e.g., the Platonic solids) where looking at the analogous graphs is very useful
in the study of surfaces and higher-dimensional objects.

Algebra: Algebra is the study of mathematical structures, e.g., groups, rings and fields, if you
know what those are. Graphs are often used to relate how various structures are related to each
other (e.g., subgroup lattices), or to understand individual objects, e.g., group actions on graphs).
The notion of group actions on graphs has many applications to constructions of combinatorial
designs, which are important in error-correcting codes and cryptography.

Electric engineering: Electric circuits are graphs, and graph theory has been used in circuit
analysis since Kircho↵ in the mid 1850’s.

Chemistry: Molecular graphs are representations of molecules as graphs—here are the atoms in
the molecule and the edges are the bonds. This point of view was first taken up by Cayley in the
1870’s.

Geography: Consider a map, say of Europe. Let each country be a vertex and connect two
vertices with an edge if those countries share a border. A famous problem that went unsolved
for over a hundred years was the four color problem. Roughly this states that any map can be
colored with at most 4 colors in such a way that no to adjacent countries have the same color. This
problem motivated a lot of the developments of graph theory and was finally proved with the aid
of a computer in 1976.

Transportation networks: The US Cities and highway system make a graph, with the cities
being the nodes and the highways being the edges. More locally, one could consider the Norman
Area bus system, where the nodes are the bus stops and two nodes are linked if they are successive
bus stops on a single bus line. Similarly, an airline’s flight network forms a graph. For these
networks, the distance between two nodes is quite important in terms of time/fuel costs, and one
can incorporate the distance into the graph by “weighting” the edges. The typical problems in
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transportation networks are designing e�cient networks and finding e�cient ways to route tra�c
(e.g., what’s the best way for you to fly from Oklahoma City to Sydney, Australia?).

As a di↵erent kind of transportation network, but entirely analogous, electric power grids and
water supply systems also form graphs.

Communication networks: Computer systems in a local network form a graph. So do the
landline telephone cable systems and internet routing systems. These can also be thought of as
“transportation” networks, where now what is being transported is data. Again, design and routing
and principal issues in these networks.

Social networks: In sociology, economics, political science, medicine, social biology, psychology,
anthropology, history, and related fields, one often wants to study a society by examining the
structure of connections within the society. This could be friend networks in a high school or
Facebook, support networks in a village or political/business connection networks. For these sorts
of networks, some basic questions are: how do things like information flow or wealth flow or shared
opinions relate to the structure of the networks, and which players have the most influence? In
medicine, one is often interested in physical contact networks and modeling/preventing the spread
of diseases. In some sense, even more basic questions are how do we collect the data to determine
these networks, or when infeasible, how to model these networks?

The World Wide Web: One can form a graph of all webpages, and make an edge from Page A
to Page B if there is a hyperlink from Page A to Page B. In this case, one should consider directed
edges, meaning each edge has a direction which is pictorially indicated with an arrow. Here some
basic problems are searching the web and ranking web pages (to get search results in a useful order).
Due to the incredible size of the web and amount of information, searching is highly nontrivial.
Web page ranking is closely related to the problem of determining how much influence players have
in a social network.

Like the web, Twitter also gives rise to a directed social network, where the nodes are the users
and the arrows point in the direction of “following.”

Game theory/Discrete Dynamical Systems For games (deterministic or not) where there are a
finite number of possible moves at each step, you can diagram the game as a graph. Here the
vertices are the possible states of the games and the edges represent the moves going from one
state to another. (Draw yourself the first few parts of the graph for Tic-Tac-Toe.) Thus the course
of the game will be viewed as following a certain path in the associated graph and ending at a
“terminal node.” More generally graphs can be used to visualize discrete dynamical systems, and
some ideas from dynamical systems are extremely useful in social/technological networks (e.g.,
Google’s Pagerank algorithm).

Neurobiology/Artificial Intelligence: The brain is an immensely complex network, and some
graph theory can be used to examine the structure of the brain. Many attempts at developing
forms of artificial intelligence are based on the idea of neural networks, which are simple feedback
networks that can be trained to perform tasks such as optical character recognition or speech
recognition.

Being a bit broader with our terminology, we might consider transportation networks, com-
munication networks and the World Wide Web as kinds of social networks as well (they are all
products of societies). However I separated them above because they have di↵erent features and
one typically asks di↵erent types for di↵erent types of networks. Indeed, communcation and trans-
portation networks motivated a lot of “classical” graph theory, whereas study of social networks
has led many newer directions in graph theory. In particular, with the advent of modern computing
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and the internet, understanding large networks is a major theme in modernd graph theory.
Our rough plan for the course is as follows.
First, we’ll look at some basic ideas in classical graph theory and problems in communication

networks. E.g., how can you analyze the e�ciency or robustness of a networks. This leads to
notions of distance, diameter, k-connectedness and network flow.

Second, we’ll give a brief overview of some key themes in social networks and complex (large)
networks. Here some topics are notions of centrality, clustering, degree distributions and small
world phenomena. In these first two parts we’ll get our hands dirty by writing and analyzing some
algorithms for these things, but we’ll also do exercises by hand.

Third, we’ll look at spectral graph theory, which means using linear algebra to study graphs, and
random walks on graphs. This will give us a useful way to study network flow for communication
networks and do things like rank webpages or sports teams or determine how influential people are
in social networks.

Finally, we’ll study random graphs to get some insight into large networks. This will be the
most “experimental” part of the course, in the sense that, while we hope to do a little theory, much
will be learned by generating and working with examples on the computer. Time permitting, we’ll
spend some time discussing dynamic networks and modeling information flow/disease transmission.

In terms of computer software, we will work initially in Python (current version 2.7.6) for
writing simple code to work with graphs, then use built-in algorithms in Sage (current version 5.12,
which is compatible with Python 2, but not Python 3) to do more complex things, and possibly use
Sage and Python in tandem. While I don’t intend to make this a course on Computational Graph
Theory or Algorithmic Graph Theory (i.e., how to program everything), I think it’s important to
have exposure to the nitty-gritty of at least some graph theory algorithms to truly understand the
main issues of modern graph theory, which in large part stem from computational complexities.

However, be at peace—no previous experience with this software, or with programming, is
required or expected.

The mathematical prerequisites for this course are: (1) some familiarity with proofs, as our
Discrete Math or Linear Algebra courses; (2) some linear algebra (eigenvalues, eigenvectors, etc).
We’ll briefly review some of the necessary linear algebra as we go along, but you really should’ve
have seen it before to hope to be able to get a good understanding of the third part of the course.
We’ll also need basic probability in the latter two parts of the course. I’ll introduce this when the
time comes, but it wouldn’t hurt to have seen a little before.

Due to both the choice of topics and use of computer software, this will be a very non-traditional
course in graph theory, which is why I couldn’t find an appropriate textbook and will write my own
notes. Based on the goals for the course, I won’t be able to cover a lot of things that are covered in
a typical graph theory course. Indeed we’ll be quite pressed for time with my current goals. I will
include some explanations of how to do things in Python and Sage in these notes, and snippets of
sample code, but these notes will not contain detailed information on how to use Python and Sage
in general—this information can be found elsewhere online, and will be covered in our Computer
Lab Meetings.

For fun, I made an example of a social network graph involving some people you may know: the
OU Math Department. See Figure 2. Let’s take a look at this before we get started in earnest, to
give you a better idea of some things we’ll be doing throughout the course. This is a collaboration
graph. The vertices are current or semi-recent previous faculty and postdocs within the OU Math
Department. The postdocs (3-year positions) are all in blue, and regular faculty (tenure/tenure-
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track) are in red (current) or black (previous). Two faculty are connected if they have been
collaborators (co-authors of the same paper at least once). Faculty who have not collaborated with
anyone in the department are not named, but just represented the 11 isolated nodes (nodes not
connected to any other nodes). In fact there should be more isolated nodes, but I got tired after
drawing 11 of them.

Note, I just made this on my own one afternoon, and there may be some additional collabora-
tions that I’ve missed—in any case it will probably not be up-to-date for too long. However, let’s
try to get a little taste of network analysis by making some comments on this graph.

First of all, I was a bit surprised at how connected it is. While our department is quite friendly
and social, most mathematics research is quite specialized, and most collaborations tend to occur
among people in di↵erent universities. (I’ve written 9 papers since being at OU, of which 3 involve
an OU collaborator.) Further, a lot more research in math is solo than in the other sciences. Even
taking into account collaborations at the same university, one might expect that each research area
is isolated from the other ones: e.g., number theorists just collaborate with other number theorists,
geometers just collaborate with other geometers, and so on. However, forgetting the 11 isolated
nodes for now, this graph consists of 3 components⇤ of size 2, 1 of size 3, 1 of size 4, and then
one large component of size 23: meaning most of the faculty are connected to each other through
collaborations, instead of all the di↵erent research groups being disconnected from each other. This
is part of the small world phenomena—in many social networks, things tend to be remarkably well
connected.

For the rest of the discussion, let’s restrict ourselves to the large component, which looks sort
of like a reindeer. In fact, this component looks quite similar to the random graph on 15 vertices
presented earlier (which to me, looks like a dog). This visual similarity, in the sense that they both
look like balloon animals, was not due to any intentional planning on my part, but just something
I noticed after making them. However, it’s not mere coincidence—organically-formed networks can
be modeled quite well by random graphs. That is what we’ll focus on in the last part of the course.

Back to our discussion. Another aspect of small world phenomena, besides having a large
component, is what is sometimes known as six degrees of separation. This is a notion about “how
well connected” a network is. Define the distance d(u, v) between two nodes u and v to be the
minimum number of edges one needs to traverse to get from node u to node v. For example,
there are many ways one can get from Shankar to Forester—directly, going through Brady, going
through Brady, Dani and Clay, and so on. However, the shortest route just consists of 1 edge, so
the distance from Shankar to Forester is 1. Similarly the distance from Shankar to Lousma is 2,
Shankar to Rafi is 3, and so on.

Six degrees of separation refers to the notion that in many social networks, even though the
network may be very large, most people who are connected are not more than 6 steps (distance 6)
away from each other. An alternative interpretation is that most people are no more than 6 steps
away from a given individual. The number 6 is not so important here, and is not a magic number
for all networks—the idea is just that if you pick two people at random, they will be rather close.
The farthest apart 2 of these 23 people are is Rubin and Basmajian, at distance 11. But if you pick
2 people in here at random, chances are that their distance will be much smaller. Looking at the
alternative interpretation, I’m in the middle in some sense, and I’m within distance 5 from anyone
else in the reindeer.

⇤A (connected) component is the part of a graph consisting of all nodes connected to a single given node by some
sequence of edges.

6



Graph Theory/Social Networks Introduction Kimball Martin (Spring 2014)

Goodey

Reeder

Yaskin

Yaskina

Leite

Petrov

Zhu

Wei

Barnard

Basmajian

Brady

Clay
Dani

Forester

Lee

Martin

McCullough

McKee

Miller
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Figure 2: Collaborations within the OU Math Department
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One question that’s common in many social networks is: who is the “most popular”? For
this, we can look at the degree of each node, which is the number of edges coming out of it, or
equivalently, the number of other nodes it is directly connected to. Then one way to interpret
“most popular” is simply having the highest degree, though for a collaboration network, “popular”
isn’t really a good word—I just mean who’s worked with the largest number of people. In this case,
Brady has the highest degree (6), followed by Clay (5), then Forester (4).

Another question is who has the most “influence”? You might first think that this is the same
question as popularity, but it isn’t. In fact for many things, e.g. predicting who might be able to
win an election, influence may be more important than popularity, in the way I use these two terms
here. Popularity (as we interpreted it) is a local trait. You can determine someone’s popularity
just by counting their neighbors (the neighboring vertices). Influence is a global trait. For instance,
even though Przebinda and Özaydin are tied in terms of “popularity” (both degree 3), Przebinda is
one step closer to McKee, and therefore most people in the reindeer, than Özaydin. In other words,
Przebinda should be viewed as more “influential” as he is closer to more people in the graph than
Özaydin is. Being closer to more people says you are more “central,” and let’s use the term central
now instead of influential. (I don’t want you to think our math department is full of clandestine
politicking and power struggles, though some departments are! Also remember, this graph also
doesn’t represent the social structure of our department—only collaborations.)

There are several di↵erent ways to measure centrality. Here is a simple one. For each node u,
define its centrality as the sum over all other nodes v (in the same component) of 1

d(u,v)

2 . (One

could also define it without the squares.) Then the higher the centrality, the closer you are to more
nodes. A more sophisticated way to define centrality involves the idea that you should weight these
distances by how central v itself is. (Being distance 1 from a more central node is better than being
distance 1 from a node on the outskirts.) It may not be clear how to make sense of a definition of
centrality that already involves centrality, but this can be done with eigenvalues, and is one of two
essential ideas behind Google’s Pagerank algorithm.

Another phenomena you may notice is clustering. Look at the triangles in the graph. There
are 6 in the large component and 1 in the component of size 4. However, the triangles in the large
component aren’t spread out evenly—5 of them are adjacent (the reindeer’s head and hat). This
phenomenon that triangles tend to group together in social networks is known as clustering. This
just means there tend to be tight-knit groups within social networks. Often one measures clustering
to say something about the structure of a network.

If you want to extrapolate qualitative information from the graph, you can, but due to the
nature of this particular graph it won’t be too precise. For example, let’s say you want to use this
graph to say something about the research interests of faculty members. (Probably a more natural
use for this graph would be as an example in a study of how much being in the same institution
factors into collaborations.) While my research interests are closer to those of Brady’s or Forester’s
than say Rubin or Lee as suggested by the distances in the graph, you don’t see that my research
interests are closer to those of Rafi’s than Miller’s (or probably Brady’s also), even though Rafi and
I are farther apart in the graph. In fact, Pitale, Schmidt and I all work in the same area, and we
are closer to Roche and Spallone than anyone in the top half of the reindeer. Even though the data
is real, you should be careful not to overinterpret it as being a graph of our research interests, or
how much we interact. Writing a paper with someone may or may not mean that you both work in
the same are most of the time (my paper with Shankar was in an area that neither of us typically
work in—in addition, research interests often change over time).
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However, there are some things we can do to incorporate more information in the graph. First,
one does not get a sense of the strength of the connections. For example Pitale and Schmidt
have written many papers together, but Stewart has only written a couple papers with Pitale and
Schmidt (these two papers consisted of all 3 authors and 1 additional one). One could weight the
edges by counting the number of papers co-authored. This would make it clear that Pitale and
Schmidt are closer to each other than either of them are to Stewart. It is also not clear from
the graph whether a triangle represents, say, a single paper coauthored by 3 people or 3 di↵erent
collaborations by each possible pair of the 3 people. This can be incorporated by allowing “faces”
(in the sense of a face of a parallelopiped) in graphs, which are called hypergraphs. We will look at
weighted graphs briefly, but not discuss hypergraphs in this course.

Another aspect not seen in this graph is that this is just a snapshot of all collaborations up to
the present time. One can understand more about department research connections by looking at
how the network evolves over time. Indeed, social networks tend to be dynamic networks with new
nodes being added, nodes being removed and links changing all the time. This is another challenge
in data collection and analysis for a given social network. (Further, not all of the collaborations
between OU faculty in the graph actually occurred at OU—some collaborations began before one
or both parties involved was at OU. Conversely, this might be a factor into who gets and accepts
job o↵ers at OU.)

Finally, the main reason for not being able to read too much into this graph is that it’s just
too small to get sophisticated information. This is the same problem as not having enough data
in statistics. If you embed this graph in a larger collaboration graph of all mathematicians in the
world, it should be much more clear that Pitale, Schmidt and I all work in the same area, where as
Shankar and I typically do not. Even though there may be some “random connections” between
people in di↵erent research areas, in a huge collaboration graph the number of these random
connections will be quite small and can be basically ignored by using more sophisticated analysis
techniques. While this may all seem rather frivolous, these ideas actually have immense potential
for applications—for example these ideas about using collaboration graphs to distinguish di↵erent
research areas can be used in things like machine learning/artificial intelligence and face/pattern
recognition.
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