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Introduction

Graph theory is a branch of discrete mathematics (more specifically, combinatorics) whose origin
is generally attributed to Leonard Euler’s solution of the Königsberg bridge problem in 1736. At
the time, there were two islands in the river Pregel, and 7 bridges connecting the islands to each
other and to each bank of the river. As legend goes, for leisure, people would try to find a path
in the city of Königsberg which traversed each of the 7 bridges exactly once (see Figure 1). Euler
represented this abstractly as a graph∗, and showed by elementary means that no such path exists.

Figure 1: The Seven Bridges of Königsberg (Source: Wikimedia Commons)

Intuitively, a graph is just a set of objects which are connected in some way. The objects are
called vertices or nodes. Pictorially, we usually draw the vertices as circles, and draw a line between
two vertices if they are connected or related (in whatever context we have in mind). These lines
are called edges or links.

Here are a few examples of abstract graphs.
This is a graph with 8 vertices connected in a circle.

∗In this course, graph does not mean the graph of a function, as in calculus. It is unfortunate, but these two very
basic objects in mathematics have the same name.
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This is a graph on 5 vertices, where all pairs of vertices are connected.
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Here is a “random graph” on 15 vertices generated by a computer—in this case, each pair of
vertices had a 15% chance of being connected.
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Note that the physical location of the vertices in the drawings are unimportant, only which
vertices are connected matters. For example, the following two graphs are the same.

1 2

3

1 2 3

Graphs naturally arise in many ways, as they are a convenient way to visualize various situations
or complex symptoms. In fact graphs are nearly ubiquitous in mathematics as they can be used to
represent different aspects of all kinds of mathematical structures. Consequently, graphs are also
prevalent in many scientific fields, where they are often called networks. Technically the two terms
are interchangeable, but one typically uses the term network when one is thinking about social or
technological connections.

Here are a few examples of situations where graphs arise.

Geometry/Topology: Polygons are vertices and edges in the plane, and can be thought of as
graphs. Note that the graph is not the same as the underlying polygon—things like edge length
and vertex angles are not considered in the graph. So in some sense, the graphs of a polygon is the
polygon without its geometry. This is perhaps not so interesting for polygons, but one can do the
same for polyhedra (e.g., the Platonic solids) where looking at the analogous graphs is very useful
in the study of surfaces and higher-dimensional objects.

Algebra: Algebra is the study of mathematical structures, e.g., groups, rings and fields, if you
know what those are. Graphs are often used to relate how various structures are related to each
other (e.g., subgroup lattices), or to understand individual objects, e.g., group actions on graphs).
The notion of group actions on graphs has many applications to constructions of combinatorial
designs, which are important in error-correcting codes and cryptography.

Electric engineering: Electric circuits are graphs, and graph theory has been used in circuit
analysis since Kirchoff in the mid 1850’s.

Chemistry: Molecular graphs are representations of molecules as graphs—here are the atoms in
the molecule and the edges are the bonds. This point of view was first taken up by Cayley in the
1870’s.

Geography: Consider a map, say of Europe. Let each country be a vertex and connect two
vertices with an edge if those countries share a border. A famous problem that went unsolved
for over a hundred years was the four color problem. Roughly this states that any map can be
colored with at most 4 colors in such a way that no to adjacent countries have the same color. This
problem motivated a lot of the developments of graph theory and was finally proved with the aid
of a computer in 1976.

Transportation networks: The US Cities and highway system make a graph, with the cities
being the nodes and the highways being the edges. More locally, one could consider the Norman
Area bus system, where the nodes are the bus stops and two nodes are linked if they are successive
bus stops on a single bus line. Similarly, an airline’s flight network forms a graph. For these
networks, the distance between two nodes is quite important in terms of time/fuel costs, and one
can incorporate the distance into the graph by “weighting” the edges. The typical problems in
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transportation networks are designing efficient networks and finding efficient ways to route traffic
(e.g., what’s the best way for you to fly from Oklahoma City to Sydney, Australia?).

As a different kind of transportation network, but entirely analogous, electric power grids and
water supply systems also form graphs.

Communication networks: Computer systems in a local network form a graph. So do the
landline telephone cable systems and internet routing systems. These can also be thought of as
“transportation” networks, where now what is being transported is data. Again, design and routing
and principal issues in these networks.

Social networks: In sociology, economics, political science, medicine, social biology, psychology,
anthropology, history, and related fields, one often wants to study a society by examining the
structure of connections within the society. This could be friend networks in a high school or
Facebook, support networks in a village or political/business connection networks. For these sorts
of networks, some basic questions are: how do things like information flow or wealth flow or shared
opinions relate to the structure of the networks, and which players have the most influence? In
medicine, one is often interested in physical contact networks and modeling/preventing the spread
of diseases. In some sense, even more basic questions are how do we collect the data to determine
these networks, or when infeasible, how to model these networks?

The World Wide Web: One can form a graph of all webpages, and make an edge from Page A
to Page B if there is a hyperlink from Page A to Page B. In this case, one should consider directed
edges, meaning each edge has a direction which is pictorially indicated with an arrow. Here some
basic problems are searching the web and ranking web pages (to get search results in a useful order).
Due to the incredible size of the web and amount of information, searching is highly nontrivial.
Web page ranking is closely related to the problem of determining how much influence players have
in a social network.

Like the web, Twitter also gives rise to a directed social network, where the nodes are the users
and the arrows point in the direction of “following.”

Game theory/Discrete Dynamical Systems For games (deterministic or not) where there are a
finite number of possible moves at each step, you can diagram the game as a graph. Here the
vertices are the possible states of the games and the edges represent the moves going from one
state to another. (Draw yourself the first few parts of the graph for Tic-Tac-Toe.) Thus the course
of the game will be viewed as following a certain path in the associated graph and ending at a
“terminal node.” More generally graphs can be used to visualize discrete dynamical systems, and
some ideas from dynamical systems are extremely useful in social/technological networks (e.g.,
Google’s Pagerank algorithm).

Neurobiology/Artificial Intelligence: The brain is an immensely complex network, and some
graph theory can be used to examine the structure of the brain. Many attempts at developing
forms of artificial intelligence are based on the idea of neural networks, which are simple feedback
networks that can be trained to perform tasks such as optical character recognition or speech
recognition.

Being a bit broader with our terminology, we might consider transportation networks, com-
munication networks and the World Wide Web as kinds of social networks as well (they are all
products of societies). However I separated them above because they have different features and
one typically asks different types for different types of networks. Indeed, communcation and trans-
portation networks motivated a lot of “classical” graph theory, whereas study of social networks
has led many newer directions in graph theory. In particular, with the advent of modern computing
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and the internet, understanding large networks is a major theme in modernd graph theory.
Our rough plan for the course is as follows.
First, we’ll look at some basic ideas in classical graph theory and problems in communication

networks. E.g., how can you analyze the efficiency or robustness of a networks. This leads to
notions of distance, diameter, k-connectedness and network flow.

Second, we’ll give a brief overview of some key themes in social networks and complex (large)
networks. Here some topics are notions of centrality, clustering, degree distributions and small
world phenomena. In these first two parts we’ll get our hands dirty by writing and analyzing some
algorithms for these things, but we’ll also do exercises by hand.

Third, we’ll look at spectral graph theory, which means using linear algebra to study graphs, and
random walks on graphs. This will give us a useful way to study network flow for communication
networks and do things like rank webpages or sports teams or determine how influential people are
in social networks.

Finally, we’ll study random graphs to get some insight into large networks. This will be the
most “experimental” part of the course, in the sense that, while we hope to do a little theory, much
will be learned by generating and working with examples on the computer. Time permitting, we’ll
spend some time discussing dynamic networks and modeling information flow/disease transmission.

In terms of computer software, we will work initially in Python (current version 2.7.6) for
writing simple code to work with graphs, then use built-in algorithms in Sage (current version 5.12,
which is compatible with Python 2, but not Python 3) to do more complex things, and possibly use
Sage and Python in tandem. While I don’t intend to make this a course on Computational Graph
Theory or Algorithmic Graph Theory (i.e., how to program everything), I think it’s important to
have exposure to the nitty-gritty of at least some graph theory algorithms to truly understand the
main issues of modern graph theory, which in large part stem from computational complexities.

However, be at peace—no previous experience with this software, or with programming, is
required or expected.

The mathematical prerequisites for this course are: (1) some familiarity with proofs, as our
Discrete Math or Linear Algebra courses; (2) some linear algebra (eigenvalues, eigenvectors, etc).
We’ll briefly review some of the necessary linear algebra as we go along, but you really should’ve
have seen it before to hope to be able to get a good understanding of the third part of the course.
We’ll also need basic probability in the latter two parts of the course. I’ll introduce this when the
time comes, but it wouldn’t hurt to have seen a little before.

Due to both the choice of topics and use of computer software, this will be a very non-traditional
course in graph theory, which is why I couldn’t find an appropriate textbook and will write my own
notes. Based on the goals for the course, I won’t be able to cover a lot of things that are covered in
a typical graph theory course. Indeed we’ll be quite pressed for time with my current goals. I will
include some explanations of how to do things in Python and Sage in these notes, and snippets of
sample code, but these notes will not contain detailed information on how to use Python and Sage
in general—this information can be found elsewhere online, and will be covered in our Computer
Lab Meetings.

For fun, I made an example of a social network graph involving some people you may know: the
OU Math Department. See Figure 2. Let’s take a look at this before we get started in earnest, to
give you a better idea of some things we’ll be doing throughout the course. This is a collaboration
graph. The vertices are current or semi-recent previous faculty and postdocs within the OU Math
Department. The postdocs (3-year positions) are all in blue, and regular faculty (tenure/tenure-
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track) are in red (current) or black (previous). Two faculty are connected if they have been
collaborators (co-authors of the same paper at least once). Faculty who have not collaborated with
anyone in the department are not named, but just represented the 11 isolated nodes (nodes not
connected to any other nodes). In fact there should be more isolated nodes, but I got tired after
drawing 11 of them.

Note, I just made this on my own one afternoon, and there may be some additional collabora-
tions that I’ve missed—in any case it will probably not be up-to-date for too long. However, let’s
try to get a little taste of network analysis by making some comments on this graph.

First of all, I was a bit surprised at how connected it is. While our department is quite friendly
and social, most mathematics research is quite specialized, and most collaborations tend to occur
among people in different universities. (I’ve written 9 papers since being at OU, of which 3 involve
an OU collaborator.) Further, a lot more research in math is solo than in the other sciences. Even
taking into account collaborations at the same university, one might expect that each research area
is isolated from the other ones: e.g., number theorists just collaborate with other number theorists,
geometers just collaborate with other geometers, and so on. However, forgetting the 11 isolated
nodes for now, this graph consists of 3 components∗ of size 2, 1 of size 3, 1 of size 4, and then
one large component of size 23: meaning most of the faculty are connected to each other through
collaborations, instead of all the different research groups being disconnected from each other. This
is part of the small world phenomena—in many social networks, things tend to be remarkably well
connected.

For the rest of the discussion, let’s restrict ourselves to the large component, which looks sort
of like a reindeer. In fact, this component looks quite similar to the random graph on 15 vertices
presented earlier (which to me, looks like a dog). This visual similarity, in the sense that they both
look like balloon animals, was not due to any intentional planning on my part, but just something
I noticed after making them. However, it’s not mere coincidence—organically-formed networks can
be modeled quite well by random graphs. That is what we’ll focus on in the last part of the course.

Back to our discussion. Another aspect of small world phenomena, besides having a large
component, is what is sometimes known as six degrees of separation. This is a notion about “how
well connected” a network is. Define the distance d(u, v) between two nodes u and v to be the
minimum number of edges one needs to traverse to get from node u to node v. For example,
there are many ways one can get from Shankar to Forester—directly, going through Brady, going
through Brady, Dani and Clay, and so on. However, the shortest route just consists of 1 edge, so
the distance from Shankar to Forester is 1. Similarly the distance from Shankar to Lousma is 2,
Shankar to Rafi is 3, and so on.

Six degrees of separation refers to the notion that in many social networks, even though the
network may be very large, most people who are connected are not more than 6 steps (distance 6)
away from each other. An alternative interpretation is that most people are no more than 6 steps
away from a given individual. The number 6 is not so important here, and is not a magic number
for all networks—the idea is just that if you pick two people at random, they will be rather close.
The farthest apart 2 of these 23 people are is Rubin and Basmajian, at distance 11. But if you pick
2 people in here at random, chances are that their distance will be much smaller. Looking at the
alternative interpretation, I’m in the middle in some sense, and I’m within distance 5 from anyone
else in the reindeer.

∗A (connected) component is the part of a graph consisting of all nodes connected to a single given node by some
sequence of edges.
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Figure 2: Collaborations within the OU Math Department
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One question that’s common in many social networks is: who is the “most popular”? For
this, we can look at the degree of each node, which is the number of edges coming out of it, or
equivalently, the number of other nodes it is directly connected to. Then one way to interpret
“most popular” is simply having the highest degree, though for a collaboration network, “popular”
isn’t really a good word—I just mean who’s worked with the largest number of people. In this case,
Brady has the highest degree (6), followed by Clay (5), then Forester (4).

Another question is who has the most “influence”? You might first think that this is the same
question as popularity, but it isn’t. In fact for many things, e.g. predicting who might be able to
win an election, influence may be more important than popularity, in the way I use these two terms
here. Popularity (as we interpreted it) is a local trait. You can determine someone’s popularity
just by counting their neighbors (the neighboring vertices). Influence is a global trait. For instance,
even though Przebinda and Özaydin are tied in terms of “popularity” (both degree 3), Przebinda is
one step closer to McKee, and therefore most people in the reindeer, than Özaydin. In other words,
Przebinda should be viewed as more “influential” as he is closer to more people in the graph than
Özaydin is. Being closer to more people says you are more “central,” and let’s use the term central
now instead of influential. (I don’t want you to think our math department is full of clandestine
politicking and power struggles, though some departments are! Also remember, this graph also
doesn’t represent the social structure of our department—only collaborations.)

There are several different ways to measure centrality. Here is a simple one. For each node u,
define its centrality as the sum over all other nodes v (in the same component) of 1

d(u,v)2
. (One

could also define it without the squares.) Then the higher the centrality, the closer you are to more
nodes. A more sophisticated way to define centrality involves the idea that you should weight these
distances by how central v itself is. (Being distance 1 from a more central node is better than being
distance 1 from a node on the outskirts.) It may not be clear how to make sense of a definition of
centrality that already involves centrality, but this can be done with eigenvalues, and is one of two
essential ideas behind Google’s Pagerank algorithm.

Another phenomena you may notice is clustering. Look at the triangles in the graph. There
are 6 in the large component and 1 in the component of size 4. However, the triangles in the large
component aren’t spread out evenly—5 of them are adjacent (the reindeer’s head and hat). This
phenomenon that triangles tend to group together in social networks is known as clustering. This
just means there tend to be tight-knit groups within social networks. Often one measures clustering
to say something about the structure of a network.

If you want to extrapolate qualitative information from the graph, you can, but due to the
nature of this particular graph it won’t be too precise. For example, let’s say you want to use this
graph to say something about the research interests of faculty members. (Probably a more natural
use for this graph would be as an example in a study of how much being in the same institution
factors into collaborations.) While my research interests are closer to those of Brady’s or Forester’s
than say Rubin or Lee as suggested by the distances in the graph, you don’t see that my research
interests are closer to those of Rafi’s than Miller’s (or probably Brady’s also), even though Rafi and
I are farther apart in the graph. In fact, Pitale, Schmidt and I all work in the same area, and we
are closer to Roche and Spallone than anyone in the top half of the reindeer. Even though the data
is real, you should be careful not to overinterpret it as being a graph of our research interests, or
how much we interact. Writing a paper with someone may or may not mean that you both work in
the same are most of the time (my paper with Shankar was in an area that neither of us typically
work in—in addition, research interests often change over time).
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However, there are some things we can do to incorporate more information in the graph. First,
one does not get a sense of the strength of the connections. For example Pitale and Schmidt
have written many papers together, but Stewart has only written a couple papers with Pitale and
Schmidt (these two papers consisted of all 3 authors and 1 additional one). One could weight the
edges by counting the number of papers co-authored. This would make it clear that Pitale and
Schmidt are closer to each other than either of them are to Stewart. It is also not clear from
the graph whether a triangle represents, say, a single paper coauthored by 3 people or 3 different
collaborations by each possible pair of the 3 people. This can be incorporated by allowing “faces”
(in the sense of a face of a parallelopiped) in graphs, which are called hypergraphs. We will look at
weighted graphs briefly, but not discuss hypergraphs in this course.

Another aspect not seen in this graph is that this is just a snapshot of all collaborations up to
the present time. One can understand more about department research connections by looking at
how the network evolves over time. Indeed, social networks tend to be dynamic networks with new
nodes being added, nodes being removed and links changing all the time. This is another challenge
in data collection and analysis for a given social network. (Further, not all of the collaborations
between OU faculty in the graph actually occurred at OU—some collaborations began before one
or both parties involved was at OU. Conversely, this might be a factor into who gets and accepts
job offers at OU.)

Finally, the main reason for not being able to read too much into this graph is that it’s just
too small to get sophisticated information. This is the same problem as not having enough data
in statistics. If you embed this graph in a larger collaboration graph of all mathematicians in the
world, it should be much more clear that Pitale, Schmidt and I all work in the same area, where as
Shankar and I typically do not. Even though there may be some “random connections” between
people in different research areas, in a huge collaboration graph the number of these random
connections will be quite small and can be basically ignored by using more sophisticated analysis
techniques. While this may all seem rather frivolous, these ideas actually have immense potential
for applications—for example these ideas about using collaboration graphs to distinguish different
research areas can be used in things like machine learning/artificial intelligence and face/pattern
recognition.
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Chapter 1

Basic Graph Theory: Communication
and Transportation Networks

In this section, we will introduce some basics of graph theory with a view towards understanding
some features of communication and transportation networks.

1.1 Notions of Graphs

The term graph itself is defined differently by different authors, depending on what one wants to
allow. First we will give a fairly typical definition. For elements u and v of a set V , denote by 〈u, v〉
the unordered pair consisting of u and v.∗ (Here u and v are not necessarily distinct, and the pair
being unordered just means that 〈v, u〉 = 〈u, v〉.) Denote by Sym(V × V ) the set of all unordered
pairs 〈u, v〉 for u, v ∈ V .

Definition 1.1.1. An (undirected) graph (or network) G = (V,E) consists of a set of vertices
(or nodes) V together with an edge set E ⊂ Sym(V × V ). The elements of E are called edges
or links. The number of elements in V is called the order of G, and we often say G is a graph
on V .

A priori, the order of a graph could be infinite, i.e., it could have infinitely many vertices.
Infinite graphs can be quite useful in theory, but we will focus on networks that arise in real-life
situations, which are finite, i.e., they have finitely many vertices.

I Unless otherwise specified, we will always assume our graphs are finite.

Example 1.1.2. Let V = {1, 2, 3}. Then V × V is the the set of all order pairs of vertices and E
should be a symmetric subset of this. Take E = {〈1, 1〉, 〈1, 2〉, 〈2, 3〉}. To draw the graph, draw and
label each node, and draw a link between two vertices if there is an edge between them, like this:

1

23

∗This is not standard notation. Most authors write (u, v) or {u, v}, but I want to reserve (u, v) for the ordered
pair and {u, v} for the set of u and v.
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1

23

Figure 1.1: The simple graph associated to Example 1.1.2.

In the above example there is an edge from vertex 1 to itself.

Definition 1.1.3. Let G = (V,E) be a graph. An edge of the form 〈v, v〉 ∈ E is called a loop. If
G has no loops, we say G is simple.

It is clear that given any graph, we can make it into a simple graph just by deleting all loops.
For instance, the above example gives rise to the simple graph:

Here the edge set is now E = {〈1, 2〉, 〈2, 3〉}.

I Unless otherwise specified, we assume all graphs are simple.

Note that if we are working with simple graphs, then the unordered pair 〈u, v〉 is simply the
set {u, v}, and you can define an edge as simply a subset of V of size 2. Some authors will use
this definition, which implies that any graph for them is simple. (If we are not working with
simple graphs, then you can have a loop 〈v, v〉 whose associated set {v, v} = {v} has size 1, not
2.) So if you prefer curly braces to angle brackets, feel free to write your edges with those, e.g.,
E = {{1, 2}, {2, 3}}.

In many instances, the graphs we want to consider are not naturally “symmetric” (undirected).
For example, we might want to make a graph of webpages and draw a directed link from one page
to another if there is a hyperlink from one page to another. Another example is with citation
graphs—graphs of all research documents in a field with a directed link from paper A to paper B if
paper A cites paper B. In this case, one should think of these directed links as ordered pairs (u, v),
rather than unordered pairs 〈u, v〉. This leads us to the following definition.

Definition 1.1.4. A directed graph (or digraph) G = (V,E) consists of a set V of vertices and
an edge set E ⊂ V × V . The elements of E are called (directed) edges or links. If G contains
no loops, then we say G is simple.

If e = (u, v) ∈ E is a directed edge, we say e is an edge from u to v, or starting at u and
ending at v. Further u is called the initial vertex of e and v is called the terminal vertex of
e.

I Except where otherwise specified, the term graph used by itself means undirected graph.

Example 1.1.5. Consider V = {1, 2, 3} and E = {(1, 2), (2, 3), (3, 2)}. We draw simple directed
graphs as follows. If (u, v) ∈ E but (v, u) 6∈ E, then we draw a edge from u to v with an arrow
pointing towards v. If (u, v) and (v, u) are both in E, then we can either draw a single edge from
u to v with an arrow on each end or two different edges, one with an arrow to u and one with an
arrow to v.
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1

23

1

23

or

For directed graphs, edges are thought of as having direction, so the edge (2, 3) is considered
different than the edge (3, 2), and this digraph has 3 edges not 2, as one might think from the
drawing on the left.

Note that we can consider undirected graphs as a special case of directed graphs in the following
way. Suppose G = (V,E) is an undirected graph. Then one can consider a directed graph G′ =
(V,E′) on the same vertex set V where now the edge set

E′ = {(u, v), (v, u) : 〈u, v〉 ∈ E}

contains both edges (u, v) and (v, u) for any undirected edge 〈u, v〉 in G. (For non-simple graphs, the
loop 〈v, v〉 just becomes (v, v).) E.g., for Example 1.1.2 the edge set is E′ = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)}.
The corresponding directed graph can then be drawn as follows:

1

23

1

23

or

(For non-simple directed graphs, for any loop, we just draw an arrow on one end of the loop.)

Consequently, we can think of undirected graphs simply as directed graphs whose edge sets
E are symmetric, i.e., (u, v) ∈ E implies (v, u) ∈ E. (The set of unordered pairs of elements of
V corresponds to symmetric subsets of the set V × V of ordered pairs, which is why I used the
notation Sym(V × V ) above.) The only real difference is that when counting edges, the directed
graph will have more edges (precisely twice as many for simple graphs.) This perspective is useful
as we can study both directed and undirected graphs in a unified framework. With this in mind, I
will often use the ordered pair notation (u, v) for edges in an undirected graph. In this case, I will
write the edge set as a symmetric subset of V × V—for example, for Example 1.1.2, I may write
the edge set as E = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)}, with the understanding that (u, v) and (v, u)
represent the same edge (so this graph still has 3 edges, not 5).

Realizing the edge set as a subset of the ordered pairs is also more natural from the matrix
point of view, and often useful from an algorithmic point of view.

There are two other generalizations of graphs worth mentioning now. Some authors allow
multiple edges between vertices in their definition of graph—I will call these multigraphs. For
instance, consider the Seven Bridges of Königsberg in Figure 1. Euler considered this situation
with the multigraph formed by making each landmass a vertex and each bridge an edge:
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However, one can reduce multigraphs to graphs by adding in appropriate vertices, e.g., for
Euler’s example above, we can just add in new vertices along certain edges to get a graph:

•

•

•

•

Thus we will not have much reason to consider multigraphs except in certain special cases.
Another generalization of graph that we will sometimes consider is a weighted graph. This

is just a (directed or undirected) graph G = (V,E) with a weight function w : E → R that assigns
each edge a weight. For instance, if the graph represents cities on a map, then a natural weight
function to consider would just be the distance between the cities. Another possible weight function
is the cost to get from one city to the other. Note that a weighted graph generalizes the concept
of multigraph: a multigraph can be considered as a weighted graph where the weight of an edge
(u, v) is just the number of edges from u to v in the corresponding multigraph. We will say more
about weighted graphs later.

Exercises

Exercise 1.1.1. (a) For V = {1, 2} and V = {1, 2, 3}, draw all possible graphs on V .
(b) How many possible graphs are there on V = {1, 2, 3, 4}? Draw all such graphs having 4

edges.
(c) Draw all possible directed graphs on V = {1, 2}. Then draw all possible directed graphs

V = {1, 2, 3} which contain the edge (1, 2).

1.2 Representations of Graphs

Now let’s discuss different ways one can represent graphs in Python. You can work directly with
sets in Python 2.7 (using curly brackets, as in math), so the most naive way you can represent a
graph G is with an (ordered) list (denoted by square brackets) consisting of the vertex set V and
the edge set E. For example, the graph in Figure 1.1 can be represented as:

13
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Python 2.7
>>> V = {1, 2, 3}

>>> V

set([1, 2, 3])

>>> E = [ {1, 2}, {2, 3} ]

>>> E

[set([1, 2]), set([2, 3])]

>>> G = [V, E]

>>> G

[set([1, 2, 3]), [set([1, 2]), set([2, 3])]]

(Lines beginning with >>> denote input to the Python interpreter, and other lines denote the
Python output. I wrote V , E, and G on separate lines after the definitions just so you can see how
Python will output this data to you when you want it later. E.g., the Python output set([1, 2])

just means the set consisting of 1 and 2, or what we would typically write in mathematical notation
as {1, 2}.)

Also note that while spacing (indentation) is important in Python for nested statements over
multiple lines (e.g., “for loops” or “if... then” statements), it is not important within individual
lines. In particular, I could write something like V={1,2,3} or V = { 1 , 2 , 3 } for the first
line with the same result.)

Here V is represented as a set of vertex names, and the edge set E is an ordered list of edges e,
where each edge is represented as a set of size 2. For technical reasons, using the built-in set type in
Python, one cannot write E as a set, i.e., E = { {1, 2}, {2, 3} } will result in an error, because
Python does not by default handle sets of sets, or sets of lists. For similar reasons, G must also be
defined as a list G=[V,E], rather than a set G={V,E}. Even if it were possible to define G={V,E}

in Python, it is better to define it as a list, because to actually do things with G, one will need to
recover the vertex and edge sets V and E. If you define G as a list, you can just get the vertex set
back with G[0] and the edge set by G[1]. (Python naturally numbers list positions starting at 0,
not at 1.) But if one could and did define G as a set, there is no order, so it would not be as easy
to recover the vertex set or the edge set.

Many programming languages do not have a built in data structure for sets (i.e., unordered
lists), but one can similarly represent a graph in terms of lists (or arrays). In this case one can
write the vertex sets as a list, and the edge set as a list of ordered pairs (a list of lists of size 2).
For example, this same graph can be represented as

Python 2.7
>>> V = [1, 2, 3]

>>> V

[1, 2, 3]

>>> E = [ [1, 2], [2, 1], [2, 3], [3, 2] ]

>>> E

[[1, 2], [2, 1], [2, 3], [3, 2]]

>>> G = [V, E]

>>> G

[[1, 2, 3], [[1, 2], [2, 1], [2, 3], [3, 2]]]

This method of representing edges as (ordered) lists of size 2 is of course also advantageous as
one can represent directed graphs in the same way.

14
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However, these naive ways of representing a graph in a computer is not so useful in practice.
For example, consider the following problem.

Given a node u of a (directed or undirected) graph G = (V,E), we say a node v ∈ V is adjacent
to u, or a neighbor of u, if (u, v) ∈ E. (Note for undirected graphs, being neighbors is a symmetric
relation, but not so for directed graphs, i.e., v may be adjacent to u without u being adjacent to
v.) Write an algorithm which, given a node u returns all the neighbors v of u. This is one of the
most basic procedures one will want to do when working with graphs.

Let’s see how to do this using where we represent V as a list and E as a list of lists of size 2,
as in the latter snippet of code. (Thus we are working with directed edges.) In fact, whether V is
a set or a list is not important to our algorithm—however it does make a difference in syntax that
each edge is a list of size 2, not a set.

Python 2.7
>>> V = [ 1, 2, 3 ]

>>> E = [ [1, 2], [2, 1], [2, 3], [3, 2] ]

>>> G = [V, E]

>>>

>>> def VE_neighbors(G, u):

... neigh = set() # start with an empty set

... E = G[1] # let E be the edge set

... for e in E:

... if e[0] == u: # for each edge of the form (u,v)

... neigh.add(e[1]) # add v to the set neigh

... return neigh

...

>>> VE_neighbors(G, 1)

set([2])

>>> VE_neighbors(G, 2)

set([1, 3])

Here I have written a function VE_neighbors that takes as input two things: the graph G=[V,E]

represented in the above “vertex set-edge set representation” (I use “VE” at the beginning of this
function name to indicate this), and the vertex u one wants to find the neighbors of. The algorithm
is to just go through each element of the edge set E, and check if the edge starts at u (i.e., is of
the form (u, v)), and if so, add the corresponding element to the set of neighbors. (If e=[u,v] is a
directed edge, then e[0] returns the initial vertex u and e[1] returns the terminal vertex v.) The
remarks after the hash signs # are comments to help you understand the code and ignored by the
Python interpreter. (You should always comment your code.)

Note: one uses the double equals == in the if statement to test if two things are the same—do
not use e[0]=u, which will set e[0] equal to u.

Then at the end of this snippet of code, I test the function VE_neighbors on the graph from
Figure 1.1 for the vertices 1 and 2. As expected, the Python output says the set of neighbors for
the vertex 1 is just {2}, and the set of neighbors for the vertex 2 is {1, 3}. In this implementation,
I encoded the neighbors of u as a set, rather than a list, but one could do this also (Exercise 1.2.2).

When we write programs, we are often concerned with efficiency, particular if we are working
with a large amount of data. For small graphs, this not a big deal, but if you want to work with
graphs with hundreds or thousands or millions of nodes, it’s crucial. The algorithm VE_neighbors

requires going through each element of the edge set E, so we say the running time is O(|E|).
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(This notation, called Big Oh notation, will be explained in detail later—roughly it means that the
algorithm requires on the order of |E| steps to finish.) Here |E| denotes the size of the set E, i.e,
the number of (in this case directed) edges.

Note that for a not-necessarily-simple directed graph G = (V,E) on n nodes, the maximum
number of possible edges |E| is n2—this is simply the number of ordered pairs V ×V (see Exercise
1.2.1). Thus we can give an upper bound for the run time of this algorithm as O(n2). This is
horribly inefficient for such a basic operation, and we will see we can do much better using a
different representation for a graph.

Adjacency matrices

Whenever you have a finite collection of objects, and some relations between them, you can keep
track of them in a table. For example, in linear algebra if you’re working with two variables x and
y, you can keep track of linear combinations

3x+ 2y

x− y

by just writing the coefficients in a box (
3 2
1 −1

)
.

Of course one needs to keep track of the order of x and y, so you know x corresponds to the first
column, and y the second.

We can do something similar (though not exactly the same) for graphs.

Definition 1.2.1. Let G = (V,E) be a directed or undirected graph, not necessarily simple.∗ Write
V as an ordered set {v1, v2, . . . , vn}. The adjacency (or incidence) matrix for G (with respect
to the ordering v1, v2, . . . , vn) is the n× n-matrix

A = (aij), aij =

{
1 (vi, vj) ∈ E
0 (vi, vj) 6∈ E.

Example 1.2.2. Let V = {1, 2, 3}, as an ordered set. Then the adjacency matrix for the undirected
graph in Example 1.1.2 is

1 2 3

1
2
3

1 1 0
1 0 1
0 1 0

 .

For clarity, I labeled which rows and which columns correspond to which vertex in red, but I won’t
typically do this. In other words, there is an edge from 1 to 1 (a loop), and edge from 1 to 2, an
edge from 2 to 1 an edge from 2 to 3, and an edge from 3 to 2.

∗From now on, we will often implicitly realize the edge set E for undirected, graphs as a symmetric set of ordered
pairs (u, v), rather than a set of unordered pairs.
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Similarly, the adjacency matrix for the directed graph on V in Example 1.1.5 is

1 2 3

1
2
3

0 1 0
0 0 1
0 1 0

 .

In other words, there is a (directed) link from 1 to 2, and a link both directions between 2 and 3.
Note that these adjacency matrices depend on the ordering we chose for V . If for some perverse

reason, we wanted to use a different ordering, say V = {3, 2, 1} then, e.g., the adjacency matrix for
the directed graph in Example 1.1.5 is

3 2 1

3
2
1

0 1 0
1 0 0
0 1 0

 .

Let’s make a couple of elementary observations now. First, having a loop (vi, vi) ∈ E means
that the i-th diagonal element of the matrix aii = 1, so having no loops (i.e., being simple) is
equivalent to the statement that all the diagonal entries of the adjacency matrix are zero. (As we
see from this argument, this fact does is independent of which ordering we choose for V .)

Moreover, note that the (a priori directed) graph G is undirected† if an only if the matrix A is
symmetric. Again this will not depend on the ordering we choose for V . For any ordering, G being
undirected means that (vi, vj) ∈ E is equivalent to (vj , vi) ∈ E for all 1 ≤ i, j ≤ n, which means
the value of aij must equal the value of aji for all i, j, which is equivalent to A being symmetric as
asserted.

Next, given some vertex vi, it is easy to read off its neighbors—just go to the i-th row and look
at which spots have a 1. If there is a 1 in the column corresponding to vj , this means there is a
(directed) edge from vi to vj . This process requires going through each element of a single row in
A, which has n elements, so the running time for such an algorithm is O(n). This is in general
much better than the O(n2) bound we got for using the “vertex set-edge” set representation above.

Note that to represent an arbitrary graph in a computer, we need a little more than the just
the adjacency matrix—we also need the ordered list of vertices. For example, the graph

purple

monkeydishwasher

with respect to the vertex ordering {purple,monkey,dishwasher} has the same adjacency matrix
we saw in the first part of Example 1.2.2. Of course this graph and the graph from Example 1.1.2
are essentially the same—only the names of the vertices have changed, but they are technically
different graphs. We will discuss this more when we get to the notion of graph isomorphisms below.

†Technically, I mean G can be viewed as an undirected graph, i.e., that E is symmetric.
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For now, I just want to make the point that to use adjacency matrices to encode the complete
information about any graph G = (V,E), we need to store the ordered pair (V,A), where V is an
ordered set of vertices and A is the associated adjacency matrix.

For example, we can encode the purplemonkeydishwasher graph in Python as:

Python 2.7
>>> V = [ "purple", "monkey", "dishwasher" ]

>>> A = [ [ 1, 1, 0 ], [ 1, 0, 1 ], [ 0, 1, 0 ] ]

>>> G = [V, A]

>>> G

[[’purple’, ’monkey’, ’dishwasher’], [[1, 1, 0], [1, 0, 1], [0, 1, 0]]]

Here we represent the adjacency matrix

A =

1 1 0
1 0 1
0 1 0


as a list of lists. The lists [1, 1, 0], [1, 0, 1] and [0, 1, 0] represent the three rows of A,
and then the matrix A is encoded in Python as a list of the three row vectors. Then we can access,
e.g., the top row of A by the code A[0] (this will give you [1, 1, 0]) and the individual entries
of the top row by A[0][0], A[0][1] and A[0][2].

However, we don’t really care about purplemonkeydishwashers in this class. We are primarily
interested in just studying the structure of graphs in this class. The names of the vertices will only
be important when we are looking at specific networks/applications (e.g., the graph in Figure 2).
Consequently, to simplify things, we will often assume—at least when we are working by hand—that
we are working with an ordered vertex set of the form V = {1, 2, . . . , n}. When we are working with
graphs on the computer, we will typically assume the vertex set V = {0, 1, . . . , n − 1}. With this
assumption in mind, we can simplify our lives a bit and represent a graph G by just its adjacency
matrix A. For instance, by default we will interpret the adjacency matrix

A =


0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0


as representing the graph

1 2

34

if we are working by hand, but as

0 1

23
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if we are working on the computer.
The reason for the difference working by hand versus on the computer is that humans naturally

count from 1, where as computers naturally count from 0.∗ Namely, if V = {1, 2, 3, 4} and you
want to check if there is an edge from vertex 1 to vertex 3, you would look at the entry a13 of
A = (aij) working by hand, but you would need to look at A[0][2] in Python. The need to shift
indices in Python is just an unnecessary complication that we can avoid by assuming our vertex
set is V = {0, 1, 2, 3}, for then the entry A[0][2] tells us about the existence or nonexistence of an
edge from vertex 0 to vertex 2.

Now let’s explain the algorithm to find the neighbors of a given vertex u in a graph G. Assume
V = {0, 1, . . . , n− 1}, and say we want to find vertex i. (We’ll often use i and j to denote vertices
when are vertex set is {0, 1, . . . , n− 1} or {1, 2, . . . , n}.) Let A be the associated adjacency matrix.
Then A[i] gives the i-th row of A, and we just need to go through each element of the row, and if
there is a 1 in position j of this row, we add vertex j to our (initially empty) list of neighbors for
i. The code, with an example on the above graph, is here.

Python 2.7
>>> def neighbors(A, i):

... n = len(A) # let n be the size (number of rows) of A

... neigh = [] # start with an empty set neigh

... for j in range(n):

... if A[i][j] == 1: # for each index 0 <= j < n

... neigh.append(j) # append j to the list neigh if the i-th

... return neigh # row has a 1 in the j-th position

...

>>> A = [ [ 0, 1, 1, 1 ], [1, 0, 1, 0], [1, 1, 0, 0], [1, 0, 0, 0] ]

>>> neighbors(A,0)

[1, 2, 3]

>>> neighbors(A,1)

[0, 2]

>>> neighbors(A,2)

[0, 1]

>>> neighbors(A,3)

[0]

Adjacency Lists

There is a third common way to represent graphs, and this is with adjacency lists. Fix a (directed
or undirected, simple or not) graph G = (V,E)—we do not need to assume V is ordered or consists
of numbers. An adjacency list for G is merely a list of all the vertices v ∈ V together with its set of
neighbors n(v) ⊂ V . This can be implemented in Python with a structure known as a dictionary.

You can think of a dictionary in Python as basically a table consisting of keywords (called keys)
and their associated data/definitions (called values). A dictionary is defined using curly braces
like sets. Each dictionary entry is given in the form key:value, and the entries are separated by
commas. For example, if I wanted to define a dictionary that gave me course titles associated to
the course numbers I am teaching this semester, I can enter this as follows

∗This is also one reason why androids don’t make good life partners.
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Python 2.7
>>> courses = { 4383 : "Cryptography", 4673 : "Graph Theory", \

... 5383 : "Cryptography", 5673 : "Graph Theory" }

>>> courses[4383]

’Cryptography’

>>> courses[5383]

’Cryptography’

>>> courses[4673]

’Graph Theory’

>>> courses[5673]

’Graph Theory’

Note the keys and the values can be numbers or strings (you can define strings in Python using
single or double quotes). In fact, the values can be other things like lists or sets also. The single
backslash on the first line just means the input will be continued on the subsequent line. Then we
see we can access the entries of the dictionary by using the key in square brackets, in the same way
we would access the elements of a list using their index.

Using this dictionary structure, we can encode our purplemonkeydishwasher graph as an adja-
cency list as follows

Python 2.7
>>> G = { "purple" : { "purple", "monkey" }, \

... "monkey" : {"purple", "dishwasher"}, \

... "dishwasher" : { "monkey" } }

>>> G["monkey"]

set([’purple’, ’dishwasher’])

Here the keys are strings, the names of the vertices, and the values are the sets of neighbors,
encoded as sets of strings. For instance, the first line says that the node purple is assigned the
neighbors purple and monkey. The order in which the vertices are given in the adjacency list is
irrelevant. One could alternatively encode the neighbors of each vertex as lists instead of sets.

Note that, conversely, given an adjacency list, one can reconstruct the graph. One simply draws
all the vertices (keys) in the adjacency list and draws the (a priori directed) edges from each key
to each of its neighbors. (Do this now for the purplemonkeydishwasher adjacency list.) Hence the
adjacency list structure gives a valid way to represent a graph (i.e., all the information about the
graph is present in the adjacency list).

By design, finding the neighbors of a given vertex using an adjacency list takes only one step!
Using our Big Oh notation, which I’ll formally get to soon, we would say this can be done in O(1),
or constant, time. In other words, it doesn’t matter how many vertices there are in the graph, you
just look at the entry for the vertex you want, which is the set of neighbors.∗

Remarks on implementation: Dictionaries work a bit differently than lists in Python, so you
can’t append things to a dictionary. If you want to make an adjacency list in Python, and
not enter everything by hand the easiest way is to make a list al of ordered pairs of the form
(v, {neighbors of v}). For example, to make an adjacency list for the following graph

∗Technically, there are a couple of issues here: (1) We’ve ignored the time it takes to locate the entry for a given
vertex, however this can be implemented to be done very very quickly. (2) If we want to actually, say, print out
the list of neighbors, the amount of time this takes depends upon the amount of neighbors, which is a priori only
bounded by the order n of the graph. However, for large graphs that arise in practice, the number of neighbors of
any vertex is generally much much smaller than n.
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0

1

2

3

4

5

6

7

we can use the following code

Python 2.7
>>> al = []

>>> for x in range(8):

... al.append((x, {(x-1)%8, (x+1)%8})) # for x = 0, 1, 2, ..., 7

... # associate the set {x-1 mod 8, x+1 mod 8}

>>> al

[(0, set([1, 7])), (1, set([0, 2])), (2, set([1, 3])), (3, set([2, 4])),

(4, set([3, 5])), (5, set([4, 6])), (6, set([5, 7])), (7, set([0, 6]))]

>>> G = dict(al)

>>> G

{0: set([1, 7]), 1: set([0, 2]), 2: set([1, 3]), 3: set([2, 4]), 4: set([3, 5]),

5: set([4, 6]), 6: set([5, 7]), 7: set([0, 6])}

>>> G[7]

set([0, 6])

Here the command x%8 returns x mod 8, which is the value r ∈ {0, 1, 2, . . . , 7} such that 8 = qx+r,
i.e., x mod 8 is (at least for x ≥ 0) the remainder upon dividing x by 8. So, for 0 ≤ x ≤ 6, x + 1
mod 8 is just x, for x = 7 it is 8%8 = 0. Similarly, for 1 ≤ x ≤ 7, x− 1 mod 8 is just x, whereas for
x = 0 it is -1%8 = 7. In other words, by using the mod function we can use addition/subtraction to
right/left shift the numbers {0, 1, 2, . . . , 7} with the convention that we wrap around at the edges.

Adjacency matrices versus adjacency lists

When working with graphs on computers, one typically uses either the adjacency matrix representa-
tion or the adjacency list representation. The vertex set-edge set representation that we used for the
standard mathematical definition is too cumbersome and slow to work with in actual algorithms.
We’ve seen this for just the problem of finding the neighbors of a given vertex, where the adjacency
list representation runs in constant time (O(1)), the adjacency matrix representation runs in linear
time (O(n)), and the vertex set-edge set representation runs in quadratic time (O(n2)).

Adjacency matrices are suitable for small graphs, and have some advantages over adjacency
lists. As an example, suppose you have a directed graph G on V = {1, 2, . . . , n} and want to find
all the vertices with an edge to a fixed vertex j (the inverse to the problem of finding neighbors).
With an adjacency matrix, one just looks at the j-th column of an adjacency matrix, where as
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things are a bit more complicated with the adjacency list. In addition, it is easier to go between
theory and practice using matrices (much of the theory is easier to present in terms of matrices,
and some of the coding is also).

For large graphs, the adjacency list representation is typically far superior in practice, particu-
larly for sparse graphs, i.e., graphs with relatively few edges (closer to n than n2). Social networks
tend to be rather sparse. (Consider the graph of webpages where the directed edges are hyperlinks.
According to Kevin Kelly’s What technology wants (2010), there are about a trillion webpages and
each webpage has, on average, about 60 out of a possible 1 trillion links. If this graph weren’t
sparse, any useful sort of web searching might be virtually impossible.)

For these reasons, we will primarily use adjacency matrices, at least at the beginning of this
course. Towards the end of the course, when we want to work with large graphs, we won’t program
our own algorithms for everything, and will use the graph theory library in SAGE, which (I believe)
uses primarily adjacency lists.

Exercises

Remarks on programming exercises: In all exercises that I ask you to code up a function, you
must also test your function on some examples. I will let you choose your own examples to test on
(you might choose some from the notes, or some more complicated ones). The more complicated
the code is, the more testing you should do. In this section, testing your code on a couple of
examples should suffice to convince you (and me) whether it works correctly all of the time or not.

In coding, choosing good examples to test your code on is of paramount importance—you should
try to test different situations (e.g., directed and undirected, simple or not, include vertices with no
neighbors) as it often happens that code will fail for certain very specific cases (for mathematical
code, it is often extreme cases, such as code failing when some parameter is minimal or maximal).
You also need to choose test cases where you can easily verify that the answer you get is correct
(or at least seems reasonable if you don’t know the correct answer yourself). (Of course, the first
step is to get the code to run without any errors.)

When there is a bug, it is often helpful to choose good examples and examine how the output
differs from what it should be to figure out what the bug is. Many times one can figure out what
the bug is just by looking a few sample inputs and outputs, and not even looking at the original
code! (Though this approach comes easier with experience, but it can be very helpful to try to
reason out how the computer is getting from your input to its output.)

If you are having trouble getting your code to run correctly, the first thing you should try to do
is test different parts of your code separately. You can also try printing out the values of variables
at various steps to help see what is going on.

Exercise 1.2.1. Let V be a set with n elements.
(a) How many simple undirected graphs are there on V ? What is the maximum number of

possible edges? What if we don’t require simple?
(b) How many simple directed graphs are there on V ? What is the maximum number of possible

edges? What if we don’t require simple?

Exercise 1.2.2. Write an analogue of the function VE_neighbors, called VE_neighbors_list,
that uses a list instead of a set for neigh, and consequently returns a list instead of a set. (Read
the note above about testing your code.)
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Exercise 1.2.3. Let G be a graph, directed or undirected, simple or not, on V = {0, 1, . . . , n− 1}.
Let A the adjacency matrix for G (with respect to our usual ordering on V ). Write a function
called AM_to_AL, whose input is the adjacency matrix A and output is the adjacency list for G.

Exercise 1.2.4. Let G be a graph, directed or undirected, simple or not, on V = {0, 1, . . . , n− 1},
given as an adjacency list. Write a function called AL_to_AM, whose input is G and output is the
adjacency matrix A for G (with respect to our usual ordering on V ).

1.3 Basic Algorithm Analysis

In this section we will explain the notion of algorithms and how to analyze their efficiency. To do
this, we will first introduce Landau’s Big Oh notation and discuss asymptotic growth.

1.3.1 Asymptotic growth and Big Oh notation

Let N = {1, 2, 3, . . .} and R>0 denote the set of positive real numbers. Recall a function f on N is
just the same thing as a sequence of numbers (an)n by taking an = f(n).

Definition 1.3.1 (Big Oh, Version 1). Consider functions f, g : N→ R>0, i.e., (f(n))n and (g(n))n
are sequences of positive real numbers. We say f(n) is (big) O of g(n) if there exists a constant
C such that f(n) ≤ Cg(n) for all n ∈ N. In this case, we write f(n) ∈ O(g(n)) or f(n) = O(g(n)).

Roughly what f(n) ∈ O(g(n)) means is that, for sufficiently large values of n, f(x) grows no
faster than g(n). We can think of O(g(n)) as the class of functions which don’t grow faster than
g(n), hence the notation f(n) ∈ O(g(n)). Typically for us f(n) and g(n) will be increasing functions
that go to infinity, and you can think of f(n) ∈ O(g(n)) as meaning f(n) is asymptotically ≤ (a
constant times) g(n). Getting a basic understanding of asymptotic growth rates is essential to
understand which how efficient various algorithms are.

We remark that the notation f(n) = O(g(n)) is more common, though it is a bit misleading—
f(n) = O(g(n)) does not mean g(n) = O(f(n)). It’s usage is probably due to the fact that it is
more intuitive for asymptotic expressions. For example, if f(n) is the number of primes less than
n, the Prime Number Theorem says

f(n) ∼
∫ n

2

1

log t
dt

(this is about n/ log n), so we can think of

f(n) =

∫ n

2

1

log t
dt+ ε(n)

where ε is some error term less than n/ log n for n large. The Riemann Hypothesis gives a bound
on the error term: ε(n) = O(

√
n log n). Using an equals sign in our Big Oh notation allows us to

write our asymptotic for f(n) as

f(n) =

∫ n

2

1

log t
dt+O(

√
n log n).

(Here there are a couple of technicalities with the definition we gave for our Big Oh notation: ε(n)
is not always a positive number, and

√
n log n = 0 for n = 1. We’ll explain how to define Big Oh

notation in a bit more generality below.)
In any case, I will primarily stick to the f(n) ∈ O(g(n)) notation in this course.

23



Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Example 1.3.2. Let f : N→ R>0 be a bounded function. Then f(n) = O(1).

Proof. By definition, we know there exists a constant M such that 0 < f(n) < M for all n.
Consequently, taking C = M , we see f(n) ≤ C · 1 for all n ∈ N.

Example 1.3.3. Consider a polynomial f(n) = adn
d + ad−1n

d−1 + · · ·+ a1n+ a0 which is positive
on each n ∈ N (e.g., this is true if each ai > 0). Then f(n) = O(nd).

In particular, we have things like 3n2 + 5n− 2 ∈ O(n2), so f(n) ∈ O(g(n)) does not necessarily
mean that f(n) ≤ g(n) for n large—i.e., the constant C in the definition is important. Also,
f(n) = 5n3 is O(n3), O(n4), O(n5), and so on, but not O(1), O(n) or O(n2) (see Exercise 1.3.1).

Proof. Note that for n ∈ N, we have

f(n) ≤ |ad|n2 + |ad−1|nd + · · ·+ |a1|nd + |a0|nd ≤ Cnd

where C = |ad|+ |ad−1|+ · · ·+ |a0|.

Proposition 1.3.4 (Transitivity). Suppose f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)). Then f(n) ∈
O(h(n)).

Proof. By assumption, we know there are constants C1 and C2 such that f(n) ≤ C1g(n) and
g(n) ≤ C2h(n) for all n ∈ N. Hence f(n) ≤ Ch(n) for all n, where C = C1C2.

Again thinking of O(g(n)) as the class of functions which grow no faster than g(n), this means if
g(n) ∈ O(h(n)), then anything in O(g(n)) lies in O(h(n)), i.e., O(g(n)) ⊂ O(h(n)). Consequently,
our example about polynomials shows we have the following nested sequence of asymptotic classes:

O(1) ⊂ O(n) ⊂ O(n2) ⊂ O(n3) ⊂ · · ·

If f(n) ∈ O(nd) for some d, we say that f(n) has (at most) polynomial growth, because it grows
no faster than some polynomial. In fact it’s not hard to see that all of these O(nd) classes are
different, i.e., the inclusions above are strict inclusions. (See Exercise 1.3.1 below.) For example,
O(n3) contains (positive) polynomials f(n) of degree ≤ 3, whereas O(n2) will only contain poly-
nomials of degree ≤ 2. (These classes contain other functions besides polynomials as well, e.g.,
6n2.34567 + n log n+ (−1)n ∈ O(n3).)

Now let’s give alternative criteria for a function f(n) to be O(g(n)), which will give us the right
definition even when f(n) and g(n) are not necessarily positive (and sometimes undefined at some
values).

Proposition 1.3.5. Let f, g : N→ R>0. Then the following are equivalent

1. f(n) ∈ O(g(n));

2. There exist constants C,N such that f(n) ≤ Cg(n) for all n > N .

3. The sequence of numbers
(
f(n)
g(n)

)
n

is bounded.

In particular, if limn→∞
f(n)
g(n) exists and is finite, then f(n) ∈ O(g(n)).
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Proof. Clearly 1 =⇒ 2, since they are equivalent if we take N = 0. On the other hand suppose
2 holds for some constants C and N . Let C0 = max{f(n)g(n) : 1 ≤ n ≤ N}. Then by definition we

have f(n) ≤ C0g(n) for 1 ≤ n ≤ N and f(n) ≤ Cg(n) for n > N . Thus, for any n, we have
f(n) ≤ C ′g(n), where C ′ = max{C,C0}. Hence 2 =⇒ 1, and we have the equivalence of the first
two conditions.

Now let us show 1 ⇐⇒ 3. First suppose 1 holds, i.e., there exists C such that f(n) ≤ Cg(n)

for all n. Then, using positivity, we have 0 ≤ f(n)
g(n) ≤ C for all n, which yields 3. Conversely, 3

implies that there is a constant C such that f(n) ≤ Cg(n) for all n.
The last statement follows because, if the limit exists, then 3 must hold.

Definition 1.3.6 (Big Oh, Version 2). Let f(n) and g(n) be partially-defined real-valued functions
on N, but assume they are both well defined for n sufficiently large. Then we say f(n) is (big) O
of g(n), and write f(n) ∈ O(g(n)) or f(n) = O(g(n)), if there exist constants C and N such that
|f(n)| ≤ C|g(n)| for all n > N .

The point of this more general, though slightly more technical, definition is that f(n) ∈ O(g(n))
is an asymptotic condition, which means it should only be a statement about sufficiently large n,
and for small values of n the condition f(n) ≤ Cg(n) is not important, and we don’t even care if
the functions don’t make sense for small n.

More precisely, the “partially-defined” condition means that we allow f(n) and g(n) to be
undefined on some finite subset of N. This is convenient because it allows us to handle functions
like log(n− 1) or log(log(n)), both of which are undefined when n = 1, but defined for all n > 2.

In addition, if g(n) is not required to be positive, then f(n) ≤ Cg(n) for all n > N does not
imply we can choose a possibly larger value for C ′ to get f(n) ≤ C ′g(n) for all n like we did in
Proposition 1.3.5. The issue is if g(n) = 0 for some n. For example, if f(n) = 3 and g(n) = log(n),
then we have f(n) ≤ g(n) for any n > 20. In fact, we can get f(n) ≤ 5g(n) for any n > 1, but we
will never have f(1) ≤ Cg(1) for any C since g(1) = log 1 = 0.

The reason to add the absolute values in the definition was simply to give a more general
statement of big O notation which is particularly useful in bounding errors in asymptotics, which
might be positive or negative, as in the discussion about the Prime Number Theorem above.
(Alternatively, one could just put the absolute values on f and require g(n) ≥ 0 for n sufficiently
large). However, for most of our purposes, we will just consider cases where both f(n) and g(n) are
positive, at least for sufficiently large n and we can typically forget about these absolute values.

One final remark about this definition versus the previous version: even if your functions are
positive everywhere, it is often a bit easier to check that an inequality holds for sufficiently large
n than having to find an explicit C that works for all n. For example, suppose you want to check
f(n) = 4 is O(log(n + 1)) by hand from the definition. It is (slightly) easier to use the second
definition and simply observe that log 3 > 1 so f(n) ≤ 4 log(n+ 1) for n > 1, rather than trying to
estimate log 2 to find a C such that 4 ≤ C log(2) ≤ C log(n+ 1) for all n.

The following will be a convenient tool to show f(n) ∈ O(g(n)) in many cases.

Proposition 1.3.7. Let f(n) and g(n) be partially-defined real-valued functions on N. Assume
g(n) 6= 0 for n sufficiently large. Then the following are equivalent

1. f(n) ∈ O(g(n));

2. For some number N , the sequence of numbers
(
f(n)
g(n)

)
n>N

is bounded.
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In particular, if limn→∞
|f(n)|
|g(n)| exists and is finite, then f(n) ∈ O(g(n)).

Note we need the condition that g(n) 6= 0 for sufficiently large n just to ensure the ratios
f(n)
g(n) are well defined for all n large enough. E.g., if we take something like f(n) = n sin π

2n and

g(n) = n2 sin π
2n, then f(n) and g(n) are just 0 when n is even n and ±n and ±n2 when n is odd.

It is true that f(n) ∈ O(g(n)) but we can’t say that condition 2 holds because the ratios are never
well-defined for n even.

The proof is essentially the same as the 1 ⇐⇒ 3 part of the proof for Proposition 1.3.5, except
that one includes absolute values and restricts the inequalities to n > N for some N . (See Exercise
1.3.4.)

Example 1.3.8. O(1) ( O(log log n) ( O(log n) ( O(
√
n) ( O(

√
n log n) ( O(n).

For increasing functions f and g, the statement O(f(n)) ( O(g(n)) (i.e., every function h(n) in
O(f(n)) is in O(g(n)) but not conversely) means that, asymptotically, f grows strictly slower than
g does.

Proof. The structure of the proofs for each part is the same. Namely, we can show O(f(n)) (
O(g(n)) as follows. By transitivity (Proposition 1.3.4), if we show f(n) ∈ O(g(n)) then we will
have O(f(n)) ⊂ O(g(n)). Then we show g(n) 6∈ O(f(n)) to get O(f(n)) ( O(g(n)).

The first part, that O(1) ( O(log log n) is obvious because f(n) = 1 is bounded, whereas
g(n) = log log n goes to infinity.

For the second part, that O(log log n) ( O(log n), we use Proposition 1.3.7. Namely, by
l’Hospital’s rule, we have

lim
n→∞

log log n

log n
= lim

x→∞

d
dx log log x
d
dx log x

= lim
x→∞

1/(x log x)

1/x
= lim

x→∞

1

log x
= 0,

i.e., log log n ∈ O(log n). Similarly, an application of l’Hospital’s rule on the reciprocal shows

lim
n→∞

log n

log logn
= lim

x→∞

1/x

1/(x log x)
= lim

x→∞
log x =∞,

so log n 6∈ O(log log n). Hence O(log log n) ( O(log n), as claimed.
The remaining parts are similar to the second part, and left as Exercise 1.3.5.

Note in the proof of second part, instead of applying l’Hospital’s rule a second time, we could
just observe that if limn→∞

f(n)
g(n) = 0, then limn→∞

|g(n)|
|f(n)| =∞. This observation gives the following

corollary of Proposition 1.3.7.

Corollary 1.3.9. Let f(n) and g(n) be partially-defined real-valued functions on N. Assume g(n) 6=
0 for n sufficiently large. If limn→∞

f(n)
g(n) = 0, then O(f(n)) ( O(g(n)), i.e., f(n) ∈ O(g(n)) but

g(n) 6∈ O(f(n)).

Example 1.3.10. Let a > 1 and d > 0. Then O(nd) ( O(an).

Again, the proof is an exercise. A function f(n) ∈ O(an) for some a > 1 is said to have (at most)
exponential growth. (I include the “at most” because we don’t typically say polynomials have
exponential growth—they have polynomial growth!) This example should just be a translation
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of something you know from calculus—exponential functions grow faster than any polynomial.
In algorithm analysis, typically exponential growth is very bad, polynomial growth is good, and
logarithmic growth (O(log n)) is outstanding.

For our algorithm analysis, there is one more elementary thing to be aware of—the “arithmetic”
of Big Oh.

Proposition 1.3.11. Suppose c > 0 is a constant, f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)). Assume
g1(n) and g2(n) are positive for sufficiently large n. Then

(i) (f1 + f2)(n) ∈ O((g1 + g2)(n)), and
(ii) (f1f2)(n) ∈ O((g1g2)(n)).

Proof. (i) There exist constants such that |f1(n)| ≤ C1|g1(n)| = C1g1(n) for n > N1 and |f2(n)| ≤
C2|g2(n)| = C2g2(n) for n > N2. Consequently

|f1(n) + f2(n)| ≤ |f1(n)|+ |f2(n)| ≤ C1g1(n) + C2g2(n) ≤ max{C1, C2}(g1(n) + g2(n)),

for n > max{N1, N2}, which is the assertion of (i).
(ii) is similar.

The assumption about g1 and g2 being positive is just to rule out something like f1(n) = f2(n) =
n, g1(n) = −g2(n) = n2 where g1 + g2 cancels out the growth of g1 and g2. One could state (i)
without the positivity assumption as (f1 + f2)(n) ∈ O((|g1| + |g2|)(n)). (Positivity is not needed
for (ii).)

1.3.2 Algorithms

The point of the above diversion on big Oh asymptotic classes is that now we have some basic
tools to explain some simple algorithm analysis, which is extremely important in practice when one
wants to work with graphs of even moderate size.

With all this talk of analyzing algorithms, you might already be a little uneasy. Maybe you’re
thinking to yourself, I don’t even know what an algorithm is. That’s okay, because it’s not entirely
well-defined. Don’t worry though, this won’t cause any problems though—just because Plato wasn’t
sure what a table was, I’m sure he could build one or use one perfectly well.

For us, an algorithm is a (finite) sequence of instructions designed to accomplish a specific task.
The instructions themselves might be a little vague, or even a lot vague. For example, consider the
following two algorithms.

Algorithm 1.3.12. Find the “most popular” member of a given social network G = (V,E).

1. Go through each node v ∈ V , and count the number of neighbors deg(v) of v (called the
degree of v).

2. Find the largest deg(v), and output the corresponding v.

This algorithm is fairly specific, but there are still some things open to interpretation. First
of all, there is the notion of “the most popular” member of a social network. How this should
be interepreted might depend upon type the network and whether it is directed or undirected.
However, let’s assume it is undirected and that by most popular I really mean the node of highest
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degree. One issue is that there might be a tie—e.g., for the graph in Figure 2, two nodes (Brady
and Clay) are tied for the highest degree (5). In this case, should one output all nodes of highest
degree, or just one? Probably it’s reasonable to output all nodes of highest degree.

These clarifications make the algorithm rather well-defined, though it’s still not as specific as
it could be. For example: in what order do you go through the nodes in Step 1? how do you keep
dv and v associated, or don’t you? (e.g., make a table?) what is the algorithm to find the largest
dv? (e.g., do you sort first or not?) However, it’s good enough for anyone to be able to carry out
by hand, or for someone with a moderate amount of programming experience to be able to code
up easily.

Now here is a somewhat famous, but much worse, example of an algorithm.

Algorithm 1.3.13. Find an optimal mate.

1. Estimate the number of people N you can date in your lifetime.

2. Date N/e ≈ 0.36N people, give them scores, break up with them (or get dumped—user choice),
and let M be the maximum of these scores.

3. For each subsequent person you date, score them. If their score is below M , break up with
them. If there score is above M , marry them.

This comes from a probability exercise about figuring out how to maximize your chances of
getting the best possible spouse (here you’re not allowed to date multiple people at a time, or marry
someone you’ve already broken up with). The reason I think this is a bad algorithm is perhaps
different from the reason you might think this is a bad algorithm (or perhaps not). Sure, maybe you
can’t accurately estimate N or give your more-than-friends-but-less-than-spouses accurate scores.
And maybe anyone who scores above your cutoff M won’t want to marry you, i.e., you don’t score
above the cutoff value in their algorithm. But in some sense, these are problems of implementation
of the algorithm, and we’re not meant to worry about these issues in this theoretical exercise. (Or
maybe you take ontological issue with the existence of such a thing as an “optimal mate.” But
we’re working in the confines of an admittedly absurd exercise.)

The main problem with the algorithm is that often it doesn’t give the correct solution to the
problem (though sometimes it will). Already 36% of the time, you’ve broken up with your optimal
mate in Step 2, which means in Step 3 you will break up with everyone until the end of (your) time,
so the algorithm doesn’t terminate (until you do). Even when you marry, it doesn’t always give the
optimal mate. However, within the confines of this theoretical exercise, there is no algorithm with
will always produce an optimal mate, i.e., there is no good algorithm for this problem (which I’m
sure you already knew). Really this algorithm is not a solution to the problem “find an optimal
mate”—it is a solution to the problem “out of a specific class of bad algorithms to find an optimal
mate, determine which bad algorithm is the least bad”.

The point is that algorithms can be good or bad (they solve the problem always, sometimes,
or never). They might terminate or not (e.g., they could get stuck in an infinite loop), or be very
quick or very slow. The instructions might be clear or vague. At some point, if the instructions
become too vague, we should probably not call it an algorithm anymore (e.g., “solve this problem”
is not an algorithm for solving any problem), but there is no clear cut line as to what is “too
vague.” This is what I meant when I said I don’t know exactly what an algorithm is, in the same
way Plato wasn’t sure exactly what a table was. The notion of an algorithm is like the notion of a
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mathematical proof—it’s essentially done by consensus. If people are convinced by an argument,
it’s considered a proof.∗ If people can figure out how to carry out the instructions, it’s considered
an algorithm.

Let’s return to Algorithm 1.3.12, with programming in mind. If we’re trying to write code
for this algorithm, there are various ways it could be implemented. (Note: computer code is not
the same as an algorithm—it’s a specific implementation of an algorithm. For example, changing
variable names in code changes the code, but not the algorithm. Or changing a for loop to a while
loop changes the code, but not the algorithm. However, we won’t try to be precise about when two
blocks of code are consider as implementations of the same algorithm, or two different ones. Again
this is done by common sense/consensus.)

An experienced programmer would have no trouble coding up this algorithm, however someone
with little programming experience (which might be you) might vacillate a little with it. So where
possible, particularly as we’re getting started with programming, we’ll try to make our algorithms
a little more explicit. For example, we can write a more detailed algorithm as

Algorithm 1.3.14. (Algorithm 1.3.12 refined.)

1. Set maxd = 0.

2. For each v ∈ V , calculate the degree deg(v). If deg(v) > maxd, set maxd = deg(v).

3. Make a new empty list mostpop.

4. For each v ∈ V , if deg(v) = maxd, append v to mostpop.

5. Output mostpop.

This is a lot closer to computer code, and should be easy for you to code up once you’re
somewhat familiar with Python. (The one point we haven’t explained here is how to calculate
the degree—this is simple, but it depends upon the implementation of the graph. Let’s take this
for granted now and come back to it in a moment.) Hopefully, this is fairly straightforward to
understand: the first two steps are the algorithm to find the maximum degree maxd, and the next
two steps find all the vertices having this maximum degree.

Another way to express an algorithm in a ready-to-code way to do this is with pseudocode. This
is something that looks a lot like computer code, but isn’t quite. Typically one makes it a little
easier to read than actual code, and sometimes avoids writing down all the details of actual code
that will run. Since we’re programming in Python, we’ll use Pythonesque pseudocode. From the
pseudocode, it should generally be a simple matter to write actual Python code (though you may
need to look up some commands or syntax).

Here is sample pseudocode for Algorithm 1.3.12.

Pseudocode
set maxd = 0

for v in V:

d = degree(G,v)

if d > maxd then

∗Even for mathematicians, who usually want everything to be precise, imprecisely-defined notions like what
constitutes a proof are often more useful than exactly defined ones.
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set maxd = d

set mostpop = []

for v in V:

if degree(G,v) == d then

append v to mostpop

output mostpop

This pseudocode is pretty close to actual Python code, and how close you want to make your
pseudocode to actual code is up to you. I wrote it essentially as I would Python code, but tried to
make it flow more like English when you read it aloud.∗ Specifically, the differences are: I added
the word set at the beginning of definitions, I used the word then instead of a colon in the if

statements, the append line is different, and the word output instead of return. (I also didn’t
include a line to define the function.) Of course, I also used a function not yet written called
degree, which computes the degree.

Note this pseudocode is more precise than Algorithm 1.3.14. For example, in our pseudocode,
we are recomputing degree(G,v) in Step 4 of Algorithm 1.3.14. That is, we don’t bother keeping
track of the degree deg(v) for each v when we first compute it—we compute all the degrees once
to determine the maximum degree, and then we compute them all again to see which vertices have
maximum degree. Alternatively, we could have stored all the degrees in a list and just accessed
the previously computed degrees in Step 4. Hence we have (at least) 2 different implementations
of Algorithm 1.3.14. (Just to show you there are many ways to do things: a variant of Algorithm
1.3.14 would be to store all the degrees and vertices in a table (a 2-dimensional array) during Step
2, sort the table by degrees, and then output the vertices at the top of the table.)

Now let me tell you how to find the degree of a vertex. After this, you should be able to code
up Algorithm 1.3.14 (see Exercises 1.3.7 and 1.3.8).

First, let’s see how to do it if the graph is given as an adjacency matrix A (with respect to
V = {0, 1, 2, . . . , n− 1}).

Python 2.7
>>> def deg(A,i):

... d = 0 # initialize the degree d to be 0

... for j in range(len(A)): # for j = 0, 1, 2, ..., n-1

... d = d+A[i][j] # add A[i,j] to d

... return d

...

>>> A = [ [ 0, 1, 1, 1 ], [1, 0, 1, 0], [1, 1, 0, 0], [1, 0, 0, 0] ]

>>> deg(A,0)

3

>>> deg(A,1)

2

>>> sum(A[0])

3

>>> sum(A[1])

2

Here I define a function deg(A,i), which takes in an adjacency matrix which and returns the degree
of the i-th vertex, which is just the sum of the entries in row i. This is how my code computes the

∗You can think of pseudocode as programming poetry. Bonus points for pseudocode in iambic pentameter, limerick,
or haiku.
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degree. (Recall len(A) returns the number of rows in A, i.e. the size of A.) However, Python already
has a built-in function sum, which returns the sum of the entries in a list, so you can alternatively
get the degree of vertex i just by calling sum(A[i]).

Now suppose the graph G is given as an adjacency list. Again we could write a function that
gets the degree of vertex v, but it can be obtained simply by counting the length of the set of
neighbors of v. (We could also use this algorithm in the adjacency matrix implementation, but
counting the number of 1’s in the i-th row is more straightforward.) If G is given as a dictionary,
this can be done as follows.

Python 2.7
>>> G = { "purple" : { "purple", "monkey" }, \

... "monkey" : {"purple", "dishwasher"}, \

... "dishwasher" : { "monkey" } }

>>> len(G["monkey"])

2

Here G[v] returns the set of neighbors of v, and we pass this set of neighbors to the function len,
which returns the length (size) of a set.

1.3.3 Algorithm Running Times

There are two basic constraints in computing: data storage and computing time. In the olden days,
when games came on multiple diskettes and computer screens had 1 color—green—data storage
was a serious concern, and programmers had to work hard so as not using any more memory/disk
space than necessary. Now, memory/storage capacity is relatively cheap, and data storage is not a
serious issue for most computing tasks. It is mostly only a concern for very specialized problems—
e.g., keeping tabs on everything on the internet—though I think most program developers don’t
take data storage issues seriously enough. (Many programs are bloated, and unnecessarily slow
down your computer—on the other hand, it’s easier to write programs that aren’t efficient.)

Nowadays, the main concern about efficiency is typically is the amount of time a program takes
to run. This will be our main focus in algorithm analysis as well, though occasionally if the amount
of space used becomes egregious we’ll discuss it.

How should we gauge the efficiency of a program or algorithm? One way is simply to physically
time how long it takes to run. There are a couple of issues with this. One, the amount of time
depends on the implementation of the algorithm (both how you write your code, and how your
programming language translates your code into machine operations), the task it is performing
(what the input is) and the computer it is running on. Since, in the heyday of Moore’s law,
computer speeds were doubling every 18 months, just measuring physical running times is of limited
use (though still useful). Further, trying all possible inputs is typically impractical.

Instead, we’d like a simple theoretical way to analyze algorithms that will allow us to estimate
how fast or slow a program will be in practice. This approach will also have the considerable benefit
that we don’t actually have to write a working program to analyze the algorithm. The procedure is
very simple: we just count the number of steps require to complete the algorithm, i.e., the number
of lines of code that the program will run.

Let’s start off with a simple, straightforward example: the program to find the degree of a
vertex using adjacency matrices from Section 1.3.2. Let’s recall the code.
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Python 2.7
>>> def deg(A,i):

... d = 0 # initialize the degree d to be 0

... for j in range(len(A)): # for j = 0, 1, 2, ..., n-1

... d = d+A[i][j] # add A[i,j] to d

... return d

Here there are two inputs, A and i, so we will let f(A, i) be the number of steps required by this
code given the input (A, i). Let n be the size of A. The first line (after verb+def+), d = 0, is run
one time. The second line, you can take as also being run once. The third line, however, is run n
times. Finally the last line is run once. Hence f(A, i) = n+ 3. In fact, since f depends only on the
order n of the graph, we can think of this as a function of n, i.e., f(n) = n+ 3.

This is not exactly the number of steps the computer will do—there’s a lot of stuff going on
behind the scenes at the processor level for each line of code. However, it’s a reasonable estimate
thinking that each line of code takes 1 unit of time to run, and it would be a real headache to
analyze what the processor is actually doing. There is one point to be careful about however—in
the second line we call the functions range and len. The function call to len takes one step
(regardless of how big A is, Python stores the length of A for easy access and you just need to
retrieve this value from memory∗). However the function range returns the list [0, 1, 2, ..., n − 1],
which takes n+ 2 steps to create (n steps to put all the items in the list, 1 to make an empty list,
and 1 to return the list). So perhaps it is better to say f(n) = (n+ 3) + 1 + (n+ 2) = 2n+ 6. (In
fact, we could get pickier, but I’m sure none of you want that.)

We can also see here how the implementation makes a difference about the number of steps the
algorithm will take—if one uses Python’s xrange instead of range, or a while loop instead of the
for loop, Python doesn’t actually need to create a list of size n to do the loop, and we would have
something like f(n) = n+ 4 or f(n) = n+ 5.

The point is that, however we do this analysis, and even if we get very picky, the number of
steps the computer is doing behind the scenes, this f(n) is a linear function in n, i.e., f(n) ∈ O(n),
i.e., f(n) has linear growth. In other words, as the order n of the graph grows, the amount of time
this function will take to run grows linearly in n. Thus we say the running time of this algorithm
is O(n). (While technically, we also have f(n) ∈ O(n2), O(n3), O(2n), etc., we don’t say that this
algorithm has running time O(n2) or O(nn

n
) because that would be morally reprehensible, even if

legally permissible.)

Let me quickly give one more example before discussing algorithm running times in more gen-
erality. Recall the following algorithm for finding neighbors of a given vertex from an adjacency
matrix.

Python 2.7
>>> def neighbors(A, i):

... n = len(A) # let n be the size (number of rows) of A

... neigh = [] # start with an empty set neigh

... for j in range(n):

... if A[i][j] == 1: # for each index 0 <= j < n

... neigh.append(j) # append j to the list neigh if the i-th

... return neigh # row has a 1 in the j-th position

∗I didn’t check the actual implementation of the length function, but Python surely must do this.
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To determine the running time of this algorithm, again let f(A, i) denote the number of steps the
algorithm takes to run with given input (A, i). The first three lines (after def) and the final line
contribute 1 step each (not being picky with the range function in the for loop). The next line
if A[i][j] == 1: runs n times. The next-to-last line runs somewhere between 0 and n times,
depending on how many neighbors vertex i has. Hence n + 4 ≤ f(A, i) ≤ 2n + 4. Since both our
upper and lower bounds for f(A, i) are O(n), we say this algorithm has running time O(n).

In general, an algorithm is a sequence of instructions that takes in some input data, such as
an integer, a list, a matrix, a graph, or possibly multiple inputs (17 lists, 3 matrices and a graph).
Suppose we have an algorithm, Algorithm A, that takes in input I. Let f(I) denote the number of
steps Algorithm A takes to run given input I. Let α(I) denote the “size” of I. (How we measure
the size of the input depends upon the problem and our point of view, but for us it will typically be
the order n of some graph.) As we saw in the last example, the number of steps f(I) required may
depend upon more than just the size α(I) of I. Consequently, we define three notions of running
times.

Definition 1.3.15. Let (In) denote a sequence of inputs In such that α(In) = n.

• If f(In) ∈ O(g(n)) for some sequence (In), we say Algorithm A has best case running
time O(g(n)).

• If, on average, f(In) ∈ O(g(n)) for sequences (In), we say Algorithm A has average case
running time O(g(n)).

• If f(In) ∈ O(g(n)) for all sequences (In), we say Algorithm A has worst case running
time O(g(n)).

The best case running time tells you what is the fastest your algorithm can run. The average
case tells you how long it usually takes, and the worst case gives you an upper bound for all possible
inputs.

Here is an alternative, slightly more formal, description. Let S be the space of all possible inputs
I. Define a function α : S → N and assume that for each n ∈ N, the preimage Sn := α−1(n) ∈ S
is finite. Here α(I) is what we called the size n(I) of I above. Let

fmin(n) := min
I∈Sn

f(I)

favg(n) :=
1

|Sn|
∑
I∈Sn

f(I)

fmax(n) := max
I∈Sn

f(I).

Then we say, with respect to our choice of size function α, Algorithm A has best case running time
O(fmin(n)), average case running time O(favg(n)) and worst case running time O(fmax(n)).)

Example 1.3.16. Consider a graph (possibly directed, non-simple) with adjacency matrix A. Fix
a vertex i, and say we want to find the vertices which are either neighbors of i, or neighbors of
neighbors of i. (We will define the notion of distance on graphs later, and this is essentially the set
of vertices of distance ≤ 2 from i.) Here is our algorithm.

Algorithm 2-neighbors:
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1. Make an empty set 2-neigh.

2. Find the neighbors of i and add them to 2-neigh.

3. For each neighbor j of i, find the neighbors of j and add them to 2-neigh.

4. Output 2-neigh.

Instruction 1 and Instruction 4 both take 1 step each. As we saw above, finding the neighbors of
i takes O(n) time (best, average or worst case), and adding these elements to 2-neigh should take
at most n steps.∗ Hence, the second instruction always takes O(n) steps. In the third step, we need
to run the neighbors algorithm again for each neighbor we had. Let’s say there were d neighbors
(i.e., d is the degree of i), then this is O(n) + O(n) + · · ·O(n) (d times), or O(dn) steps. Adding
the neighbors of neighbors in Instruction 3, takes no more than dn steps, so Instruction 3 runs in
O(dn) steps.

Putting everything together, we see our algorithm runs in 2+O(n)+O(dn) = O((d+1)n) steps
(which is the same as O(dn) if d 6= 0). Now 0 ≤ d ≤ n. If d = 0 (so Instruction 3 never runs at
all), we are led to the minimum number of steps possible, i.e., a best case running time of O(n).
Similarly, the maximum number of steps is clearly when d = n, i.e., the worst case running time is
O(n2 + n) = O(n2). One needs to do a bit more work to rigorously check what is average number
of steps. I won’t go through this, but it is what you might guess—on average d will be n/2, so the
average case running time is also O(n2/2) = O(n2).

In some sense, knowing the average case running time (how long does the algorithm normally
take?) is what you most want to know, but can be more difficult to compute than best case or
worst case. Knowing the best case running time is rarely of practical use. Therefore, we will
usually just concern ourselves with the worst case running time, which provides an upper bound
for the question how long does the algorithm normally take, and in many instances turns out to
be the same as the average case running time. Consequently, when we say the running time of an
algorithm, without further qualification, we mean the worst case running time.

Alternatively, rather than trying to break things up into best case/average case/worse case, we
could’ve just left things at: the running time 2-neighbor is O((d + 1)n). We will sometimes do
this.

If an algorithm runs in O(1) time, we say it has constant running time (it does not seriously
depend upon the size of the input.) If it runs in O(log n) time, we say it has logarithmic running
time. If it runs in O(nd) time for some d ∈ N, we say it has polynomial running time (the special
cases d = 1 and d = 2 are called linear and quadratic running times). If it runs in O(an) time
for some a > 1, we say it has exponential running time. What we can hope for in an algorithm
depends upon what the problem is, and how often we plan to call this algorithm. Generally
speaking, exponential running time is very bad, arbitrary polynomial running time is okay, linear
or maybe quadratic running time is good, and logarithm running time is great. Constant running
time is typically impossible.

One other remark about terminology: based on what we’ve said in this section, you might think
of the number of vertices n as the “size” of the graph—this is the default parameter. However,

∗Now there is a technicality about how long it takes to add an element to a set—it depends upon the implementation
(the issue is that sets should have no repeated elements, so first you have to see if your element is already in the set
S or not, which naively takes O(|S|)). However, it can be (and I believe is in Python) implemented so that adding
an a new element essentially only takes O(1) time, so for simplicity let’s assume this is the case.
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don’t call it that—call it the order of the graph. For a graph G = (V,E), the size of G is defined
by many authors to be |E|, the number of edges, which could be anywhere between 0 and n2.

Let me close with a brief remark on data storage, which does become important when you’ve
got ridiculously huge graphs like the internet.

If you want to use an adjacency matrix, you need to store an n× n matrix, which means you’ll
require O(n2) space—you need to store each coordinate of the matrix. The exact amount of space
needed depends on the actual implementation, and how much space is needed to store the names
of the vertices. However, suppose you want a graph with 1 million nodes. Each matrix entry is 0
or 1, so the most efficiently we can store the matrix in a usable form is store each matrix entry as a
single bit (in the usual implementation, each matrix entry will be 64 bits, but let’s say we do things
more efficiently). Then storing this matrix will take 1012 bits ≈ 100 Gigabytes (GB). If you wanted
10 million nodes, this would require 100 times more space, or about 10 Terabytes (TB). And while
we’re talking about really large graphs here, this isn’t even close to size of a web graph—remember
there are an estimated 1 trillion webpages out there (Google seems to index tens of billions), and
many social network websites have over 100 million users.

Now suppose you want to use an adjacency list. Then you need a dictionary with n entries,
and each entry requires a certain space depending on the number of neighbors. The total number
of neighbors list in the adjacency list is the same as the number of edges of the graph (for directed
graphs, or twice that for undirected graphs). Hence the storage space required is O(n+ |E|). For
most kinds of graphs, |E| > n, so this can be though of as O(|E|). Hence the size |E| of the graph,
as defined above, really measures how much space is required to store the graph. How much space
would we need to stored a graph with 1 million nodes using adjacency lists? Let’s suppose that,
on average, each vertex is connected to 200 other nodes (this is quite reasonable in practice—this
number is very close to the average degree for both Twitter and Facebook graphs). Then the size,
|E|, is 200 million. If we identify each vertex by a 64-bit number (32-bits is still more than enough),
then this would require about 1.6 Gigabytes (GB). This is still quite sizable, but only 1.6% of the
space required for the adjacency list representation. (And we’ve been fairly conservative in our
estimates.) If we have 10 million nodes, where the average vertex degree is still 100, then the size
only multiplies by 10 to require about 16 GB, about 0.16% of the space require for the adjacency
matrix.

Exercises

Exercise 1.3.1. Let 0 < r < s be real numbers. Prove that O(nr) ( O(ns), i.e., that f(n) ∈ O(nr)
implies f(n) ∈ O(ns), but there exist f(n) ∈ O(ns) which do are not O(nr).

Exercise 1.3.2. Give an example of positive functions f(n) and g(n) on N such that limn→∞
f(n)
g(n)

does not exist, but f(n) ∈ O(g(n)).

Exercise 1.3.3. Let f(n) and g(n) be positive functions on N. Is it true that either f(n) ∈ O(g(n))
or g(n) ∈ O(f(n))?

Exercise 1.3.4. Prove Proposition 1.3.7.

Exercise 1.3.5. Complete Example 1.3.8 by showing ( O(log n) ( O(
√
n) ( O(

√
n log n) ( O(n).

Exercise 1.3.6. Prove the assertion in Example 1.3.10.

35



Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Exercise 1.3.7. Write Python code for a function maxdegvert(A) which, given an adjacency
matrix A, returns (as a Python set) the set of vertices of maximum degree.

Exercise 1.3.8. Write Python code for a function AL_maxdegvert(G) which, given a graph G as
an adjacency list, returns (as a Python set) the set of vertices of maximum degree.

Exercise 1.3.9. Determine the (worst case) running times for your functions maxdegvert(A) and
AL_maxdegvert(G) from the previous 2 exercises.

Exercise 1.3.10. Consider the following simple algorithm to find the position of a number i in an
ordered list of size n.

1. Initialize a position counter variable pos = 0

2. For each object x in the list:

3. if x = i, return pos.

4. otherwise, increase pos by 1 and continue.

Assume that the space Sn of allowable inputs of size n is the set of pairs (π, i) where π is a
permutation (an ordering, represented as an ordered list) of {0, 1, 2, . . . , n− 1} and 0 ≤ i ≤ n− 1.
Determine the best case, average case, and worst case running times for this algorithm.

1.4 Graph Isomorphisms

I In this section, graphs may be simple or not, undirected or directed.

If we are just interested in understanding the structure of a graph, the names of the vertices
are unimportant. In other words, we may often want to just consider unlabelled graphs, i.e., graphs
where the vertices are not labelled. We can do this formally with the notion of an isomorphism.

For instance, the two graphs

1

23

A

BC

and

are technically distinct graphs, because the vertices have different names, but we want to regard
them as essentially the same. We will say they are isomorphic. Here is the formal definition.

Definition 1.4.1. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. If there is a bijection φ : V1 → V2
such that (u, v) ∈ E1 if and only if φ((u, v)) := (φ(u), φ(v)) ∈ E2, then we say G1 and G2 are
isomorphic, and we write G1 ' G2. In this case, we say the map φ is an isomorphism of G1

with G2 (if G1 = G2, we say φ is an automorphism of G1).

Recall a bijection φ is a map which is one-to-one and onto, i.e., φ maps distinct elements of V1
to distinct elements of V2, and each element of V2 is in the image of φ. There exist bijections from
V1 to V2 if and only if V1 and V2 have the same cardinality.
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This definition, in less formal terms, says the following: an isomorphic φ is a bijection between
the vertex sets V1 and V2, such that, regarded as a map of pairs of vertices, it maps edges of G1 to
edges of G2, and non-edges of G1 to non-edges of G2. (I.e., φ induces a bijection of the edge sets
E1 and E2.) Even more colloquiually: two graphs will be isomorphic, if you can turn one graph
into the other merely by relabelling the vertices.

Example 1.4.2. The two graphs pictured above are isomorphic. Let G1 be the graph on the left, and
G2 the graph on the right. Then we can take for our bijection φ : V1 → V2 the function φ(1) = A,
φ(2) = B and φ(2) = C. Viewed as a map of pairs of vertices, we see φ((1, 2)) = (A,B) ∈ E2,
φ((2, 3)) = (B,C) ∈ E2 and φ((1, 3)) = (A,C) 6∈ E2. Hence φ is indeed an isomorphism—φ takes
edges e ∈ E1 to edges of E2, and non-edges to non-edges.

Note, there is another isomorphism we could have taken (in general, there may be many). We
could take φ′(1) = C, φ′(2) = B and φ′(3) = A. One sees again that this is an isomorphism.
The fact that there are two distinct isomorphisms is due to the fact that the map of G1 given by
interchanging 1 and 3, but fixing 2, is an automorphism of G1, i.e., if we switch the labels 1 and 3
on G1, the graph does not change.

Here are some basic properties of the notion of isomorphic.

Proposition 1.4.3. Let G1, G2 and G3 be graphs. Then
(i) G1 ' G1

(ii) G1 ' G2 ⇐⇒ G2 ' G1

(iii) If G1 ' G2 and G2 ' G3, then G1 ' G3.

Proof. The proofs are simple—it just involves checking certain maps are isomorphisms, which we
leave as an exercise. For (i), check the identity map is an isomorphism. For (ii), if φ is an
isomorphism from G1 to G2, check φ−1 is an isomorphism from G2 to G1. For (iii), if φ1 is an
isomorphism from G1 to G2 and φ2 is an isomorphism from G2 to G3, check φ2◦φ1 is an isomorphism
from G1 to G3.

This mean being isomorphic defines an equivalence relation among graphs.

Definition 1.4.4. An unlabelled graph is an equivalence (isomorphism) class of graphs.

This may seem a bit strange definition if you’re not familiar with this sort of idea, but the idea
is quite simple. Graphs have this extra structure—the names of the vertices—that we often don’t
care about. So when we don’t care about this, we can think of identifying all graphs isomorphic to a
given graph G0 (i.e., the same as G0 except for this extra structure) as being the same “unlabelled”
graph G. The technical way to do this is let G be the set of all graphs which are isomorphic to
G0. Then we think of any specific graph Gi ∈ G as being a specific manifestation of the idea of
G. Because being isomorphic is an equivalence relation, no two isomorphism classes intersect, and
each graph corresponds to a unique unlabelled graph.

Occasionally, when we want to emphasize that we are working with honest graphs, not isomor-
phism classes, we may use the term labelled graph.

Since the notions of directed/undirected and simple/non-simple are preserved by equivalence
classes (verify this!), it makes sense to say unlabelled graphs are directed/undirected or simple/non-
simple if the underlying labelled graphs are.

Example 1.4.5. There are 4 simple, undirected graphs up to isomorphism (i.e., 4 unlabelled simple
undirected graphs) on 3 vertices.
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In the above example, the unlabelled graphs are determined simply by the number of edges.
This is no longer true when we move to 4 vertices.

Example 1.4.6. There are two unlabelled undirected graphs on 4 vertices with two edges—either
the both edges have a vertex in common or not.

There are 3 with 3 edges (you can generate them by adding each possible edge to the previous graphs
and throw out duplicates):

A basic question in graph theory is, given two graphs G1 and G2, determine if they are iso-
morphic. This is called the graph isomorphism problem. This is not easy in general (it might
be NP-complete, if you know what that means), however in some cases it is easy to to check that
two graphs are not isomorphic. For instance, if two graphs have different number of vertices, or
different numbers of edges, it is easy to see there can be no isomorphism between them.

In general, data that can be associated to a graph which does not depend on its isomorphism
class will be called an invariant of the graph. Then if two graphs have different invariants, we
know they are not isomorphic. Some examples of invariants are: the order, the size, the maximum
degree of a vertex, the minimum degree of a vertex, the number of isolated (degree 0) nodes, or
more generally the number of vertices of degree d. We’ll see many more examples of invariants
later. An example of something that isn’t an invariant could be something like: “the degree of
vertex 1”—this evidently depends upon the labeling of the vertices.

Supposing we have two graphs G1 = (V1, E1) and G2 = (V2, E2) with the same number of
vertices n, then the number of bijections from V1 → V2 is n! (there are n choices for where to map
the first element of V1, (n−1) for the second, (n−2) for the third, and so on.) Consequently, using
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the naive algorithm to see if G1 ' G2 (check all possible bijections to see if they are isomorphisms)
takes O(n2n!) time (the extra n2 is to check if each bijection is an isomorphism or not). By Stirling’s
approximation, n! ∼

√
2πn(ne )n, so this algorithm has worse than exponential growth.

The best known algorithm has worst case running time O(2
√
n logn), which is subexponential—

slower than exponential growth but faster than any polynomial growth, i.e., still quite bad. It
is not known if there is a polynomial time algorithm which will determine if any two graphs are
isomorphic or not (however there are algorithms that work quickly for most pairs of graphs, but
have exponential worst case running time). This is a major unsolved problem in computational
complexity theory, however we will not focus on this in our class.

Exercise 1.4.1. Prove Proposition 1.4.3.

Exercise 1.4.2. Draw all unlabelled simple undirected graphs on 4 vertices. How many are there?

Exercise 1.4.3. Draw all unlabelled simple directed graphs on 3 vertices. How many are there?

Exercise 1.4.4. Let n > 4. How many unlabelled simple undirected graphs are there with n vertices
and 1 edge? What about 2 edges? (You don’t need to give formal proofs for your answers, but briefly
explain your reasons.)

Exercise 1.4.5. How many unlabelled simple undirected graphs are there with 5 vertices and 3
edges? Draw them.

1.5 Paths, Connectedness and Distance

I In this section, graphs may be directed and/or non-simple.

Now that we have various preliminaries out of the way, we can get to discussing some basic
issues in networks. We’ll start with communication and transportation networks in mind. For
such networks, the fundamental issue is how things flow on the network—how do information or
passengers or cargo flow? Can they can from point A to point B? If so, how long does it take? In
networks, we allow things to travel from one vertex to another vertex along edges. The routes that
things can travel along are called paths or walks.

Definition 1.5.1. Let G = (V,E) be a graph. We say a (non-empty) sequence of vertices γ =
(v1, v2, . . . , vr, vr+1) in V is a path or walk if (vi, vi+1) ∈ E for 1 ≤ i ≤ r. The length of the
path is len(γ) := r. We say v1 is the start vertex and vr+1 is the end vertex of γ. If vi 6= vj
for 1 ≤ i 6= j ≤ r + 1, we say the path is simple.

If vr+1 = v1, we say γ is closed. If γ = (v1, . . . , vr, v1) is a closed path with vi 6= vj for
1 ≤ i 6= j ≤ r, we say γ is a (simple) cycle or circuit.

Alternatively, we can specify a path by a sequence of edges, rather than a sequence of vertices.
Namely, a sequence of adjacent edges (e1, e2, . . . , er) defines a path of length r. Here adjacent means
that e2 starts where e1 ends, e3 starts where e2 ends, and so on. Thus the length of a path is the
number of edges in the path, not the number of vertices. Just as we will allow vertices to repeat
in our paths, edges may also repeat. On the other hand, since vertices may not repeat in simple
paths or cycles (except for the first and last vertex of a cycle), edges cannot repeat in simple paths
or cycles.
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We will allow for paths of length 0, i.e., of the form (v) for any vertex v ∈ V . This does not
require G having a loop at v, i.e., (v, v) ∈ E. If G does have a loop at v, this means there is a closed
path (or cycle) of length 1, denoted (v, v)—which in this case coincides with our edge notation,
which starts and ends at v.

Note: this terminology is not entirely standard. Many authors assume all paths are simple.
We will not. On the other hand, we will assume all cycles are simple (not all authors do this, or
some may only admit cycles of length ≥ 3), and use the term closed path when we want to discuss
non-simple cycles.

The terms walk and circuit, however, are fairly standard.

Example 1.5.2. Let n > 2. A cycle graph of order n is a graph of the form G = (V,E) where
V = {v1, v2, . . . , vn} and E = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}}. (Recall {vi, vj} means
an undirected edge, as opposed to (vi, vj).) Here is a cycle graph of order 4.

1 2

34

There are infinitely many paths from 1 to 4: (1,4), (1,2,1,4), (1,2,3,4), (1,2,3,4,1,2,3,4), . . ..
However, there are only two simple paths from 1 to 4: (1,4) and (1,2,3,4).

For arbitrary order n, there are 2n cycles on G, all of length n—for each vertex v, there are
2 that start and end at v—e.g., (1,2,3,4,1), (1,4,3,2,1). However, there are infinitely many closed
paths—you can keep going around the cycle as many times as you want.

All cycle graphs of order n are isomorphic, so we sometimes say the cycle graph of order n,
and denote it Cn.

If G is any graph and γ is a cycle of length n, then the vertices and edges of γ define a cycle
graph of order n. Hence cycles in any graph may be regarded as cycle graphs.

One can also consider directed cycle graphs, e.g.,

1 2

34

In this case there are exactly n cycles (all of length n) since one can only travel in one direction.

Example 1.5.3. A linear graph (or path graph) of order n, is a graph of the form G = (V,E)
where V = {v1, v2, . . . , vn} and E = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}}. Here is a line
graph on 4 vertices.

1 2 3 4

Again, all linear graphs on n vertices are isomorphic, and a simple path of length n yields a linear
graph of order n.
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On a linear graph, there is a unique simple path between any given pair of vertices. Of course,
if we do not require simple, an infinite number of paths are possible. This has no cycles of length
≥ 3. (Note: any undirected edge defines a cycle of length 2—e.g., we have the cycle (1, 2, 1).)

We can also consider directed linear graphs, e.g.,

1 2 3 4

Here, there is a path from 1 to 4, but not from 4 to 1. This has no cycles.

Example 1.5.4. A complete graph of order n is a simple undirected graph on n vertices that
has all possible n(n− 1)/2 edges. I’ve shown you one on 5 vertices before:

1

2

3 4

5

Again, all complete graphs on n vertices are isomorphic, and we usually speak of the complete graph
on n vertices, and denote it by Kn (you know, for komplete).

In this case, there are loads of paths and cycles. For example, here are the some simple paths
from 1 to 5: (1,5), (1,2,5), (1,3,5), (1,4,5), (1,2,3,5), (1,3,2,5), . . . (If we want to enumerate
them all, it’s easiest to be systematic—I started counting by length.) For any two vertices, there
are simple paths between them of lengths 1, 2, 3 and 4. There are cycles starting at any vertex of
lengths 2, 3, 4 and 5.

The directed complete graph is the same as the undirected complete graph, by our convention of
regarding directed graphs with symmetric edge sets as undirected graphs.

Example 1.5.5 (Königsberg bridge problem). Recall the graph from the Königsberg bridge problem.

•

•

•

•
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Here each of the black vertices represent landmasses, the edges represent bridges, and the grey
vertices are just auxillary vertices used to turn the hypergraph (i.e., the multiedges) into a graph
(i.e., ordinary edges). The problem was to find a path that traverses each edge exactly once (note
the problem has not changed by our addition of auxillary vertices).

Euler’s solution was the following. If there is such a path, then for each vertex in the path,
except possible the start and end vertices, one needs to arrive at this vertex the same number of
times one leaves this vertex. Hence, the degree of such vertices must be even. However, all black
vertices on this graph have odd degree. So such a path is impossible. (Nowadays such paths are
called Eulerian paths, and one can show they exist if and only if the number of vertices of odd
degree is either 0 or 2.)

Connectedness

Now we can introduce the notion of connectedness which, at least for undirected graphs, will
(essentially tautologically) tell us if things can get from point A to point B on a graph.

Definition 1.5.6. Let G = (V,E) be an undirected graph, and v0 ∈ V . The connected com-
ponent of v0 is the set of all v ∈ V such that there exists a path from v0 to v. The connected
components of G are the subsets of V which arise as connected components of some v0 ∈ V .

Proposition 1.5.7. The connected components of an undirected graph G = (V,E) partition V into
disjoint subsets.

Proof. This follows because being in the same connected component is an equivalence relation; see
Exercise 1.5.3.

Example 1.5.8. Consider the graph

1 3

2 4

5 7

6 8

9 11

10 12

The connected component of 1 is the same as the connected component of 2, or 3, or 4, or 5.
Similarly for 7 and 8, or 9, 10, and 11. Then the connected components of G are {1, 2, 3, 4, 5},
{6}, {7, 8}, {9, 10, 11}, and {12}. Hence the connected componets of G partition the vertices into
5 disjoint sets.

For directed graphs G, we obviously cannot do the same thing. Consider for example

1 2 3

Then, if we were to use the above definition, the connected component of 1 would be {1, 2}, the
connected component of 2 would be {2} and the connected component of 3 would be {2, 3}. So
this doesn’t give a partition of our digraph. There are a couple of possible ways to try to define
connected components for digraphs. Here is perhaps the most naive way.
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Definition 1.5.9. Let G = (V,E) be a directed graph, and let G′ = (V,E′) be the associated
undirected graph, i.e., let E′ = {(u, v), (v, u) : (u, v) ∈ E}. The connected components of G are
the connected components of G′.

By definition, the connected components again partition the vertices of a digraph into disjoint
subsets. For example, the connected components of the digraph

1 3

2 4

5 7

6 8

9 11

10 12

are the same as those for the graph in Example 1.5.8, as the associated undirected graph is the
same.

One virtue of this definition of connected components is that it allows us to break up arbitrary
graphs into smaller, and hopefuly bite-size, pieces.

Definition 1.5.10. Let G = (V,E) and G′ = (V ′, E′) be graphs. If G is undirected, we assume G′

is also undirected. We say G′ = (V ′, E′) is a subgraph of G if V ⊂ V ′ and E ⊂ E′.

Often we will consider connected components as subgraphs of G = (V,E). Note that a subgraph
is not determined by just selecting the vertices—you also need to decide which edges to include.
However, by convention, if we specify a subgraph only by a subset V0 of vertices, we mean the
graph G0 = (V0, E0) where E0 = {(u, v) ∈ E : u, v,∈ V0}, i.e., we include all possible edges using
only the vertices in V0. For example, the subgraph associated to the connected component of 1 in
Example 1.5.8 is

1 3

2 4

5

Definition 1.5.11. Let G be a graph. We say G is connected if G has exactly one connected
component.

Then any connected component of any graph defines a connected subgraph. The number of
connected components as well as their orders/sizes (number of vertices or number of edges), and
the property of being connected, are all invariants of graphs. Furthermore, if we know all the
connected components of G, we “union” them back together to get the original graph G.

For many problems, one reduces to the study of connected graphs. For undirected graphs G,
we can get from vertex u to vertex v if and only if they are in the same connected component.
In particular, we can get from any vertex u to any other vertex v if and only if G is connected.
Consequently, being connected is one basic property we typically want in things like communication
and transportation networks. From a practical point of view—this means we want algorithms to
determine if a graph is connected, or to determine the connected components. We will briefly
discuss algorithms later.
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For directed graphs G (which most communication and transportation networks are not), the
notion of connected components is not sufficient—if u and v are not in the same connected com-
ponent, then v is not reachable from u, but if they are in the same connected component, v may
or may not be reachable from u.

Now let’s take a look at an alternative notion of connectedness for digraphs.

Definition 1.5.12. Let G = (V,E) be a directed or undirected graph, and v0 ∈ V . The strongly
connected component of v0 is the set of all v ∈ V such that there exists both a path from v0 to v
and a path from v to v0. The strongly connected components of G are the subsets of V which
arise as strongly connected components of some v0 ∈ V .

We say G is strongly connected if it has exactly one strongly connected component.

Note that if G is undirected, strongly connected components are the same as connected com-
ponents since having a path from v0 to v is equivalent to having a path from v to v0.

As with connected components, the strongly connected componentes partition the vertices into
disjoint subsets (Exercise 1.5.5), and these components are maximal such that one can get from
any vertex to any other vertex in same strongly connected component. In particular, G is strongly
connected if and only if one can get from vertex u to vertex v for any two vertices u, v in G.

However, knowing the strongly connected components (even together with the connected com-
ponents) is not enough to completely answer the question can one get from u to v. Namely, tt still
may be possible to get from u to v though u and v are in different strongly connected components.
For instance, in the digraph

1 3

2 4

5 7

6 8

9 11

10 12

the strongly connected components are {1, 2, 3}, {9, 10, 11} and then the singleton sets {4}, {5},
{7}, {8} and {12}. Just looking at the strongly connected components does not tell us if there is
a path from 4 to 5 or a path from 7 to 8, though we can rule out the possibility of a path from 4
to 8 by looking at connected components. In general, there is no way to partition the vertices of a
directed graph G in such a way that one can definitively and easily say if there is a path from one
given vertex u to another given vertex v. Rather, one can compute the set of all vertices reachable
from u (cf. our original definition for connected component for undirected graphs) and check if v
is in this set or not.

We remark many authors don’t consider our notion of connected components for digraphs—
they only consider strongly connected components, and may occasionally just refer to them as the
connected components or components of the digraph. (We may sometimes say components of G
for connected components of G.) However, I defined the above notion of connected components
because is useful for problems where we may want to break up digraphs into smaller digraphs.
Note that one typically cannot do this with strongly connected components because one cannot
piece together a digraph G from just its strongly connected components (viewed as subgraphs).
For instance, the strongly connected component graphs of
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1

23

4

56

are

1

23

4

56

and

Just knowing the two strongly connected component graphs does not tell us how to paste them
together to get our original graph, since there are many ways these two strongly connected compo-
nents could be “weakly connected.”

Distance

Now, assuming that we can get from point A to point B in the graph, our next question is how do
we determine how long it takes? We use the model that it takes 1 time unit to traverse each edge.
Later we will account for different time (or money) costs per edge by using weighted graphs.

Definition 1.5.13. Let G = (V,E) be a graph. For u, v ∈ V , let Γ(u, v) denote the set of paths
from u to v. We define the distance d(u, v) between u and v to be

d(u, v) :=

{
∞ there is no path from u to v;

min{len(γ) : γ ∈ Γ(u, v)} else.

In other words, the distance between two vertices is the least number of steps (edges) it takes to
get from one to the other (if we are working with directed graphs, which vertex is first is important
here). In particular, the vertices which are distance 1 from u are the neighbors of u. For any
vertex u, d(u, u) = 0 since we have allowed paths from u to u of length 0 in our definition of path.

Example 1.5.14. Let’s consider d(1, 4) from our above (undirected) examples. In the cycle graph
C4, 1 and 4 are adjacent, so d(1, 4) = 1. In the line graph, d(1, 4) = 3. In the complete graph K5,
all vertices are adjacent, so d(1, 4) = 1.

Proposition 1.5.15. Let G = (V,E) and u, v ∈ V . Suppose 0 6= d(u, v) <∞. Then there is exists
a path γ from u to v such that len(γ) = d(u, v). Furthermore, any such γ must be a simple path.

Proof. The assumptions mean Γ(u, v) is non-empty. Since the set {len(γ) : γ ∈ Γ(u, v)} ⊂
{0, 1, 2, . . .}, it has a least element, i.e., the minimum is well-defined, and so there exists some
γ such that len(γ) = d(u, v). Consider any such γ = (u = v1, v2, . . . , vr = v). If γ is not simple,
then some vi = vj for i 6= j. (By assumption u 6= v, so (i, j) 6= (1, r).) Say i < j. Then we can
consider the strictly shorter sequence γ′ = (u = v1, v2, . . . , vi, vj+1, vj+2, . . . , vr = v). Since vi, vj ,
we must have (vi, vj+1) ∈ E, whence γ′ is also a path from u to v. However, it is shorter than γ,
contradicting the minimal length of γ.
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The following proposition shows that graph distances behave at least somewhat like Euclidean
ones.

Proposition 1.5.16 (Triangle Inequality). Let G = (V,E). If u, v, w ∈ V , then

d(u, v) + d(v, w) ≥ d(u,w).

Proof. Suppose this is not true for some u, v, w. Then d(u, v) + d(v, w) < d(u,w). It suffices to
assume all these distances are finite (why?). Hence there is a path from u to v of length d(u, v),
and a path from v to w of length d(v, w). “Adding” these paths together (following one, then the
other) gives us a path from u to w of length d(u, v) + d(v, w) < d(u,w), contradicting that d(u,w)
is the minimum length of paths from u to w.

If you’ve studied topology, this makes any undirected graph G into a metric space—i.e., the
distance function satisfies all the usual properties (d(u, v) ≥ 0 with equality if and only if u = v,
d(u, v) = d(v, u) and the triangle inequality). This is not true for directed graphs, since d(u, v) 6=
d(v, u) in general (e.g., consider the directed linear graph on 4 vertices above—d(1, 4) = 3 but
d(4, 1) =∞).

If we have some sort of communication or transportation network, we want some measure (or
measures) of efficiency (i.e., how fast things can travel between two nodes). Here is the most basic
one.

Definition 1.5.17. Let G = (V,E) be a graph (directed or not). The diameter of G, denoted
diam(G), is the maximum distance d(u, v) for u, v ∈ V .

The diameter is finite if and only if G is connected and undirected, or G is strongly connected
and directed.

Example 1.5.18. For the cyclic graph Cn of order n, we have diam(Cn) = bn2 c.
∗ (Draw a few

examples.) The diameter of the directed cyclic graph of order n is n− 1.
The diameter of a linear graph of order n is n − 1. The diameter of a directed linear graph is

∞.
The diameter of the complete graph Kn is diam(Kn) = 1.

The diameter provides an upper bound on the time it takes to get between two points in the
graph. Thus smaller diameters indicate higher efficiencies for graphs. You can also think of diameter
of being a measure of “how connected” a graph is—the smaller the diameter, the closer together
the nodes are, so things are better connected in some sense. For (strongly) connected (di)graphs,
the diameter of n − 1 for directed cyclic or undirected linear graphs is the worst case possible, as
this proposition shows.

Proposition 1.5.19. Let G = (V,E) be a connected undirected or strongly connected directed graph
of order n. Then diam(G) ≤ n− 1.

Proof. Let u, v ∈ V . Then d(u, v) < ∞ and there is a path γ of length d(u, v) from u to v. By
Proposition 1.5.15, γ must be simple. This means γ has no repeated vertices, i.e., it has at most n
vertices, i.e., it has at most n− 1 edges.

∗bxc denotes the floor, or greatest integer, function—round x down to the nearest integer, while dxe denotes the
ceiling function—round x up to the nearest integer.
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Another measure of how well connected a graph is to look at the average distance between
vertices. This will give us a (often times better) estimate on how long it will take to get from a
random vertex to another random vertex. This is like looking at the average case running time of
an algorithm instead of the worst case running time. Which measure is more appropriate depends
upon the particular problem, but as the diameter is an easier quantity to get a handle on, we will
focus primarily on that.

However, let us at least give a precise definition. For a directed or undirected graph G = (V,E),
define the average distance on G to be

davg(G) :=
1

n(n− 1)

∑
u∈V

∑
v∈V, v 6=u

d(u, v).

Note n(n − 1) is the total number of ordered pairs (u, v) of distinct vertices, and we average the
distance over those. This is not much harder to compute than the diameter when working with
specific graphs on the computer, but is considerably harder to analyze theoretically. (For instance,
try calculating the average distance for a cyclic graph Cn or linear graph of order n in terms of n.
It is not horrible, but not nearly as easy calculating the diameter.)

Algorithms

Let’s start off with the question of designing an algorithm to find the connected component of a
given v0 of an undirected graph G of order n. The idea is straightforward, though I’ll write a
reasonable amount of detail which will make it easier to code.

Algorithm 1.5.20. Find the connected component of v0.

1. Add v0 to a new set visited (this keeps track of which vertices we’ve already visited, and will
be the connected component of v0 when we’re done).

2. Add each neighbor of v0 to visited. Let newverts be this set of neighbors just added.

3. For each vertex in newverts, find their neighbors. For each neighbor not in visited, add
this vertex to visited. Then let newverts be the set of these vertices just added.

4. Repeat last step until newverts is empty (i.e., until you’re no longer adding more vertices).

5. Ouput visited.

In other words, we start at v0, find its neighbors, find its neighbors’ neighbors, find the neighbors’
neighbors’ neighbors, and so on. This process is known as a breath-first search—we search in layers
for all the vertices in the component of v0 (as opposed to a depth-first search, where one searches
in succesive lines out from v0). At each step in this process, we only travel out from vertices we
haven’t previously visited. This avoids an infinite loop, and makes our algorithm fairly efficient.

Let’s think about how this search is expanding out in a little more detail. (This is what the
set newverts is at each stage.) From v0, we go to it’s neighbors, i.e., vertices distance 1 from v0.
Then we find the neighbors of the distance 1 vertices that we haven’t already seen. These will be
of distance ≤ 2 from v0. Well, the only things we’ve seen are the things of distance 0 and 1 from
v0. Hence our new set of vertices is precisely the vertices distance 2 from v0. Continuing in this
process, after d iterations, the set newverts is precisely the set of vertices of distance d from v0.
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Note: I could’ve absorbed Step 2 into Step 3 of this algorithm by just letting newverts = {v_0}

in Step 1. I would do this when coding—I just separated out Step 2 for the purposes of exposition.
Now, let’s analyze this algorithm. At some point in the algorithm, for each vertex in the

connected component of v0, I need to find the neighbors of v0 and go through each neighbor, check
if it was already visited and either add it to the connected component or not. Let’s say there are
m vertices in the connected component of v0. Each such vertex has at most m − 1 neighbors (we
can ignore loops), hence this algorithm has a running time of O(m2). Since m ≤ n, we can also
say this algorithm runs in O(n2) time. In fact, if one uses adjacency lists, this algorithm can be
implemented in O(n+ |E|) time.

With this algorithm in hand, it is easy to find all connected components of G = (V,E). Pick a
random v0 ∈ V . Find its connected component V0. Now take a random v1 ∈ V − V0, and find its
connected component V1. Continue this process until all vertices have been exhausted.

Similarly, one can determine if G is connected as follows. Pick a random v0 ∈ V . Find its
connected component V0. Then G is connected if and only if |V0| = n.

Algorithms to find strongly connected components of a digraph G are a bit more involved, and
we will not get into them, but just mention this can also be done in O(n2) time.

Now that we’ve addressed algorithms pertaining to connectedness, let’s move on to distance.
Fix two vertices u, v of a graph G (directed or undirected). How can we compute the distance
d(u, v)? What have we been doing by hand? We’ve (at least I have, and I assume this is what
you’ve been doing too) essentially been finding all simple paths from u to v, of which there are
finitely many and see what path or paths are shortest possible. This is easy to by hand for small
graphs, but to do for large graphs, or to automate on the computer, it requires some work to
generate all simple paths from u to v.

However, if we remember our algorithm for finding the connected component of u, we organized
all vertices in the connected component of u by their distance from u. If we just kept track of
that information in our algorithm, we’ll have the distance not just from u to v, but from u to any
other vertex in the graph (if the other vertex is not in the connected component of u, we know the
distance is infinite).

Here is Python code to do just that, using adjacency matrices and our previous function
neighbors. The function is called spheres for the following reason. Given a graph G = (V,E)
and a vertex u ∈ V , the sphere of radius r centered at u is the set

Su(r) = {v ∈ V : d(u, v) = r}.

It is called a sphere because this is the same definition as for spheres in the Euclidean space familiar
to you.

Python 2.7
def spheres(A, i):

sph = [ { i } ]

visited = { i }

newvert = { i }

while len(newvert) > 0:

new = set()

for j in newvert:

neigh = neighbors(A,j)

for k in neigh:
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if k not in visited:

new.add(k)

newvert = new

if len(newvert) > 0:

sph.append(newvert)

visited = visited.union(new)

return sph

This function returns the list [Su(0), Su(1), Su(2), . . . , Su(m)] where m is the maximum distance
from u of any vertex in the component of u. Here each Su(r) is returned as a Python set. Con-
sequently, if you enter sph = spheres(A, i), then you can access Su(r) simply by sph[r]. This
function works for directed and undirected graphs. It really is essentially an implementation of
Algorithm 1.5.20 where we simply keep track of which vertices are distance r from u, so the same
analysis applies and it runs in O(n2) time.

With this function, we can compute d(u, v) as follows.

Algorithm 1.5.21. Compute d(u, v).

1. Compute the spheres Su(r) centered at u.

2. For each possible value of r, check to see if v ∈ Su(r). If so, output r.

3. Otherwise, output ∞ (which in the computer we often code as −1).

Here the first step take O(n2) times, the second can be done in O(n) time (the number of
vertices in the union of the spheres is at most n), and the last step takes O(1) time. Hence this
algorithm for computing the distance takes O(n2) +O(n) +O(1) = O(n2) time.

We remark one could make this more efficient by not computing all spheres Su(r) first, but
compute them inductively and check at each step if v ∈ Su(r).

Lastly, we present an algorithm for computing the diameter. One could simply try to use the
definition and compute d(u, v) for all u, v, and take the maximum distance. However, we can do it
more efficiently than that.

Algorithm 1.5.22. Compute diam(G), where G = (V,E).

1. For each u ∈ V , do the following:

2. Compute the spheres Su(r) centered at u.

3. Let B(u) =
⋃
r Su(r). If |B(u)| < n, some vertex is not reachable from u, so return ∞.

4. Otherwise, let du be the maximum r for which Su(r) is nonempty. (We can get this by
len(spheres(A,i)).) This is the maximum distance any vertex can be from u.

5. Output max{du : u ∈ V }, which must be the diameter.

See Exercise 1.5.13 for the analysis. Note that if we were just working with undirected graphs,
one could avoid doing Step 3 for each u, and just do it for one u at the beginning to ensure G is
connected.
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Exercises

Exercise 1.5.1. Consider the komplete graph K4 on {1, 2, 3, 4}.
(i) Enumerate all simple paths from 1 to 4. How many are there?
(ii) How many cycles of lengths 2, 3 and 4 are there on K4?

Exercise 1.5.2. (i) Consider a cycle graph C5 on {1, 2, 3, 4, 5}. For each vertex j, compute d(1, j).
(ii) Do the same for the directed cycle graph on {1, 2, 3, 4, 5}.

Exercise 1.5.3. Let G = (V,E) be an undirected graph. Show that being in the same connected
component is an equivalence relation, i.e., show:

(i) for any v0 ∈ V , v0 is in the connected component of v0;
(ii) if v1 is in the connected component of v0, then v0 is in the connected component of v1; and
(iii) if v2 is in the connected component of v1 and v1 is in the connected component of v0, then

v2 is in the connected component of v0.

Exercise 1.5.4. Let G = (V,E) be a graph. Show that v0 ∈ V is an isolated node (i.e., degree 0)
if and only if its connected component has size 1.

Exercise 1.5.5. Let G = (V,E) be a digraph. Show the strongly connected components partition
V into disjoint subsets by showing that being in the same strongly connected component is an
equivalence relation.

Exercise 1.5.6. Let G be a connected undirected graph of order n. Show G has at least n−1 edges.

Exercise 1.5.7. Let n ≥ 2. Consider the cycle graph C2n = (V,E0), and form the graph G = (V,E)
on the same vertex set V = {1, 2, . . . , 2n} (with the usual choice of cycle, i.e., the edges are {1, 2},
{2, 3}, . . ., {2n−1, 2n} and {2n, 1}) with E = E0∪{n, 2n}. In other words, we add the “diagonal”
edge to Cn from n to 2n. In G, what is d(1, n+ 1)? Determine diam(G).

Exercise 1.5.8. Let Cm = (V1, E1) and Cn = (V2, E2) be cycle graphs. Consider the graph G =
(V,E) obtained by taking the union (or “direct sum”) of Cm and Cn and connecting them with a
single edge. Precisely, fix v1 ∈ V1 and v2 ∈ V2. Then V = V1 ∪ V2 and E = E1 ∪ E2 ∪ {{v1, v2}}.
Determine diam(G).

Exercise 1.5.9. Determine, in terms of n, the running time of the algorithm described in the text
(after Algorithm 1.5.20) to find all connected components of G.

Exercise 1.5.10. Using the spheres function, write functions component(A,i), components(A)
and is_connected(A) to find the connected component of vertex i, all components of G, and
determine if G is connected, where A is the adjacency matrix for a directed or undirected graph G.
(Caution: remember to convert A to the adjacency matrix for the associated undirected graph.)

Exercise 1.5.11. Using the spheres function, write a function distance(A,i,j) that computes
the distance from vertex i to vertex j given a directed or undirected graph adjacency matrix A.

Exercise 1.5.12. Write a function diameter(A) to compute the diameter of a graph given its
adjacency matrix A using the above algorithm.

Exercise 1.5.13. Analyze the running times for the following two algorithms to compute the di-
ameter: (i) the naive algorithm of computing all possible distances and taking the maximum, and
(ii) Algorithm 1.5.22.
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1.6 Network design, trees, k-connectedness and regularity

I Here graphs are undirected unless otherwise stated.

Now let’s consider the problem of designing a network. When designing something in real life,
there are pros and cons, costs and benefits, that we need to balance out. In network design, there is
typically a cost associated to each edge of the nework (for construction, maintenance, or both—e.g.,
think of a highway network). Hence one wants to minimize the number of edges in the network
while maintaining certain standards of performance.

Let’s first consider just the following simple constraint: the network should be connected. This
is of course a minimum necessity for communication and transportation networks. How few edges
do we need to make a connected network on n vertices? Recall Exercise 1.5.6 says we need at least
n − 1 edges. Furthermore we can always make a network connected with n − 1 edges by using a
linear or path graph. What else can we do?

Well, for n = 2, there is only 1 graph with 1 edge, and it is connected. For n = 3, again there
are only 2 possibilities with 2 edges. For n = 4, we have 2 possibilities (up to isomorphism):

For n = 5, we have 3 possibilities:

The above graphs are all examples of an important family of graphs, namely trees.

Definition 1.6.1. Let G be a (simple undirected) graph. We say G is a tree if it is connected and
has no cycles of length > 2.

Proposition 1.6.2. Let G = (V,E) a connected graph of order n. Then G is a tree if and only if
|E| = n− 1.

Proof. Both directions will be proved by proving the contrapositive.
(⇐) First we claim that if G has a cycle of length r > 2, it must have more than n edges.

By relabelling vertices, we may assume V = {v1, . . . , vn}, where there is a cycle of length r on
{v1, . . . , vr}. The existence of the cycle means there are at least r edges involving only v1, . . . , vr.
Since G is connected, one of the remaining vertices, say vr+1 must have an edge to one of v1, . . . , vr.
Thus there are at least r + 1 edges involving only v1, . . . , vr+1. Continuing this argument shows
there are at least n edges involving v1, . . . , vn, |E| ≥ n as claimed.

Hence if G is connected with n− 1 edges, it has no cycles of length > 2, i.e., is a tree.
(⇒) Now suppose |E| ≥ n ≥ 3. We want to show G has a cycle of length > 2.
A leaf is a vertex with degree 1. It is clear no cycle of length > 2 will involve a leaf. Thus we

may prune all the leaves, i.e., delete the leaves and the corresponding edges from the graph G to
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get a subgraph G′. If there were l leaves, now G′ is a graph on n − l vertices with at least n − l
edges. It is impossible for all vertices of a connected graph on ≥ 3 vertices to be leaves (if this is
not clear, think about the argument in (⇐)), so G′ indeed has some vertices. Furthermore, since
there are no graphs on m = 1 or 2 vertices with m edges, G′ must have at least 3 vertices.

Now prune G′. Continue this process of pruning leaves until there are no more. (This process
must terminate as the number of vertices becomes strictly smaller at each step, with a lower bound
of 3.) This leaves (no pun intended) us with a graph G0 with m ≥ 3 vertices and at least m edges.
Since G0 has no leaves, each vertex of G0 has degree ≥ 2. This means G0 has a cycle of length > 2
by Exercise 1.6.3, as desired.

This means that if G is a tree, it has at most n − 1 edges (we just showed the contrapositive
for n ≥ 3, but this statement is trivial when n = 1 or n = 2), but it has to have at least n− 1 since
it is connected, i.e., |E| = n− 1.

Remark: the above proof is typical of classical graph theory, and we’d be doing a lot more
arguments like this in a standard graph theory course than we will in this one.

In other words, the trees are precisely connected graphs with the minimum possible number of
vertices, i.e., the best candidates for our overly-simplified network design problem. Now we can
ask, is there any way in which some of the trees might form a better network than others?

Well, another nice property we would like our network to have, besides being connected, is
efficiency, i.e., one should be able to get between two points in the network relatively quickly, so
we want small diameter (or average distance). If we look back at our trees for n = 4 and n = 5,
it is clear the ones on the right are more efficient, and the ones on the left (i.e., the linear graphs)
are least efficient. We can generalize the trees on the right to n vertices as follows.

Example 1.6.3. Let n ≥ 3. The star graph of order n is the undirected graph G = (V,E) with
V = {1, 2, . . . , n} and E = {{1, 2}, {1, 3}, . . . {1, n}}. That is, vertex 1 is connected to all other
vertices, and there are no other edges. We can picture 1 as being the hub at the center of the
network. Here is the star graph on 9 vertices is
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This graph is connected with n− 1 edges and has diameter 2. In particular, it is a tree.

Since the only graph with diameter 1 is the complete graph (why?), the star graph minimizes
diameter among all undirected graphs with less than n(n−1) edges, and this uses the fewest number
of edges possible for any connected graph on n vertices.

52



Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

This leads us to the following, perhaps surprising, observation. Naively, you might expect
the more edges there are in your graph, the smaller your diameter should be—perhaps if you
gradually allow more edges, you can get smaller and smaller diameters. Instead, there’s a very
sharp trichotomy here. If you have < n − 1 edges, you must be disconnected so the diameter is
infinite. If you have between n − 1 edges and n2 − n − 1 edges (anything short of Kn), you can
achieve diameter 2. If you have the maximum possible n2 − n edges, then you must be Kn and
have diameter 1. (However, you can get smaller and smaller average distances by adding more
edges—see Exercise 1.6.4.)

Rather, what seems to be more important for getting a small diameter is that the edges are
well chosen, e.g., making a star graph as opposed to a linear graph. This should indicate that some
care should be take in the design to make a good network. On the other hand, we’ll encounter a
differing philosophy later which says that “random graphs” tend to make good networks. Roughly
the idea is that, sure if you pick a tree at random you’re unlikely to end up with the star graph,
but you’re equally unlikely to end up with the linear graph, and chances are that your random tree
will have diameter closer to 2 than to n− 1. This is explored in Exercises 1.6.6 and Exercises 1.6.7.

Okay, so we seem to have given a reasonable answer to the problem of designing an efficient
network on n nodes. Is there anything we’ve overlooked? Well, in a perfect world, not really.
There’s the aspect that for a physical network, different links will need to be different lengths, and
may have different costs associated with them (both for building/maintaining and for travelling
along), but we’ll revisit this issue later, albeit fairly briefly.

There are two main issues with using a star graph for a network. First, in the real world, things
fail all the time. A cable (edge) could get severed, a server (node) might be down for maintenance
or have hardware issues, roads (edges) or airports (nodes) might be due to the weather. If the
hub of a star graph fails, then the whole network goes down. Or if a single edge goes down, the
corresponding outer vertex becomes stranded. A network that can reasonably handle such failures
is said to be robust.

The second main issue has to do with traffic, or network flow. If we use a star graph as a
network, all traffic must pass through the central hub. Then during busy times, it may be that
traffic gridlocks at the hub rendering the network essentially non-functional for a period of time.
If we want to study traffic issues precisely, then one can define formal notions of the capacity of a
network (how much/how fast information/traffic can pass through) and the network flow. However,
if our network is robust, this will mean that there are several different ways to get from one point
to another, and therefore traffic can be rerouted when necessary to cut down on gridlock. Hence
we will focus on robustness now.

Here are a couple of basic measures of robustness.

Definition 1.6.4. Let G = (V,E) be a graph (possibly directed and non-simple) of order n > k
with n > 1 We say G is k-connected, or k-vertex-connected, if the removal of any subset of
< k vertices (and involved edges) yields a connected subgraph. The vertex connectivity κ(G) of
G is the maximal non-negative integer such that G is κ(G)-connected. Alternatively, κ(G) is the
minimal number of vertices one needs to remove to make G disconnected or have order 1.

A vertex cut is a set of vertices V0 of V such that the subgraph V −V0 is disconnected. Hence
the minimal size of a vertex cut (when one exists) is κ(G).

Note κ(G) tells us that if < κ(G) nodes of our network fail, the remainder of our network will
still be functional (connected). Note that G is 1-connected if and only if G is connected (and
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n > 1), and κ(G) = 0 means G is disconnected. However, G being 0-connected does not mean G
is disconnected—any k-connected graph is automatically (k− 1)-connected from the definition (for
k > 0).

For a directed graph G, being k-connected means the same as the associated undirected graph
being k-connected.

Definition 1.6.5. Let G = (V,E) be a graph (possibly directed and non-simple) of order n ≥ 2.
We say G is k-edge-connected if the removal of any subset of < k edges (but no vertices) yields
a connected subgraph. The edge connectivity λ(G) is the maximal non-negative integer such that
removing any subset of < λ(G) edges (but no vertices) leaves G connected. Alternatively, λ(G) is
the minimal number of edges one needs to remove to make G disconnected.

A cut, or an edge cut is a subset of edges E0 such that the graph (V,E −E0) is disconnected.
The minimal size of a cut equals λ(G).

Note λ(G) means that if < λ(G) edges of our network fail, our network will still be functional
(connected). Again G is 1-edge-connected if and only if G is connected (and n > 1), and λ(G) = 0
means G is disconnected. Also, k-edge-connected implies (k−1)-edge-connected (assuming k > 0).

For a directed graph G, being k-edge-connected is not the same as the associated undirected
graph G′ being k-edge-connected, as 1 edge in G′ might correspond to 1 or 2 edges in G. However,
an edge cut of size k in G corresponds to an edge cut in G′ of size ≤ k, so we can say λ(G′) ≤ λ(G).

We avoided defining vertex and edge connectivity for a graph of order 1 (which is connected)
to avoid putting more technicalities in the definitions.

We remark that (if n ≥ 2) edge cuts always exist (you can cut off all edges from a given vertex
to isolate it), but vertex cuts do not. For instance, take the linear graph of order 2—we can only
remove 1 vertex and still be left with a subgraph (I’m not allowing “empty graphs” on 0 vertices),
and either vertex you remove leaves you with a (connected) graph on 1 vertex. This is why the
alternative definition of κ(G) includes the condition that removing κ(G) vertices leaves you with a
single vertex.

Example 1.6.6. The linear graph Ln of order n ≥ 2 has κ(Ln) = λ(Ln) = 1. To see this, note
Ln is connected so κ(Ln), λ(Ln) ≥ 1. If n = 2, we can only remove 1 vertex as discussed above,
so κ(L2) = 1. If n > 2, we can remove any vertex “in the middle” and this will disconnect the
graph, so κ(Ln) = 1. Similarly, for any n ≥ 2, if we remove any edge, we disconnect the graph, so
λ(Ln) = 2.

Example 1.6.7. More generally, let T be any tree of order n ≥ 2. Then again κ(T ) = λ(T ) = 1.
To see this, note T must have at least one leaf (otherwise, it has minimum degree 2 and therefore
a cycle of length > 2 by Exercise 1.6.3). We can cut the edge from the leaf to disconnect T , so
λ(T ) = 1. Again, for n = 2 it is trivial to see κ(T ) = 1, so assume n ≥ 3 now. Then removing a
neighbor of a leaf cuts of the leaf from the rest of the tree, so we have a vertex cut of size 1, i.e.,
κ(T ) = 1.

Example 1.6.8. Consider the cycle graph Cn, n ≥ 3. We can isolate any vertex by removing
the two adjacent vertices or edges, however removing any single vertex or edge leaves us with a
connected subgraph (a linear graph of order n− 1). Hence κ(Cn) = λ(Cn) = 2.

Example 1.6.9. The complete graph Kn, n ≥ 2, has κ(Kn) = λ(Kn) = n − 1. To see this,
observe removing any set of k < n vertices leaves us with a complete subgraphs Kn−k, i.e., κ(Kn) =
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n− 1. On the other hand, suppose there is an edge cut that leave two vertices u and v in different
components. How many ways can we get from u to v in Kn? There are many, but here are n− 1
possibilities: we can go straight from u to v, or for any of the other n − 2 vertices w, we can go
from u to w, then w to v. Note these paths are independent in the sense that they have no edges
in common. Hence to disconnect u from v, we need to get rid of at least 1 edge from each of these
paths, i.e., the minimum size of a cut is at least n− 1. In fact it is exacly n− 1 since we can just
remove all n− 1 edges from u. Thus λ(Kn) = n− 1.

Remark: A fundamental theorem about connectivity is Menger’s Theorem. It states that
the number of edges needed to disconnect u and v is the maximum number of independent paths
from u to v. There is also a vertex connectivity version. This theorem is a special case of the
famous Max Flow-Min Cut Theorem, which is a generalization to the setting where one considers
each edge having a certain capacity for traffic.

Up till now, we haven’t seen any examples with κ(G) 6= λ(G), so you may be wondering if they
exist. Well, they do. How might we construct one? First observe the following.

Proposition 1.6.10. Let G = (V,E) be a connected graph (possibly directed non-simple) of order
n ≥ 2. Suppose C is an edge cut of minimal size. Then the cut graph G′ = (V,E − C) has two
connected components, i.e., C partitions V into two disjoint subsets.

Proof. Exercise.

Proposition 1.6.11. Let G = (V,E) be a graph (possibly directed non-simple) of order n ≥ 2.
Then κ(G) ≤ λ(G) ≤ n− 1 if G is undirected and κ(G) ≤ λ(G) ≤ 2n− 2 if G is directed.

Proof. Consider a minimum edge cut C = {e1, e2, . . . ek}. This cannot contain any loops, otherwise
we would remove the loops and get a smaller edge cut. Thus k ≤ n − 1 if G is undirected and
k ≤ 2n− 1 if G is directed.

Now let’s show κ(G) ≤ λ(G) = k. We may assume now G is undirected, otherwise we can
replace it with the associated undirected graph G′, which satisfies λ(G′) ≤ λ(G).

The idea is the following: for each edge in the edge cut, remove a vertex at one end to get a
vertex cut. However, one has to be a little careful because doing this arbitrarily may not give us a
vertex cut (indeed, they don’t exist for Kn).

By definition, κ(G) ≤ n − 1, our proposition is true whenever λ(G) ≥ n − 1. Hence we may
assume λ(G) ≤ n − 2. (This rules out Kn.) The previous proposition says that C partitions V
into two disjoint subsets V1 and V2. We claim that there exist u ∈ V1 and v ∈ V2 such that (u, v)
is not an edge in C. Otherwise, there must be an edge from each vertex in V1 to each vertex in
V2, which would give us |V1| × |V2| edges. Consequently, for C to disconnect V1 from V2, we would
need k = |V1| × |V2|. It is easy to see |V1| × |V2| is minimized when either |V1| or |V2| is 1, and the
other is n− 1, so k = λ(G) ≥ n− 1, which we are assuming is not the case. Therefore, the claim is
true.

Now each edge ei ∈ C, pick a vertex vi at one end of ei such that u ∈ V1 and v ∈ V2 do not
lie in V0 = {v1, v2, . . . , vk}. Here the vi’s need not be distinct, so this set may have less than k
elements. Removing V0 removes all the edges in C also, so V0 forms a vertex cut of size ≤ k (it
must disconnect u from v). Hence κ(G) ≤ k = λ(G).

The above argument suggests that, in order to construct a graph with κ(G) < λ(G), we need a
graph where there is a minimal edge cut that involves repeated vertices. Here is an example.

55



Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Example 1.6.12. Consider the following graph G.

1

2 3 5

4

Then κ(G) = 1 ({3} is a vertex cut), but there is no edge cut of size 1. However, there are edge
cuts of size 2, e.g., {{1, 2}, {1, 3}}, so λ(G) = 2.

In fact, we can construct an infinite family of examples.

Example 1.6.13. Take two cycle graphs Cm and Cn, and make a new graph G by connecting one
vertex v0 of Cm to two different vertices of Cn. For example, if m = n = 3 (the smallest size of
cycle graphs), we can do this

1

23

4

56

Then removing any single edge from Cm, or from Cn, or one of the 2 connecting edges will not
disconnect the graph since Cm and Cn are 2-edge-connected. Hence our new graph is also 2-edge-
connected. However, removing the vertex v0 of Cm (2 in the above picture) which connects to Cn
will disconnect Cn from Cm minus v0. Thus this graph satisfies κ(G) = 1 and λ(G) = 2.

Let’s return to the question of network design. First consider the problem of designing a robust
network at minimal cost (let’s not worry about efficiency yet). Say we want a network that will
still be functional (connected) if some number of nodes or edge fail. Then we can set a threshold
number k, depending on our expectations of this network, such that if any set of < k nodes or
edges fail, our network is still connected. That is, we want a k-connected network. Now we can
ask what is the minimum number of edges we need.

Proposition 1.6.14. Let G = (V,E) be an (undirected) graph on n nodes. If G is k-connected (or
k-edge-connected), then each vertex of G has degree at least k. In particular, |E| ≥ nk

2 .

For k-connected directed graphs, we will have |E| ≥ nk.

Proof. Clearly the first statement implies the second, so we just need to prove the first. Fix any
vertex v0 ∈ V , and let d be the degree of v0. Then if we remove the d edges coming out of v0, we
disconnect the graph. Hence we have an edge cut of size d. Thus κ(G) ≤ λ(G) ≤ d, i.e., d ≥ k.

Now we can ask if one can actually construct a k-connected graph on n vertices with nk
2 edges.

Well, clearly this is impossible if nk is odd, so really the best one can ask for is a k-connected graph
with dnk2 e edges. When k = 2, we want a 2-connected graph with n edges. Here we see the cycle
graph Cn is 2-connected with n edges, so this is possible for k = 2. For general k, such graphs were
constructed by Frank Harary, and now known as Harary graphs, and denoted Hn,k.
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Example 1.6.15. We will construct H2n,3, i.e., a 3-connected graph on 2n vertices with the min-
imum possible number of edges, 3n. Start with a cycle graph C2n on V = {1, 2, . . . , 2n}. Now
connect each vertex to its diametrically opposite pair (this is why we assume an even number of
vertices, but the construction is similar for an odd number of vertices). For example, for n = 10
we have:
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It is an exercise to check κ(H2n,3) = λ(H2n,3) = 3.

We won’t bother going through the general construction of Harary graphs, though see the
exercises for k = 4. The reason is the following: they don’t have very small diameter, and therefore
aren’t appropriate for making efficient networks. For example, when k = 2, Hn,2 = Cn has diameter
bn2 c. Similarly, the diameter of H2n,3 grows linearly in n (see Exercise 1.6.10).

If we allow ourselves to increase the cost (i.e., the number of edges), we can bring ourselves
down to diameter 2, by combining the star graph with a cycle graph (or if you prefer, adding a
vertex to the center of H2n,3).

Example 1.6.16. Let n ≥ 4. The wheel graph of order n is the undirected graph G = (V,E)
with vertex set V = {1, 2, . . . , n} obtained by taking a cycle graph on {2, 3, . . . , n} and connecting
the vertex 1 to each of the vertices 2, 3, . . ., n. Here is a picture of the wheel graph of order 9.
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The vertex 1 acts as the hub for the network.
It is easy to see the wheel graph has diameter 2 and is 3-connected (and 3-edge-connected), with

2n− 2 edges (compared to a minimum possible d32ne edges for 3-connected graphs).
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Now how good would a wheel graph be for an actual network? Well, it depends on what exactly
we want, but let’s suppose 3-connectivity is enough for us. While it is somewhat robust, and
efficient, and not too costly (the number of edges grows linearly in n, as opposed to quadratically),
it is highly reliant on the hub (the central vertex 1) for most short paths. For many networks,
hubs (nodes that are connected to a relatively large number of other nodes) are quite desirable.
For organization/administrative purposes, it’s often convenient to have a few central nodes (think
of a flight path network). However, the wheel graph has only one hub, so it will experience all
of the traffic and if there is a problem with the hub, the network, while still connected becomes
very inefficient (a cycle graph with diameter bn2 c). Imagine if 90% of all US flights went through
Chicago. Now imagine this during a winter snowstorm.

In practice, networks may have a number of hubs, of varying sizes. You may not be able to
get everywhere in 2 steps, but maybe you can get to most places in 2 or 3 steps, and in several
ways, so traffic can be rerouted. This provides some sort of compromise between our three desired
qualities: efficiency, robustness and cost effectiveness.

At the other end of the spectrum, we could have highly decentralized networks, meaning an
absence of hubs. It turns out these make excellent networks in practice also, provided there aren’t
administrative reasons for wanting a centralized network.

Definition 1.6.17. Let G be a graph (simple or not, but undirected). We say G is k-regular if
each vertex of G has degree k. We say G is regular if it is k-regular for some k.

Note Cn, Kn and H2n,3 are regular graphs, where as linear graphs, star graphs and wheel graphs
are not. We know by Proposition 1.6.14 that a k-regular graph is at most k-connected, and the
Harary graphs show we can achieve k-connected k-regular graphs when nk is even. Now we can
ask, how efficient can k-regular graphs be?

Proposition 1.6.18. Let G be a k-regular graph on n nodes with k ≥ 2. Then diam(G) >
logk(n(k − 1))− 1.

Proof. Assume G = (V,E) is connected and fix a vertex v0 ∈ V . Now run through the algorithm to
find the connected component of v0. In other words, we find the neighbors of v0, then its neighbors’
neighbors, and so on. At the first step, we find k neighbors, i.e., k elements distance 1 from v0.
At the next step, for each neighbor, we have at most k neighbors of this neighbor, so there are at
most 1 + k + k2 vertices of distance ≤ 2. Similarly, there are at most kd−1

k−1 = 1 + k + k2 + · · ·+ kd

vertices of distance ≤ d from v0. Our algorithm cannot terminate before this number is ≥ n, i.e.,
there exists some vertex v of distance d from v0 with kd−1

k−1 ≥ n, which implies there are two nodes
in G which are distance d > logk(n(k − 1))− 1 apart.

This is not the best possible lower bound for the diameter of a k-regular graph, but it is not
too far off. The point is the diameter has to grow at least logarithmically in n. It turns out that if
we look at a random k-regular graph, it will with very high probability be k-connected (say nk is
even, otherwise k-regular graphs don’t exist) and have diameter that is essentially logarithmic in
n, which is much much better than the linear growth of diameter for graphs like Cn or H2n,3. Time
permitting, we will explain this in greater detail when we begin our discussion of random graphs
in earnest.

In closing this section, you might notice that we don’t have a single measure of how good a
network is, we have several—diameter/average distance, vertex/edge connectivity, and size. We
also don’t have any direct measure of how “robustly efficient” a network is—meaning, if not too
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many nodes go down, will the network still be efficient? This of course is very important in practice.
It’s reasonable to guess that if a graph is k-connected but not too many nodes or edges go down in
comparison to k (e.g., k/4 or

√
k), that the graph will still be fairly efficient. This is not necessarily

always true (e.g., if you have a few central hubs, and they all go down), but it’s often true. When
we get to spectral graph theory, we will see that looking at eigenvalues provides a way to measure
how good the “network flow” is. This will give us a convenient quantity which provides a nice
balance of the qualities of efficiency, robustness and robust efficiency.

Exercises

Exercise 1.6.1. Draw all possible unlabelled trees of order 6.

Exercise 1.6.2. Draw all possible unlabelled trees of order 7.

Exercise 1.6.3. Let G0 be a (simple undirected) graph with minimum degree ≥ 2, i.e., each vertex
has degree ≥ 2. Show G0 has a cycle of length > 2. (Hint: start at any vertex try to trace out a
simple path, and show it must eventually lead to a repeated vertex.)

Exercise 1.6.4. Let Gn,e denote the set of (simple undirected) connected graphs of order n with e
edges. Let fn(e) denote the minimum possible average distance for a graph G ∈ Gn,e. Show that
fn(e + 1) < fn for n − 1 ≤ e < n(n − 1). In other words, unlike diameter, you can always get
smaller average distances by adding in more edges.

Exercise 1.6.5. Let G be a connected graph of order n with n edges. What is the maximum possible
value for diam(G)? Explain why, and explain how to construct graphs with this diameter.

Exercise 1.6.6. For n = 4, 5, 6, 7, do the following. Compute the number of (unlabelled) trees of
a given diameter 2 ≤ d ≤ n − 1, and determine the probability that a given tree of order n has
diameter d. Assume each tree of a given order is equally likely (this is not the case in practice if you
try to randomly generate trees by a reasonable method, e.g., it is not very likely you will generate a
linear graph).

Exercise 1.6.7. Write a Python function randtree(n), that randomly generates a tree on n nodes
as follows. Start with vertex 2. Now add vertex 2 and connect it to vertex 1. Then add vertex 3,
randomly select one of vertices 1 and 2, and connect 3 to that vertex. Continue in this process until
you have n nodes, and return the adjacency matrix. Then, using this function:

(i) By generating 100 random trees of order 4, estimate the probability of getting each type
of unlabelled tree of order 4. Do the same for order 5. (Hint: for n = 4, 5, you can determine
the isomorphism type of the tree by looking, e.g., at the diameter, maximum degree, or number of
leaves.)

(ii) For each n = 5, 10, 20, 50, 100, generate 100 random trees of order n, and estimate the
expected diameter of a random tree of order n.

Exercise 1.6.8. Let G be a simple undirected graph on n nodes. Show if G 6= Kn, then G has a
vertex cut.

Exercise 1.6.9. Prove Proposition 1.6.10.

Exercise 1.6.10. Show that H2n,3 from Example 1.6.15 has vertex and edge connectivities of 3.
Determine the diameter.

Exercise 1.6.11. For n = 5, 6, 7 vertices, construct a graph with 2n edges which is 4-connected.
Can you generalize this to arbitrary n?
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1.7 Weighted Graphs and Travelling Salesmen

I Here graph means undirected graph.

Definition 1.7.1. A weighted graph G = (V,E,w) is a graph (V,E) together with a weight
function w : E → R>0.

In other words, a weighted graph is a graph to which we assign each (undirected) edge a
weight, which is a positive real number. (One can also consider nonpositive weights, but for our
applications, we want positive weights.) The weight of an edge is typically thought of as the cost
of using this edge (which might be a physical distance, or a financial cost, or a time cost, or some
combination of these relevant for the problem at hand). We draw this graphically by drawing our
graph as usual, and then writing the weights on or next to each edge. Much of what we have done
so far can be done in the context of weighted graphs.

First, we can still represent graphs with matrices. If the vertex set is V = {1, 2, . . . , n}, put
wij = w(i, j) if (i, j) ∈ E and wij = 0 else. Then we can represent the weighted graph G = (V,E,w)
with the weighted adjacency matrix A = (wij)ij .

Example 1.7.2. Here is a weighted graph which depicts some approximate road distances among
four cities: New York, Oklahoma City, San Francisco and Los Angeles.

NY

OKCLA

SF

14
80

1340

39
0

2930

1660

The weight between two cities is an approximate road distance (in miles). We did not include an
edge between LA and NY because going through OKC is approximately the shortest way to get from
LA to NY. The weighted adjacency matrix with respect to the vertex ordering {NY, OKC, SF, LA}
is

A =


0 1480 2930 0

1480 0 1660 1340
2930 1660 0 390

0 1340 390 0

 .

Paths are defined the same way for weighted graphs as for unweighted graphs, except now one
might define the length of the path to be sum of the weights of the edges. To avoid confusion of
terminology, we won’t use the word length for weighted paths (so you won’t just think the number
of edges), but we’ll use the word cost. That is, if γ is a path in G represented by a sequence of
edges (e1, e2, . . . , ek), then the cost of γ is

∑k
i=1w(ei). For instance, in our example above the cost

of the path from LA to NY given by (LA, OKC, NY) is 1340 + 1480 = 2820.
Note that if G = (V,E,w) is a weighted graph where we assign each edge weight 1, the cost

is the same as our definition of length for the unweighted graph (V,E). Indeed, we can view the
theory of graphs as a special case of the theory of weighted graphs where all edges have weight
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1. (One can define weighted directed graphs similarly, however we will only discuss the weighted
undirected case here.)

Then one defines distance in the same way: d(u, v) is the minimum possible cost of a path from
u to v, or sets d(u, v) =∞ if no such paths exist. Again, we have the triangle inequality so distance
defines a metric on weighted graphs (i.e., it satisfies the primary properties you expect from a
notion of distance). Diameter again is the maximum distance between two vertices. The notions
of (vertex or edge) connectedness are the same for weighted graphs as for unweighted graphs, as
the weights on the edges play no role in vertex or edge cuts.

A path of minimal cost between u and v will be simple by the same argument given for un-
weighted graphs. One thing to be careful of is that the cheapest (i.e., lowest cost) path (or paths)
from u to v may not use the fewest number of edges. For instance, consider the weighted graph

1

23

1

1

10

Here the shortest path from 1 to 3 goes through 2, rather than taking the direct edge from 1 to 3.
For this reason, the algorithm for computing distances that we discussed for unweighted graphs

needs to be modified to work for weighted graphs. The basic idea is the same as the spheres

function. Starting at some vertex u, we will do a breadth-first search to find the closest vertices,
then the next closest, and so on. In the process, we will construct what is known as an minimum
spanning tree. This is a subgraph of the connected component of u, which is a tree that contains
only the edges needed to reach any vertex in the component of v with a shortest possible path.

We will just explain the algorithm by way of an example. Consider the following weighted
graph.

1
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2 1 3 1 2

1 1 2

Here’s how we can grow out a minimum spanning tree (MST) starting from vertex 1. Initially, the
MST just contains 1. First we look at the neighbors of 1: there is 2, 3, and 4. Of these 4 is the
closest (distance 1). Therefore, the shortest path from 1 to 4 must be the direct edge from 1 to 4
(any path from 1 to 4 must start from going to either 2, 3 or 4—if we go to 2 first, the path must
have cost greater than 5, and if we go to 3 first, the path must have cost greater than 2). Thus we
will add the edge from 1 to 4 to our MST, so it looks like this.

1

4

1
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Now we look at the closest neighbors of 4—besides 1, there are two: 3 and 5. This gives us two
paths to consider from 1 to 3, either (1, 3) or (1, 4, 3), both of which have cost 2. We can choose
either of these to be in our MST since they have the same cost. We also get one path from 1 to 5,
namely (1, 4, 5) which has cost 2. Again, looking at the neighbors of 1 tells us no other path to 5
can be shorter to this one, so we will add the edge (4, 5) to our tree. Hence at this stage, we have
either the MST

1

43 5

1

1 1

or the MST

1

43 5

2 1
1

depending on which of the shortest paths we used to get from 1 to 3. For this example, let’s choose
the latter.

Now we can explore the new neighbors of 3 and 5. The neighbors of 3 don’t get us anywhere
new, so just consider the new neighbors of 5: 2 and 6. The closest one is 2, and the corresponding
path cost (1, 4, 5, 2) is cost 3. Now we compare this with the other paths we’ve already found to
2: (1, 2) and (1, 4, 2). They have costs 5 and 4, so (1, 4, 5, 2) is the shortest. Thus we will add the
edge (5, 2) to our MST:

1

43

2

5

2 1 1

1

Now we look at the new neighbors of 2: there is just 6. We’ve now found 2 paths to 6: (1, 4, 5, 2, 6)
and (1, 4, 5, 6). The latter is shorter, so we add the edge (5, 6) to our MST, giving:

1

43

2

5 6

2 1 1

1 2

Since 6 has no new neighbors, and now we’ve included all vertices we’ve encountered, so this
completes our minimal spanning tree. In a tree, there is a unique path between any pair of vertices
(Exercise 1.7.1) so we can unambiguously read off the distance from 1 to any other vertex by
looking at the path in the MST. Namely, we see d(1, 4) = 1, d(1, 3) = d(1, 5) = 2, d(1, 2) = 3 and
d(1, 6) = 4.
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The reason this algorithm works, and works efficiently, is the following: if we have a path from
u to v of minimal cost that passes through w, the part of the path going from u to w must also
be of minimal cost. For example, when we were considering paths from 1 to 6, we didn’t need to
consider paths like (1, 2, 6) or (1, 3, 4, 5, 6) because at that point in our algorithm we already knew
that (1, 2) is not the most efficient way to get to 2 and (1, 3, 4) is not the most efficient way to get
to 4. This algorithm runs in O(n2 log n) time, or to be more precise, O(|E| log n) time.

Of course, an MST will not tell you all paths of least possible cost—there are 2 from 1 to 2,
but only 1 can be in the MST. Finding all paths of least possible cost is a different problem, but
can be done with a simple variant of this algorithm.

With this algorithm to compute an MST for a vertex u, one can compute distance as mentioned
above or the diameter. Again the algorithm to compute diameter is similar. If the graph is
disconnected, it is infinity. Otherwise, do the following. Given an MST for u, one can find the
vertex (or vertices) furthest from u, and record this maximum possible distance du. Now do this
for every u and take the maximum.

Consequently, even for weighted graphs, it is not too difficult to find an optimal way to get
from Point A to Point B. However, what if we want to the optimal way to visit multiple places?
This might seem like a problem that should not be too much harder than finding an optimal route
between two locations, but it is not so simple because trees no longer suffice to address this problem.

Definition 1.7.3. Let G be a weighted or unweighted graph on n nodes. A Hamiltonian cycle
(or Hamiltonian circuit) is a cycle on G containing all n nodes.

If n > 1, this is equivalent to being a cycle of cost n. Such cycles sometimes exist and sometimes
do not, and deciding whether they do or not is a computationally hard problem. Technically, it
is what is known as an NP-hard problem—in particular, it is believed this problem is not solvable
in polynomial time. There are at most n! possible cycles of cost n in a given graph (Exercise
1.7.2), and constructing a given cycle takes O(n) time, so we can at solve this problem (and
construct a Hamiltonian cycle when they exist) inO(n·n!) time. Recall Stirling’s approximation says
n! ∼

√
2πn(n/e)n, which is superexponential. In the 1960’s, an O(n22n) algorithm was discovered

by Bellman and Held–Karp (independently). This is exponential as O(n22n) ⊂ O(3n).
Given a weighted graph G, the travelling salesman problem (TSP) is to find a Hamiltonian

circuit of minimum possible cost. More colloquially, suppose there are n cities you need to visit for
business, but the order in which you go is not important. How can you plan a route to all the cities,
and go back home, that is as short (or cheap) as possible? Hence the name travelling salesman
problem. The TSP is a fundamental problem in optimization, and has applications to areas such
as logistics problems, microchip design and DNA sequencing. (In DNA sequencing, the nodes are
DNA fragments, and the distance measures similarity between two fragments.)

If you think about it a little, you might notice there’s a slight difference between my definition
of the TSP in terms of Hamiltonian circuits and my colloquiual description. Namely, a Hamiltonian
circuit visits each node except the start node exactly once, whereas the least cost tour of n cities
may involve taking a path through a city you’ve already visited. However, we can account for this
with Hamiltonian cycles as follows. Let G be the weighted graph representing n cities, with an edge
representing a direct physical route between 2 cities. (There may be more than one direct physical
route, but for this problem it suffices to include only the one of minimal cost, which will be the
weight of the edge.) Now it may be that there are two cities u and v with no edge between them
(i.e., no direct physical route—e.g., no road or direct flight between the two), or it may happen
that the direct route from u to v is not the most economical. In this case, we make an edge (or
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replace the existing one) between u and v whose weight is the cost of the most economical path
from u to v. This transforms G into a complete weighted graph G′ (a weighted graph with edges
between all pairs of distinct vertices, i.e., Kn with weights on the edges) where the weight of any
edge (u, v) is precisely d(u, v). Solving the TSP on G′ really is equivalent to finding the least cost
physical tour of the n cities in G, though one needs to keep track of what physical route in G is
represented by each edge in G′. The construction of G′ from G can be done in polynomial time, as
distances can be computed in polynomial time.

Assume now G is a complete weighted graph. For complete graphs, it is easy to generate a
Hamiltonian cycle—we can visit all nodes in any order we like! Consequently, we get n! Hamiltonian
cycles (cf. Exercise 1.7.2). Once we specify a starting vertex, there are (n− 1)! Hamiltonian cycles.
Computing the costs of each of these cycles takes O(n) time, so it is possible to solve the TSP in
O(n · (n− 1)!) = O(n!) time. Again one can do better—O(n22n) run time is possible, but the TSP
is also an NP-hard problem, and we expect that it cannot be solved in polynomial time—in fact,
exponential time may be the best possible∗.

Even though these two problems—the TSP and finding Hamiltonian circuits—are closely related
and solvable in the same amount of time (essentially the same algorithm solves them both, and you
can provably reduce† solving one problem to solving the other), here is one feature of TSP that
is harder than the Hamiltonian cycle problem. Given a possible solution to the TSP, i.e., some
Hamiltonian cycle, it is still hard to determine if this proposed solution has minimal cost. On the
other hand, given a possible solution to the Hamiltonian cycle problem, it is easy to determine if
it is a Hamiltonian cycle or not.

Since the TSP is hard, but of practical importance, what can we do? We have a few options:
we can try to solve the TSP for special classes of graphs, we can try to find probabilistic algorithms
to solve the TSP in faster time (this means, they will work some percentage of the time, but they
won’t give the correct solution, or at least not quickly, in some cases), or we can try to find faster
heuristic algorithms which give approximate solutions to the TSP (i.e., find Hamiltonian cycles of
relatively low cost, but not necessarily the minimum possible). Of these approaches, the latter is
typically the most practical, and we’ll discuss this briefly now.

The simplest algorithm you might imagine is, starting from your home vertex, travel to the
neighbor of minimum distance away (or pick one if there are several). From there, again travel
to the closest neighbor (or pick one if there are several) that you haven’t already visited. Repeat
this until you have visited all nodes, and take the unique path home. Remember, we are working
with complete graphs, so this algorithm will always give some Hamiltonian cycle. This is called the
greedy algorithm, because at each step it chooses the cheapest available. However, this may not be
cheapest in the long run as the following example shows.

Consider this graph:

∗There a subexponential/superpolynomial range of functions growing faster than polynomials but slower than
exponential functions, so not being solvable in polynomial time does not mean exponential running time is the best
possible. On the other hand, there are some things that take longer than exponential time (superexponential) to
solve! The TSP can be solved in exponential time, but the naive O(n!) algorithm is superexponential—it is essentially
of the same order as O(nn).
†Meaning a polynomial-time reduction.
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Let’s try to find a minimal cost Hamiltonian cycle starting and ending at vertex 1. What happens
if we use the greedy algorithm. At first, there are two cheapest options available—we can go to 2 or
3. Let’s say we go to 2. Then there is a unique cheapest option available—going to 3. From 3, we
have to go to 4, and back to 1. Thus we have taken the path (1, 2, 3, 4, 1), with cost 1+1+2+3 = 7.
If we had alternatively selected the path from 1 to 3 at the first step, this would force us into the
cycle (1, 3, 2, 4, 1), which in this example also has cost 7. Neither of these is as cheap as possible,
as both require traveling along the most expensive edge (4, 1) in the graph. The best we can do for
this graph is the cycle (1, 2, 4, 3, 1) or the cycle (1, 3, 4, 2, 1), both of which have cost 6.

Many times the greedy algorithm gives an approximate solution to the TSP that is not too
far from optimal, but sometimes is can be much worse. However, it is certainly fast. It runs in
O(n2) time. In 1976, Christofides discovered an polynomial-time algorithm based on a minimal
spanning tree which find a Hamiltonian cycle that costs no more than 1.5 times the cost of an
optimal solution. Roughly the idea is to make a minimal spanning tree, travel along a path in the
tree until it ends, then jump to another path. However, this jumping paths is done in an intelligent
way. In the above example, we can take for a minimal spanning tree from 1 the following:

1 2

34

1

1

2

We can start out by either picking the path (1, 2) or (1, 3, 4) in the MST. Then we should jump to
the end of the other one, and travel back to 1. By chance, either of these choices give a Hamiltonian
cycle of minimal cost, either (1, 2, 4, 3, 1) or (1, 3, 4, 2, 1). Of course for larger graphs, one needs to
be more careful about how to jump from one path to another as there are many choices to make,
and we won’t typically get an optimal cycle, but at least one that’s not too far off.

After 3 decades of essentially no progress along the lines of Christofides’ algorithm, there have
been exciting developments in this direction over the past several years, and now one can find a
Hamiltonian cycle that is no more than 1.4 times the cost of an optimal one in polynomial time
(Sebö–Vygen, 2012).

This is not to say that research on the TSP was stagnant from the late 70’s to the mid 2000’s.
There has been, and still is, much work on alternative kinds of fast heuristic algorithms to ap-
proximate solutions to the TSP. However, it is very difficult to accurately assess how close the
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approximate solution is to the optimal solution—and of course, it should be difficult to assess,
since we don’t have a good way to get a handle on the optimal solutions for comparison.

One simple alternative approach is the Monte Carlo method. We just start from our initial
vertex, and at each stage, travel to a new vertex chosen at random, and repeat until we have to go
home. We do this many times and keep track of the best solution so far. In other words, the Monte
Carlo approach just tries a fairly large number of random paths, and selects the best among those.
This will work well if we are in a situation where most Hamiltonian cycles are relatively cheap, and
we just need to avoid certain bad paths. However, it won’t work well if there are only a few good
paths to find.

There are also a lot more interesting approaches, such as genetic algorithms (algorithms that
evolve themselves based on past performance), simulated annealing, Tabu search and ant colony
optimization (based on artificial intelligence models of ant colony behavior). In fact, the TSP is
often used as a benchmark to compare different kinds of general optimization philosophies. The
TSP has also crept into cognitive psychology—psychologist have studied how good humans are
at solving the TSP (we’re pretty good, though I’m not sure if we’re as good as ants), and what
algorithms most closely model how Earthlings “naturally” (approximately) solve the TSP.

Exercises

Exercise 1.7.1. Let T be a tree, and u and v be nodes in T . Show there is a unique simple path
from u to v.

Exercise 1.7.2. Let G be a (simple) graph of order n > 1. Show that G has at most n! cycles of
length n, with exactly n! occurring in the case that G is complete.

Exercise 1.7.3. Let G be a complete weighted graph of order n > 1. Suppose you have enumerated
all n! Hamiltonian cycles and computed their costs and stored them in a table. Show that you can
find the smallest possible cost in O(n!) time. Is it possible to do better than this (just using this
table)? (Note: even for the naive algorithm to solve TSP, one would not store all Hamiltonian
cycles and their costs in a table as this would require superexponential space—instead, we can just
keep track of the best so far.)

Exercise 1.7.4. Let G be the weighted complete graph on V = {1, 2, 3, 4}, where the weight of an
edge (i, j) is given by min(i, j). Solve the TSP by hand for G, with initial vertex 1. (Give a minimal
cost Hamiltonian cycle, and the cost.) Do the same for initial vertices 2, 3, and 4.

Exercise 1.7.5. Let G be the weighted complete graph on V = {1, 2, 3, 4, 5}, where the weight of
an edge (i, j) is given by min(i, j). Solve the TSP by hand for G, with initial vertex 1. (Give a
minimal cost Hamiltonian cycle, and the cost.)

1.8 Further topics

Since graphs arise in many ways in many situations, there are a plethora of angles from which one
can come to the study of graph theory. We’ve barely touched the surface of classical graph theory,
and now it’s time to move on. (By classical graph theory, I mean something like: the aspects in
graph theory that whose study began before humans started sending things to the moon, or the
parts of graph theory whose study involves mostly just combinatorics, or what I knew something
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about when I was an undergrad. The important thing is I mean certain parts of graph theory that
people thought about before they had to worry about really large graphs or being bothered by
sociologists and economists.) In fact, a 1-semester course just on classical graph theory still isn’t
enough to cover all the “basics.”

I’d like to give you a little overview of the classical graph theory that we’re skipping in this class,
but it a vast, sprawling field, sort of like a a big, complicated graph, and difficult to summarize
succinctly. At a very general level, a lot of graph theory is studying invariants of graphs and
seeing what they tell you—e.g., if you have two graph invariants (e.g., number of edges and vertex
connectivity), does one of them imply anything about the other? Often people study these questions
restricted to certain types of graphs, e.g., trees or regular graphs, where one often gets nicer answers.
Another general type of question is: what conditions imply certain properties of the graph (e.g.,
when can we guarantee the existence of a Hamiltonian cycle?).

One large subarea is extremal graph theory, where one tries to determine the optimal bounds
on one invariant in terms of others. We’ve touched on this above—if the vertex connectivity of an
undirected graph on n nodes is k, then it must have at least dnk2 e edges, and this bound is optimal

because one can construct Harary graphs Hn,k with vertex connectivity k and exactly dnk2 e edges.
Another typical question is: what is the minimum number of edges required for a graph on n nodes
to have clique of order m, i.e., a subgraph isomorphic to Km. (We’ll say a little about cliques later.)
Or: given a k-regular graph on n nodes, what is the minimum possible diameter (we gave a lower
bound, but it is not optimal).

There is a large overlap of graph theory with the field of enumerative combinatorics. Here the
typical question is to count the number of graphs (or subgraphs, or path, or cuts, etc) with certain
properties. For example, count all undirected graphs (or trees, or k-regular graphs) on n vertices
up to isomorphism. Sometimes one is interested in a question not originally phrased in terms of
graphs, and then one interprets it in terms of certain kinds of graphs, and tries to count these kinds
of graphs (or prove something about them).

Another subarea is algebraic graph theory, which uses linear algebra and group theory (groups
are a fundamental object in algebra—a group is essentially the symmetries of some object). to
study graphs. E.g., what do the eigenvalues of the adjacency matrix tell us, or what do the group
of automorphisms of a graph tell us? Conversely, graphs are often used as tools to study groups.
We’ll look at eigenvalues in the third part of the course.

Graphs are also closely related to finite geometries—these are finite sets of points and lines
which satisfy a set of axioms like Euclid’s axioms for plane geometry. This is part of algebraic
combinatorics and has applications to cryptography and the theory of error-correcting codes, which
are important in engineering and communications.

There are many other aspects and areas of graph theory that we won’t get to in this course,
but let me just tell you about what is perhaps the most famous result in classical graph theory: the
four-color theorem. Draw any map on a piece of paper. That is, draw a set of continuous curves
on your paper that divide the space up into a finite number of contiguous regions. This is what
we’ll call a planar map. We can turn this map into a graph by making each region a vertex and
connecting two vertices with an edge when the corresponding regions share a common border (not
just a point). This is essentially what we did for the Königsberg bridge problem, except we used
edges to denote bridges, not borders there.

A graph is called planar, if we can draw it in the plane R2 with no two edges overlapping. It
is clear by construction that if you start with a planar map, the associated graph is also planar.
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Definition 1.8.1. Let S be a set of size k, which we think of as denoting k different colors. A
k-coloring of a graph G = (V,E) is a map α : V → S such that if (u, v) ∈ E, then α(u) 6= α(v).
The minimal k such that G has a k-coloring is called the chromatic number χ(G) of G.

In English, a k-coloring of a graph G is just a way to color the vertices of G with k distinct
colors in such a way that no two adjacent vertices are the same color. If G has order n, then we can
clearly color G with n different colors. The chromatic number χ(G) is just the smallest number of
colors we need to color the vertices of G with the above rule.

Theorem 1.8.2 (Four-color theorem). Let G be a planar graph. Then χ(G) ≤ 4.

In other words, any planar graph can be colored with at most 4 different colors. Thus we can
color the regions of any map in the plane using at most 4 colors so that no two bordering regions
have the same color.

This is a nice, simple-to-understand result, of course, but the reason it’s so famous is because of
it’s history. Despite it’s simplicity, it resisted proof for over 100 years, the proof was controversial
at the time, and we still don’t have a good way to understand why it is true.

The four-color theorem was originally stated in 1852, but with an incorrect proof. Many “proof”
and “counterexamples” were since proposed, but were later discovered to also be incorrect. On the
other hand, in 1890, Heawood provided a simple (correct) proof that any planar graph can be
colored with at most 5 colors. Finally, in 1976, Appel and Haken announced a proof of the four-
color theorem that is now believed to be correct. Based on Heawood’s result, it suffices to show
no planar map requires 5 colors. The basic idea of the proof is to assume there is a planar graph
G that requires 5 colors, and use a reduction argument to yield a smaller graph that requires 5
colors. Appel and Haken, through much work, reduced the problem to considering an explicit set
of 1482 cases which were checked by a computer to all be 4-colorable. At the time, the computer
calculations themselves were a great achievement, which took over 1000 hours of computing time.

Proofs are deemed correct or flawed or incomplete by consensus. Typically, especially for
problems of significant interest, the proofs are carefully checked by other experts by hand. However,
this was the first serious example of a computer-proved theorem and doubts remained about it’s
validity—both general doubts about computer proofs because it could not feasibly be verified by
hand and specific doubts about the actual code. People are always skeptical of new things, but
it really is very hard to verify correctness of complicated computer output. First, there is the
issue of guaranteeing that the machine is doing exactly what you tell it (no hardware/environment
issues), then verifying the correctness of the code itself, which can easily have a minor, hard-to-
find bug. (For example, there is a problem in combinatorics/coding theory known as Berkekamp’s
Switching Game, proposed by Berlekamp in 1960. This was “solved” by computer in 1989. I had
two undergraduates work on a generalization of this in the summer of 2002 and, the night before
the end of the summer program, they unexpectedly discovered, again by computer, that the original
solution was wrong!)

In response to some of these doubts, Appel and Haken published a very detailed monograph
of the proof of the four color theorem in 1989, including computer calculations, which was over
700 pages. This is now generally accepted, and since then other researchers have done separate
computer proofs of the four-color theorem to double-check its correctness, but there is no known
complete proof by hand.

The other issue with this computer proof is that it is not very enlightening—traditional proofs
(at least good ones) typically do not just verify the truth of a statement, but also give us intuitive
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understanding of why it is true. Reducing a problem to 1500 cases, which are checked individually,
fails to give a good reason why it is true. This is not to take away from Appel and Haken great
accomplishment—there was a very hard result, and there may be no real simple or enlightening
proof of the four-color theorem.

There are innumerably many texts on graph theory and combinatorics that you can see for
more information on the topics discussed on this chapter. Eventually, I may add a list of specific
references here or in the introduction or at the end, but most of what we have talked about can be
found on almost any introductory text on graph theory, though many books will stick to the case
of undirected and possibly simple and/or unweighted graphs. (Part of the problem is, there are so
many books, it’s hard to choose what to put on a reference list.) One exception is the TSP, for
which you should turn to a book on algorithmic graph theory, or a general book on algorithms or
combinatorial optimization, for more details.

Exercises

Exercise 1.8.1. Show K4 is planar, but K5 is not.

Exercise 1.8.2. Determine the chromatic number of the cycle graph Cn.

Exercise 1.8.3. Determine the chromatic number of the complete graph Kn.

Exercise 1.8.4. Determine the chromatic number of the star graph of order n.

Exercise 1.8.5. Determine the chromatic number of the wheel graph of order n.
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Chapter 2

An overview of social networks

A society is a collection of individuals which are interrelated. At its simplest form, a society may
be represented by a network or graph. The graphs that arise this way are called social networks.
Examining these networks can give us insight into how we interact with each other and the world
around us, and what influences our behavior or success in different areas.

For instance, here are a couple of well-known examples of social networks.
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Figure 2.1: Florentine families ca. 1430

In Figure 2.1, each vertex represents a key Florentine family, and the edges denote a connection
by marriage (Padgett and Ansell, 1993). One of these families rose to prominence and consolidated
much of the power in 15th century Florence. Can you guess which one by looking at the graph?
(Think about it now.)

Figure 2.2 depicts members of a Karate club, where the links represent friendship (Zachary,
1977). If I told you there was a schism in the club, and it later split into two rival clubs, can you
guess how the split went just from looking at the graph? (Think about it now.)

While you may not have been able to give precise, definite answers to these questions, you
probably guessed something pretty close to what actually happened. The fact that you can do this,
even without any training, is a testament to how understanding the structure of networks can give
you real insight into the workings of society. The Florentine family that rose to the top wasn’t
the one that was richest or most politically influential at first—its rise to prominence can instead
explained by the social interrelationships of these 15 families.
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Figure 2.2: The Karate Club

Just like with classical graph theory, there are many points of view from which one can enter
the study of social networks. One might come to social networks as a sociologist, or anthropologist,
or linguist, or economist, or computer scientist, or engineer, or biologist, or businessperson, or
investigator. Two principal questions a social scientist would ask are:

• What does the structure of a social network tell us about society?

• How do social networks form?

The first question can be taken at an local, individual level or a broader, global le Your position
in society, who you’re connected to, and who your connections are connected to, and so on, plays
a large role in forming your beliefs, what opportunities you have, and your decision making.

Notice the second question, how do networks form?, implies that social networks change over
time. They are dynamic. Vertices may come an go, edges may appear and disappear. Understand-
ing how networks form will tell us how they may evolve and give us insight into questions such as
how much do you your present connections play a role in forming future connections.

For good or for ill, I am not a social scientist, but I’ll try to guide you into the area of social
networks from the point of view of one mathematician. This means we’ll ignore some questions

71



Graph Theory/Social Networks Chapter 2 Kimball Martin (Spring 2014)

that are important to a social scientist (what is the best way to sample a network? how do you
collect your data and turn it into a graph, e.g., if you’re constructing a friendship network, how
do you tell if two people are friends? how do you interpret graph invariants? etc), but focus on
getting a deeper, structural understanding of networks. For us, two guiding questions will be

• How can we measure the structure of a network?

• How can we model social networks?

We’ve already seen some ways to get a handle on the structure of a network in the last chapter—
e.g., connectedness, diameter, vertex degrees. Now we’ll start to consider other measurable quan-
tities of social networks that gives additional insight into the social structure of the network. For
instance, we’ll provide different ways to measure how important a given node is in a network. Oh,
by the way, in the Florentine families network, the family that rose to power was the de Medicis
(vertex 2). This was despite the Strozzis (vertex 4) being previously richer and more powerful. One
graphic explanation is that vertex 2 has the highest degree, but a better explanation is that the
de Medicis are more centrally positioned in the network. We’ll look at some measures of centrality
later.

Another aspect of this question is, we would like to characterize social networks in terms of
important properties. We’ve seen that the graph isomorphism problem is difficult, which means we
won’t in general be able to determine a graph up to isomorphism by looking a few simple, easy-to-
compute invariants. (Note: things like the adjacency matrices are not invariants, since they depend
upon an ordering of vertices—there are up to n! possible adjacency matrices for a given graph.) So
instead, we’ll examine what are some of the more important features/invariants of a graph from the
point of view of social networks. This is particularly important when we are dealing with complex
networks, i.e., really big networks like the internet.

This notion of characterizing social networks by key properties is important when it comes
to the question of modeling social networks. By modeling social networks, we mean finding an
algorithmic way to generate graphs whose key properties are essentially the same as those of social
networks found in nature. These methods typically depend upon a random process—maybe at each
stage you add/remove a node or edge with some given probability. Depending on these probabilities
(which could be different for different nodes or edges), the kinds of networks you grow will look
different. If these random graphs we generate have the same good-looking features as certain types
of social networks, we’ll consider these random graphs a model for these social networks. Note this
also gives a model for how such social networks can form.

Over the past 20 years or so, there has be an explosion of interest in social networks, and there
are lots of books on social networks now. Unfortunately, most of them are either not mathematical
enough for our purposes or require a much more serious mathematical background. There are
also recent introductory mathematics books about graph theory which discuss some aspects of
social networks, but not everything we want to talk about. Two references I can recommend are
Social and Economic Networks by Matthew O. Jackson (2008), an economist at Stanford, and
Networks, Crowds and Markets by David Easley and Jon Kleinberg, an economist and computer
scientist at Cornell (2010). The latter book is available freely online in preprint form at: http:

//www.cs.cornell.edu/home/kleinber/networks-book

In the rest of this chapter, we’ll explain what are some “landmarks” or key features/invariants
of social networks, and discuss a couple of basic ideas in network modelling, before delving more
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deeply into some of these topics in our remaining two chapters. But first we’ll talk about working
with graphs in Sage.

Graphs in Sage

From now on, we’ll do most of our computational work with graphs in the (free, open-source)
mathematical package Sage, that has many built-in functions for working with and visualizing
graphs. At present, the current version is Sage 6.1.1, though when I started writing these notes it
was Sage 5.12. Most, if not all, of the things we will do should work on either of these versions of
Sage, as well as any versions of Sage released in the near future. Sage is written in Python 2, and
all of the things we’ve done in Python will also work in Sage.

(You may now wonder why we didn’t start with Sage, and there are a couple of reasons. One, I
think it is pedagogically better to start with Python first. I feel you get a better understanding of
graph theory algorithms and how they are implemented by having to write some without yourself
without too many tools available. Two, once you can use Python, Sage is a cinch. In addition, it’s
a useful skill to be able to program, and Python is a widely-used programming language, whereas
most non-math people don’t know what Sage is. So if you can put Python skills on your resume,
that can be a big plus when looking for jobs.)

Let me also mention that there is a Python package called networkx for working with graphs.
For some things, Sage is better, while networkx may be better for other things. I think both
are equally difficult to install for Windows, but on a Mac, Sage is easier to install. Sage has the
additional benefit that one can run it online without installation (e.g., https://cloud.sagemath.
com/).

In any case, we will use Sage in this course, and now briefly explain how to get started working
with graphs in Sage. See the lab page http://www.math.ou.edu/~kmartin/graphs/lab5.html

for some other details and more references. This lab page also includes the data for the Florentine
families and karate club graphs, in the Python adjacency matrix form we have been using so far.

First, Sage has a built-in graph object type, so to use the graph theory features of Sage on a
graph we represented in Python with an adjacency matrix A, we’ll need to convert it to a Sage
graph object. We can do this by converting A to a Sage matrix (Sage also has a built-in matrix
type), and then using the Sage matrix to generate a graph. For instance

Sage 6.1
sage: A = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ]

sage: m = matrix(A)

sage: G = Graph(m)

sage: G

Graph on 3 vertices

sage: G.show() # or G.plot()

Here the lines that begin with sage: are what you input into Sage, and the other lines are the
Sage output.

The commands show() and plot() are two functions that will draw the graph (slightly differ-
ently) on the computer for us. (Note neither of these commands draw the graph in a canonical way,
so if you try plotting the same graph multiple times, it will not look the same each time.) I will
not typically include the plots in these notes—you should try playing around with these or similar
examples in Sage yourself and see the plots on your computer. There is also a plot3d() command
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that gives you a 3-d visualization of your graph. Go to the lab page now, and use Sage to plot the
Florentine family and Karate club graphs.

There are also many built-in constructors for generating graphs in Sage. You can see a list by
typing graphs. (note the period) followed by tab. For example, try the following

Sage 6.1
sage: C10 = graphs.CycleGraph(10)

sage: C10.show()

sage: K5 = graphs.CompleteGraph(5)

sage: K5.show()

Pretty much everything we have talked about so far is already implemented in Sage. Here is
a list of some basic commands. They are all run in the form G.[command], like the show() and
plot() commands.

• am() — returns a (Sage) adjacency matrix

• vertices() — returns the list of vertices

• order() — returns the order

• edges() — returns the list of edges

• size() — returns size

• degree(u) — returns the degree of u

• average_degree() — returns the average degree

• connected_components() — returns the connected components

• distance(u,v) — returns the distance from u to v

• shortest_path(u,v) — returns a shortest path from u to v

• diameter() — returns the diameter

• average_distance() — returns the average distance

• vertex_connectivity() — returns the vertex connectivity

• edge_connectivity() — returns the edge connectivity

• chromatic_number() — returns the chromatic number

2.1 Landmarks of Social Networks

Here we discuss some, but not all, prominent features of social networks.
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2.1.1 Connectedness

We’ve presented 3 real examples of social networks—the OU Math collaboration graph in Figure
2, the Florentine families graph in Figure 2.1 and the Karate club graph in Figure 2.2. Of these,
the first is not connected but the latter two are. Some social networks are connected, but there’s
no reason to expect this in general. E.g., consider a graph of Facebook users, who are connected
by a link if they are friends. There will be small groups of people who are only friends with each
other, and therefore constitute make a connected component.

However, empirically, social networks tend to have a giant component. We’ll give a precise
definition in the context of random graphs (there’s not a good precise definition for a single graph),
but you can get some idea of what we mean by looking at the OU Math collaboration again—there’s
one connected component which is much bigger than the other ones, and it comprises a significant
percentage of the total number of nodes in the network.

Here’s another example—the Web Data Commons Hyperlink Graph (http://webdatacommons.
org/hyperlinkgraph/). This is a directed graph where the nodes are webpages, and there is an
edge from page A to page B if there is a hyperlink from page A to page B. This has (at present)
about 3.5 billion nodes and about 128 billion links. If we look just at connected components in the
undirected sense, this has a giant component consisting of about 3.34 billion nodes (94%). If we
look at strongly connected components, there is a giant component consisting of about 1.8 billion
nodes (∼ 51%).

Of course, one has to be careful in interpreting this because of how the data was collected. This
graph does not represent all webpages at a given time (this may not even be a sensible notion, as
many webpages are dynamic—e.g., Google search result pages). Instead this data was collected
from crawling the web. You find a node at random to start at, and then follow its links to find
other nodes. If you only do this once, you’ll only stay inside the connected component of the node
you start at, and won’t necessarily visit all pages with a link to your initial node. So you do this
many times and collect the results. Still, this procedure tends to give you a graph that may be
“more connected” than just picking a whole bunch of nodes at random. Of course, another issue
is how do you find random webpages without finding them as links from another webpage? There
are some methods, but there is no way to find all webpages with equal probability without being
omniscient. (You’ll never find hidden webpages.) However, this graph gives a good sense of the
part of the web that is in common use.

2.1.2 Degree distributions

Euler solved the Königsberg bridge problem just by looking at the degree of vertices in the graph.
Similarly, we can learn quite a bit about a social network just by looking at the degree of each
node. We could just look at a list of the degrees of each node, and this can be done in Sage with
the degree_sequence() function. However, it is often more convenient to count the number of
nodes of a given degree, which can be done in Sage with the degree_histogram() function. We
can either look at straight vertex counts (as the degree_histogram() function does), or normalize
by the total number of vertices. The latter is what is known as the degree distribution, and this
normalization allows us to easily compare degree distributions for graphs with different numbers of
vertices.

Denote by Z≥0 the set of nonnegative integers {0, 1, 2, 3, . . .}.

Definition 2.1.1. Let G = (V,E) be an undirected (not necessarily simple) graph. The degree
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distribution of G is the function P : Z≥0 → Z≥0 defined by P (d) is the proportion of nodes in V
of degree d.

Note the degree distribution defines a probability function on Z≥0—it satisfies P (d) ≥ 0 for all
d and the probabilities

∞∑
d=0

P (d) = 1

sum to one. (We’ll review some basic probability theory later when we really need it.) For a given
graph G of order n, of course we’ll have P (d) = 0 whenever d > n so the above sum is really a finite
sum, and we can consider P as a probability function on the finite set {0, 1, 2, . . . , n}. However,
it is theoretically convenient to consider P as a function on all nonnegative integers so that (i) we
can compare degree distributions for graphs with arbitrary number of nodes, and (ii) we can model
some degree distributions with continuous functions like P (d) = c/d2, where c is an appropriate
normalization constant to make the total probability 1. (More on how to interpret the latter type
of distribution below.)

We will also want to define degree distributions for directed graphs, to be able to talk about
the Web Data Commons Hyperlink Graph for instance. In this case there are two kinds of degrees
we can look at for a node.

Definition 2.1.2. Let G = (V,E) be a directed graph, and u ∈ V . The in degree of u is
|{v ∈ V : (v, u) ∈ E}|, i.e., the number of edges which point to (end at) u. The out degree of u
is |{v ∈ V : (u, v) ∈ E}|, i.e., the number of edges going out of (starting from) u.

Definition 2.1.3. Let G = (V,E) be an directed (not necessarily simple) graph. The in degree
distribution of G is the function P : Z≥0 → Z≥0 defined by P (d) is the proportion of nodes in V
of in degree d. The out degree distribution of G is the function P : Z≥0 → Z≥0 defined by P (d)
is the proportion of nodes in V of out degree d.

Again, the in and out degree distributions define probability functions.
Note if G is given as an adjacency matrix A, we can find the out degree by counting the number

of 1’s in the row corresponding to u, and the in degree by counting the number of 1’s in the column
corresponding to u. On the other hand, if G is given as an adjacency list, it is easy to get the out
degree of u. However, one has to go through the whole adjacency list to get the in degree, which
is more time consuming (still polynomial time, in fact O(n2), but this is nontrivial if n is on the
order of 1 billion).

If one is working with a really large directed graph, such as the Web Data Commons Hyperlink
Graph, it is not feasible to store the graph as an adjacency matrix, so one has to store it as an
adjacency list. So for large directed graphs, in degree is harder to get at than out degree. This
is apparent if one thinks about how one has to collect the data. Given a webpage A, it is easy to
find the out degree—just count the number of links to different pages on page A. However, if we
want the in degree, we need to find all webpages that link to A, which is not easy. Consequently,
it’s not such a simple task to see how “popular” an individual page is (thinking of popularity in
the sense of how many webpages link to this page—on the other hand, the server that hosts the
webpage keeps track of how often it is accessed, so popularity in the sense of being accessed a lot
is relatively easy to keep track of).
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Let’s consider two extreme degree distributions to see what kinds of things they tell us about
a network. For purposes of illustration, let’s think about friendship networks, i.e., the vertices are
people and we connect them with a link if they are friends.

At one extreme, we could have a “delta-type” distribution, e.g., P (5) = 1 and P (d) = 0 for
d 6= 5. This says the probability that a vertex has degree 5 is 1, so the probability a vertex has
any other degree is 0. Since there are only a finite number of vertices, this means ever vertex has
degree 5, i.e., our friendship network is 5-regular, i.e., everyone has exactly 5 friends. Of course
this is not very likely, but we could loosen things up and have a “bump” distribution where most
people have exactly 5 friends, some have 4 or 6 friends, and a few have 3 or 7 friends.

At the other extreme, we could have a distribution that runs the gamut of all possible degrees.
There are different ways to do this—you could try for a “flat” distribution of the form P (d) = c
for d ≤ k and P (d) = P (0) = 0 for d > k. (This is not possible for c = 1/n; see Exercise 2.1.1.)
(We could also choose to allow P (0) = c so that there are nodes with no friends.) This would
mean there are the same number of really popular people (with maximum degree k) as the same
number of really lonely people (with only 1 friend), which is also the same as the number of people
of average popularity (say k/2 friends). However a distribution like this is quite unlikely for social
network, so let’s think of how else we could do this.

If we broader our thought process a bit, we can think about another scenarios where people
range over a gamut of possibilities. One would be something like exam grades, or IQ scores, which
are often modeled with a Bell curve, which is a normal (or Gaussian) distribution. However, this is
basically the same as what I called a bump distribution above. Another type of distribution where
people run a whole spectrum of possibilities is a wealth distribution. Think about the distribution
of wealth in the US. There are a lot of poor people, quite a few middle class, and a very few
Richie Riches. The wealth distribution is often modeled by a power law distribution. This is a
distribution of the form

P (d) = cd−α, α > 1.

(Note this expression is infinite for d = 0, so we will set P (0) = 0 so there are no isolated nodes.)
Here c is a normalization constant to make the total probability 1. Namely, for this to be a
probability function, we need that

∞∑
d=1

c

dα
= c

∞∑
d=1

1

dα
= cζ(α) = 1,

where ζ(s) denotes the Riemann zeta function

ζ(s) =

∞∑
n=1

1

ns
= 1 +

1

2s
+

1

3s
+ · · · ,

which converges for s > 1. (This is why we insist α > 1.) Hence, the constant c = 1
ζ(α) , and we

can write our power law distribution in the form

P (d) =
1

ζ(α)dα
, α > 1.

We remark that explicit formulas for ζ(α) is known when α is an even integer, e.g.,

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
, . . .

77



Graph Theory/Social Networks Chapter 2 Kimball Martin (Spring 2014)

In practice, ones need to compute ζ(α) numerically, which is not hard. (Of course, in practice, even
when α is even, one also has to approximate π.)

A graph that follows a power law distribution is called a power law graph. Many authors
also call this a scale-free graph (and the power law distribution a scale-free distribution), though
for some people the term scale-free has a more specific usage. The power law distribution is scale
free in the sense that if you plot the graph in the range (.1, 10) or (.001, 1000), the graph will look
the same, i.e., zooming out by a factor of 100 does nothing to the visual appearance of the graph.
Consequently, if we have graphs with 100 nodes, 10,000 nodes and 1 billion nodes all with scale-free
degree distributions with the same parameter α, then the degree distributions for these graphs will
follow exactly the same shape. Roughly, the refined notion of a scale-free graph is a graph that
looks the same when you look at the whole thing or zoom in to just see a part of it, similar to the
way a fractal behaves. Such a graph must have a scale-free (power law) degree distribution, but
having a power law degree distribution does not guarantee fractal like properties for a graph. We
will use the term scale-free graph in its refined sense, and say power law graph when we just mean
some graph with a power law distribution.

Now it may seem perplexing that for all d = 1, 2, 3, 4, . . ., the proportion of nodes of any degree
d can be nonzero. For instance, if we have a graph G on 100 nodes that follows a power law degree
distribution P (d) = ζ(2)−1d−2, how is it possible that P (100) = 6/(100π)2 ≈ 0.00016 > 0? Unless
we allow loops or multiedges, the maximum degree of a vertex is 99. In addition, for a given graph
G, the proportion of nodes of degree d must be a rational number, whereas P (d) = 6/(πd)2 is
irrational for all d. The answer of course is that no individual (finite) graph will have a degree
distribution which is exactly a power law distribution. Rather, a power law distribution will be
a convenient mathematical approximation of an actual distribution. It is helpful to think of P (d)
as being the probability that a given node has degree d, so 100P (d) should be approximately the
number of nodes of degree d. Since 100P (100) ≈ 0.016, which rounds down to zero, this says we
probabilistically expect 0 nodes of degree 100 (and similarly for higher degrees), and this indeed is
what we logically expect.

Put another way, we can think of a power law distribution as a model for the degree distributions
for certain networks. Allowing P (d) > 0 for all d > 0 in fact confers an advantage on us—this
model is valid for all n. Returning to our example with α = 2, we saw that P (100) ≈ 0.00016. This
means if we have a growing network following this degree distribution, by the time n = 10000, we
expect to see 1 or 2 nodes of degree 100.

Many people think social networks roughly follow power-law distributions, so one often asks,
given a social network, how close is the degree distribution to a power law distribution? The easiest
way to see this visually is to look at what is called a log-log plot of the degree distribution. Note
that if we have a power law graph y = cx−α, taking logs of both sides gives

log y = log(cx−α) = log c+ log x−α = log c− α log x.

So if we have data (xi, yi) that we suspect follows a power law for some exponent α, the data
(log xi, log yi) must satisfy a linear relation, and we can determine α by looking at the slope. The
plot of the data (log xi, log yi) is called the log-log plot. See Figure 2.3. There is a standard
statistical procedure known as simple linear regression which can give us an objective measure of
how close the data (log xi, log yi) is to being linear, and approximating the slope α, but we won’t
discuss this here.

The web page http://webdatacommons.org/hyperlinkgraph/topology.html has log-log plots
of the distributions of in degrees and out degrees for the Web Data Commons Hyperlink Graph. If
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Figure 2.3: A power law distribution: the standard plot and a log-log plot for α = 2

you take a look, you’ll see the in degrees follow a power law distribution rather closely, at least for
quite a while, but the out degree distribution does not look too linear in the log-log plot.

Let’s take a look at the Karate Club graph from Figure 2.2. This has degree distribution given
by P (1) = P (9) = P (10) = P (12) = P (16) = P (17) = 1/34, P (2) = 11/34, P (3) = P (4) = 6/34,
P (5) = 3/34, P (6) = 2/34 and all other P (d) = 0. We’ve plotted the degree distribution in Figure
2.4 using both the standard and log-log plots. (Note, since log 0 = −∞, we need to omit the d’s
such that P (d) = 0 in the log-log plot.) Note the log-log plot does not look too linear, and indeed
the standard plot does not look too much like a power function. One issue to take into account in
this comparison is that the order of the graph is rather small (n = 34), so a few stray points on the
graph will greatly alter its shape.

Looking at these graphs more closely, what are the differences with a power law graph? The
first thing to notice is the Karate Club graph starts with a large spike, whereas a power law graph
starts with a steep decline. If this friendship network really followed a power law graph, there
should be a large number of people with only 1 friend, but here there’s only one. Rather there are a
large number of people with 2 friends, then the degree distribution drops sharply, and in the range
2 ≤ d ≤ 8 (looking at the standard plot), it doesn’t seem so far off from a power law shape. Indeed,
the middle section of the log-log plot does not appear to be too far from linear. However, the last
section (of both plots) go more-or-less horizontal. This is a function of working with a small value
of n, so for the larger degrees where we don’t expect too many such nodes, there are only really
two possibilities that happen—for d ≥ 7, either P (d) = 0 or P (d) = 1.

So what’s our conclusion—is a power law a good model for this graph or not? Well, it’s not my
job to tell you how to think, so you can come up with your own conclusion. But we will revisit this
question later when we talk about network models.

Here’s how we can look at degree distributions is Sage.

Sage 6.1
sage: # K is the Karate club graph

sage: dh = K.degree_histogram()

sage: dh

[0, 1, 11, 6, 6, 3, 2, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1]
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Figure 2.4: The Karate Club graph degree distribution — standard and log-log plots

sage: from sage.plot.bar_chart import BarChart

sage: bar_chart(dh)

There is no built-in function to get the degree distribution, but the degree_histogram() func-
tion returns a list whose d-th entry is the number of nodes of degree d (starting from d = 0). One
can easily get the degree distribution from this, but for purposes of plotting, the degree histogram
is sufficient. Sage supports line plots and bar chart plots—we chose to do a draw a bar chart for
this example.

A related function is the degree_sequence() function, which returns a list consisting of the
vertex degrees for each vertex, ordered reverse numerically.

2.1.3 Centrality

For our question about the Florentine families graph in Figure 2.1—which family rose to power—
we want to understand how the “position” of a node in a network determines how much power or
influence it has. There are different ways to try to measure this, and these notions fall under the
heading of centrality.

The most basic measure of centrality is degree centrality. Given a (simple undirected) graph
G, the degree centrality of a node is simply its degree divided by n− 1. So if our node is connected
to all other nodes, it has the maximum possible degree centrality 1, whereas if it is isolated, it has
minimum possible degree centrality 0. In the Florentine families network, we see vertex 2 (the de
Medici’s, which is the family that rose to power) has the highest centrality, namely 6/13, or nearly
1/2.

However, degree centrality is a local notion, which I termed popularity in the Introduction.
That is to say, the degree centrality of a vertex depends only on the neighbors of the vertex, and
not how the rest of the network looks. According to (Padgett and Ansell, 1993), just looking at
degree centrality in the Florentine families graph is not sufficient to explain how the de Medici’s
rose above the Strozzi’s (vertex 4), who were richer and more politically powerful at the time.
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In the Introduction, we observed in the collaboration graph in Figure 2 that while Przebinda
and Özaydin have the same degree centrality, Przebinda is one step closer to most people in the
large component. Similarly, the de Medici’s are closer to more families than the Strozzi’s in the
Florentine graph.

To measure how close a node is to other nodes in a graph, we consider measures of closeness
centrality. Then the inverse distance measure of closeness centrality is simply∑

v 6=u

n− 1

d(u, v)
.

(For any v where d(u, v) =∞, we regard 1
d(u,v) = 0.) It is also natural to consider an inverse square

measure: ∑
v 6=u

n− 1

d(u, v)2
.

We normalized these measures by the maximum possible degree n−1 so if u has an edge to all other
vertices v, these measures give the maximum value of 1. Of course one could consider arbitrary
exponents k ≥ 1 on d(u, v) in these sums.

An alternative way to measure closeness centrality it to look at what is called decay centrality∑
v∈V

δd(u,v), 0 < δ < 1,

where δ is a parameter that can be adjusted. This does not require G to be connected as δ∞ = 0 for
0 < δ < 1. Note the limit as δ → 1 of the decay centrality of u is simply the size of the connected
component of u.

Another notion of centrality is betweenness centrality. This measures the number of times a
given vertex u lies on a (shortest length) path between other vertices v1 and v2, and gives a higher
score the more times u appears. I won’t give a precise definition, but both closeness and betweenness
centralities give more “global” notions of centrality, better reflecting how well positioned a node is
in a network. The de Medici’s have high closeness and betweenness centralities, and this seems to
be what gave them the ability to rise to power in 15th century Florence.

Sage has some of these centrality measures built in. Let’s do an example.

Sage 6.1
sage: # F is the Florentine families graph

sage: # vertex 2 is de Medicis, vertex 4 is Strozzis

sage: F.centrality_degree(2)

0.42857142857142855

sage: F.centrality_degree(4)

0.2857142857142857

sage: F.centrality_closeness(2)

0.56

sage: F.centrality_closeness(4)

0.4666666666666667

sage: F.centrality_betweenness()

{0: 0.10256410256410256,

1: 0.09157509157509157,

2: 0.521978021978022,

3: 0.21245421245421245,
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4: 0.25457875457875456,

5: 0.0,

6: 0.0,

7: 0.1043956043956044,

8: 0.02197802197802198,

9: 0.0,

10: 0.14285714285714288,

11: 0.05494505494505495,

12: 0.0,

13: 0.11355311355311357,

14: 0.09340659340659341}

Here centrality_degree() is the normalized degree centrality, centrality_closeness() is the
first measure of closeness centrality described above, and centrality_betweenness() returns the
betweenness centrality of all nodes.

There is another, more sophisticated notion of centrality. How important a node is should be
based on who it’s neighbors are. The more important it’s neighbors, the more important that node
should be. This makes intuitive sense, but how can we use this idea to give a precise measure
of centrality? We’re basing our notion of importance on the notion of importance. There are
various ways to resolve this recursive conundrum, the most elegant in my mind being eigenvector
centrality. This notion forms the basis of the Google PageRank algorithm, and we will see how
to define it in the next chapter with the notion of random walks.

2.1.4 Small world phenomena

Many social networks exhibit phenomena that are called small world phenomena. Loosely this
means the network is very well connected, often surprisingly so. We already explored part of this
idea a little bit with the notion of connectedness and giant components. Let’s consider some large
social network that you’re part of—maybe the nodes are email or Skype or cell phone or Facebook
users, and two people are connected if they’ve been in contact in the past month, or worse, are
Facebook friends. For concreteness let’s consider an actual (as opposed to Facebook) friendship
network of students at OU.

Pretend you’re in a story. Maybe you’re really antisocial—you live off campus, you don’t really
meet other students, you just come to campus to go to class and leave, but on your way out from
class, you randomly bump into this guy/girl who seems pretty cool, so you show him/her you’re
pretty cool too by not talking to him/her. Afterwards you realize this was pretty stupid, since
you have no way of meeting him/her again. Still, you have this nutty professor for your Bokonism,
Robotics and the African Diaspora class who makes you work in group projects, so you got together
with this guy Kilgore in your group once or twice, and you guess you’re sort of friends. He’s also
pretty antisocial, but even he has a couple other friends, and one of them has a bunch of friends
in the Science Fiction Club. Some of the Sci-Fi’ers have friends in the Math Club. Everyone in
the Math Club is friends, including that guy/girl you bumped into one and sort of liked, from
whom you’re only 4 steps away now. Gradually you meet Kilgore’s friends, and eventually you
start hanging out with some of the Sci-Fi kids. Then one of them who’s in the Math Club tells
you about this cool lecture he heard in the Math Club, and the good pizza. So you decide to check
out the Math Club, and the next Wednesday you go up the the 11th floor of PHSC at 4pm only
to discover no one’s there. That’s cause they don’t meet every week. All of a sudden, the roof flies
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off the building and you get sucked up in a tornado. Across from you, you see the guy/girl you
kind of liked, and you work up the courage to wave and say hi. Only he/she doesn’t wave back,
because he/she is screaming uncontrollably, because the lower half of his/her is being eaten by a
shark. But then the shark starts screaming because the lower half of his/her body (it’s hard to tell
the gender of a shark, especially in a tornado) is being eaten by a dinosaur. “All’s well that ends
well!” you scream. The end. True story. I have the screenplay rights.

The point is, even in you hang out with just a small group of people, though some random
connections, you’re connected to larger groups, which are connected to other large groups, and
you’ll see that most of the network is connected, or at least being eaten by sharks and dinosaurs.
Sure, there may be some really antisocial people who don’t make any connections, or little groups
which are not connected to the rest of the network, but for friendship networks like this, we expect
most people in the network to be connected to each other through some sequence of friends.

Another type of small world phenomena is what is usually referred to as six degrees of sepa-
ration. In 1929, Frigyes Karinthy wrote a story (if you can call something without a sharknado
a “story”) about how the world was shrinking (not literally, unfortunately). In there, a character
bets that if you choose any two humans on Earth at random, they are connected by a sequence of
at most 5 personal acquaintances (not including themselves, so distance at most 6 in the “personal
acquaintance network”). You could interpret this as a conjecture that the personal acquaintance
network is connected with diameter at most 6, but this seems not likely to be strictly true, as
there are pockets of societies with little-to-no contact with the rest of the world. However, a better
interpretation is that if you choose two people at random, they are unlikely to be of distance more
than 6 apart. I don’t know if this is true or not—there’s nothing inherently magical about the
number 6—it was just some number Karinthy pulled out of his, um, writing cap—but I expect it
is true for some relatively small distance. Incidentally, he phrase “six degrees of separation” was
made famous by a play of the same name written by John Guare, but in his usage it means everyone
is distance at most 7 apart.

Here is a heuristic reason. Let’s make a very conservative estimate that you have made 100
acquaintances in your couple of decades on this earth. Similarly, your acquaintances will have at
least 100 acquaintances each. So this yields potentially 1002 = 10, 000 people of distance at most
2 from you. Of course there will be a lot of repetition in your acquaintances’ acquaintances, but it
seems reasonable to assume there are at least 1,000 people distance at most 2 from you. Continuing
this form of estimation, you might estimate there are at least 10,000,000 people of distance at most
6 from you. Only a few more steps, and you’re at 10 billion! See, you’ve got everyone covered!
(This heuristic follows the same reasoning as the proof of Proposition 1.6.18.)

This seems like a hard problem to actually study at the level of personal acquaintances (how do
you determine them, and how do you gather data?), but some studies have been done. One famous
study was by Stanley Milgram in the 1960’s who estimated the average distance between someone
in Omaha and a specific person in Boston is less than 6. For this study, Milgram randomly chose
96 people in Omaha from the phone book, and sent them small packages, with instructions that
they should send them to someone they know whom they think will be closer to the “target.” That
person should should do the same, recording the steps of the package. The target was a friend of
Milgram’s and specified by name, address and occupation. Of these packages, 18 reached Milgram’s
friend, with average path length about 5.9.

Another famous “study” is six degrees of Kevin Bacon. In 1994, Kevin Bacon was the center
of the entertainment world (he said so himself!). Here we take the graph of all actors, and put
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an edge between two if they worked on a film together. Any well-known actor will be in the same
component as Kevin Bacon, which will be the giant component. At the time, there was a game to
find a shortest path to Kevin Bacon, and usually the distance was less than six. Note this does
not mean most pairs of actors are distance at most six away, though this may also be true—it only
formally implies the distance between two random actors is usually less than 12.

Mathematicians have something similar, which is the notion of an Erdös number, and this is
quite well-known too. Paul Erdös (1913–1996) was an itinerant Hungarian mathematician who
wrote about 1500 papers with 511 different collaborators (though he almost never wrote anything
up himself). Here we consider the collaboration graph of all mathematicians—two mathematicians
are connected if they co-authored a paper together. The Erdös number of a mathematician is his
or her distance from Erdös in the collaboration graph. Of course many mathematicians are not in
the same component as Erdös, but of those that are (and there are many—it is a giant component),
the average Erdös number is 4.65, the median is 5, almost all are below 8, and the maximum is 15.
There are 511 with Erdös number 1 and 9,267 with Erdös number 2. (These numbers of course can
change over time, and may be slightly dated now.) This provides some evidence that our estimate
of 1,000 people of distance at most 2 from you in the acquaintance graph is reasonable (though
Erdös is of course a special node), and that most people in a giant component are can be connected
in a relatively small number of steps.

We can rephrase this mathematical notion of six degrees of separation as the statement: in the
giant component of a social network, the average distance is relatively small and the diameter is is
also not too large. We can be precise about the terms “relatively small” or “not too large” when
we discuss random graphs.

Another aspect of small world phenomena is that given two nodes A and B, there tend to be
many short paths from A to B. This is the feature that usually causes people to declaim, “It’s a
small world.” For example, say there are two friends Abbey and Camille, and Camille introduces
Abbey to her new ocarina teacher, Barry. Guess what? Abbey already knows Barry because he
plays the card game Set with Abbey’s brother Doug on Tuesday nights. Now there are two short
paths which represent the ways Abbey knows Barry—through Camille, and through Doug. As they
say, it’s a small world.

This idea that there are often many short paths between two vertices is related to the notions
of cliques and clusters, which we’ll discuss next.

2.1.5 Cliques and clusters

A clique in an (undirected) graph G is a subgraph of G isomorphic to a complete graph. Cliques
of order 1 are just single vertices. Cliques of order 2 are just pairs of vertices connected by an
edge, so for simple undirected graphs the number of cliques of order 2 is just the number of edges.
Cliques of order 3 are “triangles” in the graph, or just cycles of length 3 if we ignore the initial
vertex (i.e., if we consider the cycles (a, b, c, a), (b, c, a, b) and (c, a, b, c) to be the same).

For instance, consider K4. This has one clique of order 4 and 4 of order 3, 6 of order 2 and 4
of order 1. On the other hand, the cycle graph Cn for n > 3 has no cliques of order > 2.

Thinking in terms of a social network, say a friendship network, a clique is a subset of of people
such that any two people in this set are friends. Knowing what the cliques are in a network will
tell us a lot about the society. If you and I are friends, are most of your friends my friends also? Is
the formation of the network very clique-ish (i.e., are most connections made by “networking”?),
or are most connections made by chance encounters? In the first case, we expect many fairly large
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cliques, where as in the second, not many at all.
The clique number of G is the maximum order of a clique in G. For Kn, it is clearly n. For

Cn it is 2 unless n = 3, in which case it is 3 as C3 = K3. In the OU Math collaboration graph, the
clique number is 3, but there are 7 cliques of order 3. For the Florentine families graph, it is also
3, with 3 cliques of order 3. For the karate club graph, the clique number is 5—this graph has 2
cliques of order 5 and 11 cliques of order 4 (2 of which are not contained in a clique of order 5).

Sage has a many built-in functions for cliques. Here is an example of a few.

Sage 6.1
sage: # Here F is the Florentine families graph

sage: F.clique_number()

3

sage: F.cliques_maximum()

[[0, 7, 8], [0, 8, 11], [1, 2, 13]]

sage: F.cliques_maximal()

[[0, 8, 7],

[0, 8, 11],

[0, 13],

[2, 1, 13],

[2, 3],

[2, 6],

[2, 10],

[2, 14],

[4, 1],

[4, 3],

[4, 7],

[4, 12],

[5, 10],

[9, 3],

[11, 14]]

As you can guess, clique_number() returns the clique number of the graphs. The function
cliques_maximum() returns all the cliques of maximum possible order. The function cliques_maximal()

returns all maximal cliques, meaning they are not contained in larger cliques.

One issue with counting cliques in a social network is that cliques are unstable under minor
changes. Remember that social networks are dynamic, so we want to look at measures of graphs
which are robust in the sense that they do not vary wildly under small changes to the network.
For instance, just adding the single edge {7, 11} would change the clique number of the Florentine
families graph from 3 to 4.

Even from a “static” point of view, the notion of clique is rather rigid for what we want to
measure. We might want to look for “generalized cliques” in the network—tightly-knit groups in
the network where perhaps not every pair in this network is directly connected, but most are. This
brings us to the notion of cohesiveness and graph decompositions.

Let’s go back to the example of the karate club in Figure 2.2. The karate club graph has 2
“hubs”, vertex 33 of degree 17, and vertex 0 of degree 16. One is the instructor of the club and the
other is the student founder. From a networks point of view, this graph can be roughly partitioned
into 2 subgraphs around these hubs which are cohesive (relatively tightly-knit) groups. Here is a
picture of how the split went.
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Figure 2.5: The Karate Club, split

For the most part, the split can be determined in the following way—karateka i went with
vertex 0 or 33, according to whoever they were closer to. However, this does not provide a complete
explanation. For instance, 19 is friends with both 0 and 33, but chose to stay with 0. Why? Well,
a likely explanation is that 19 is also friends with 1, who is friends with 0 but not 33. When faced
with a choice, people often do what their friends do. This reasoning does not explain all choices
made—e.g., 8 went with 0 despite having more friends who went with 33. We don’t capture all
relevant information in this network (e.g., strength of connections and any personal details are not
measured), but the point is we can mathematically guess how the split would go almost exactly
even before it happened by just looking at the network structure.

Here is one way of mathematically formulating the idea that friends tend to go with friends’
choices. We partition the graph into two components, one containing 0 and one containing 33, in
such a way that we minimize the number of triangles (cliques of order 3) broken. For example, if
19 went with 33, we would loose the clique {0, 1, 19}, but if 19 goes with 0, no clique of order 3 is
destroyed.

How can we identify cohesive subgraphs? While cliques are certainly cohesive, this measure is
too crude to identify the two components the karate club split into. One strategy is to use the
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notion of clustering. Visually this is the notion of how many triangles are in the graph and how
much they bunch together. There are different ways we can measure clustering.

Definition 2.1.4. Let G = (V,E) be a simple undirected graph. The (individual) clustering
coefficient of a node u ∈ V is the probability Cl(u) that two neighbors of u are themselves neighbors,
i.e.,

Cl(u) =
|{(v, w) : v, w ∈ V ; v 6= w; (u, v), (u,w), (v, w) ∈ E}|
|{(v, w) : v, w ∈ V ; v 6= w; (u, v), (u,w) ∈ E}|

=
|{(v, w) : v, w ∈ V, v 6= w; (u, v), (u,w), (v, w) ∈ E}|

deg(u)(deg(u)− 1)
.

The average clustering coefficient is the average of Cl(u) over all u ∈ V . The overall clus-
tering coefficient or transitivity of G is

Cl(G) =

∑
u∈V |{(v, w) : v, w ∈ V ; v 6= w; (u, v), (u,w), (v, w) ∈ E}|∑

u∈V |{(v, w) : v, w ∈ V ; v 6= w; (u, v), (u,w) ∈ E}|
.

The meaning of the individual and average clustering coefficients are straightforward—e.g., for
friendship networks this measures how many of your friends are friends with each other. We’ll
explain transitivity momentarily.

First let’s look at some calculations for the karate club graph K.

Sage 6.1
sage: K.clustering_coeff([0,33])

{0: 0.15, 33: 0.11029411764705882}

sage: K.cluster_triangles([0, 33])

{0: 18, 33: 15}

sage: K.clustering_average()

0.5706384782076823

sage: K.cluster_transitivity()

0.2556818181818182

The function clustering_coeff returns the individual clustering coefficients for the list of nodes
specified (or all nodes by default). The function cluster_triangles returns the number of trian-
gles involving node u for each u in the specified list (or all nodes by default). The clustering_average()
and cluster_transitivity() functions return the average and overall clustering coefficients for
the graph.

Note that even though the vertices 0 and 33 are involved in more triangles than any other ver-
tices, their individual clustering coefficients are much lower than the average clustering coefficient.
This is actually to be expected with hubs, because they are friends with so many different people.
On the other hand, vertices like 18 or 20, who are only friends with 32 and 33 (who are friends),
have clustering coefficients 1. When we take an average of individual clustering coefficients, the
clustering coefficients for all vertices are weighted the same.

If instead we want to put more weight on vertices with higher degree, we can see this in the
overall clustering coefficient. We call a “potential triangle” in a graph a triad, i.e., a triad is a
set of 3 vertices in the graph with at least 2 edges among them. Then the overall clustering, or
transitivity, as defined above is simply the number of triangles in the graph divided by the number
of triads.

87



Graph Theory/Social Networks Chapter 2 Kimball Martin (Spring 2014)

Both the average and overall clustering coefficients give some sense of how cohesive the graph
is. Let’s examine these clustering measures for the 2 graphs K1 and K2 of how the karate club split.
Here K1 is the subgraph of K consisting of people that went with 0, and K2 is the subgraph of K
consisting of people that went with 33.

Sage 6.1
sage: K1.cluster_transitivity()

0.39195979899497485

sage: K1.clustering_average()

0.7215686274509804

sage: K2.cluster_transitivity()

0.25139664804469275

sage: K2.clustering_average()

0.631279178338002

In both cases we see there is a sizable jump in the average clustering coefficients over the original
graph K. There is also a significant jump in overall clustering for K1, but almost no change (in fact
a slight drop) for K2.

How does this compare with clustering coefficients for random subsets of K? I generated a couple
of random subsets of vertices of size 17, and for both of these the overall clustering was not too far
from 0.25, but the average clustering dropped to about 0.43.

This suggests that clustering coefficients can provide useful measures of how cohesive certain
groups in a network are. Clustering will also give us some insight into how a network forms. A
lot of clustering in, say, a friendship network suggests that many friendships were formed through
mutual friends. On the other hand, in networks with relatively low clustering suggests that most
connections were formed not through mutual connections, but other methods, such as chance
encounters or strategic choices (e.g., in the Florentine families network, it is likely that many of
the connections (marriages) were strategically formed for mutual gain).

Exercises

Exercise 2.1.1. Fix k ∈ N. Show there is no simple undirected graph G with exactly 1 vertex of
each degree 1, 2, . . . , k and no vertices of higher degree. (Hint: what can you say about the number
of vertices of degree > 0?)

Exercise 2.1.2. Is there a simple undirected graph G with exactly 2 vertices of each degree 1, 2, 3, 4
and no vertices of higher degree?

Exercise 2.1.3. Write a Sage function degree_distribution(G) that takes in Sage graph G, and
returns the degree distribution. This should be returned as a list, just like degree_histogram(),
where the d-th entry is the proportion of nodes of degree d (starting with d = 0. Test this on the
Florentine families and karate club graphs. (You define functions in Sage just as in Python.)

Exercise 2.1.4. Write a Sage function loglogplot(dd) that takes in a degree distribution dd and
produces a log-log plot. (Use a line plot—see the Sage documentation. The function log is built
into Sage. You may also want to use the float function which converts numbers into floating point
numbers.) Test this on the karate club graph and compare with Figure 2.4.

Exercise 2.1.5. Write a Sage function decay_centrality(G,u,delta) which returns the decay
centrality for vertex u with parameter delta.
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Exercise 2.1.6. Write a Sage function clique_count(G,m) that returns the total number of cliques
of order m in G. Note you cannot read this information directly off the cliques_maximal() result
as this only returns maximal cliques. Test your function on the Florentine families and karate club
graphs.

Exercise 2.1.7. Design an algorithm to predict which nodes went with vertex 0 and which went
with vertex 33 in the karate club split. Explain your algorithm, code it up in Sage, and compare
your results to data in Figure 2.5.

2.2 Social Network Models

To properly study social networks, it is important to have a notion of social network models. The
basic idea is that we have some procedure, usually involving an element of randomness, that gen-
erates graphs. (We’ve seen one example with random tree generation in Exercise 1.6.7.) Typically
there are some adjustable parameters in this procedure. If, for some choice of parameters, this
procedure generates graphs which typically look very similar to (have the same landmarks as) a
given social network G0, this can give us a lot of insight into how the social network G0 has formed,
and how it will evolve over time.

In addition, models will allow us to formalize intuitive notions about networks and prove the-
orems about them, which will give us baseline expectations for our social networks. For instance,
we’ll be able to say what it precisely means to have a giant component and show that certain
types of networks almost always have giant components. On the other hand, when a network looks
different from our expectations, this will tell us that there is something interesting going on about
how this social network forms.

2.2.1 Probability for n00bs∗

Because we want to talk about randomness, we first need to establish some basic notions from
probability.

Definition 2.2.1. A (discrete) probability space (S, P ) is a set S with a function P : S → [0, 1]
such that ∑

s∈S
P (s) = 1.

The function P is called the (discrete) probability function, or (discrete) probability dis-
tribution.

It is convenient to extend the definition of the probability function P to subsets A ⊂ S by

P (A) =
∑
s∈A

P (s).

Then it is clear that P satisfies the properties

0 ≤ P (A) ≤ 1, A ⊂ S
∗Certainly not for dummies, but smart people who haven’t seen or don’t remember this stuff.
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(with P (∅) = 0 and P (S) = 1) and

P (A ∪B) = P (A) + P (B), A,B ⊂ S, A ∩B = ∅.

We will call subsets A ⊂ S events in the probability space.
Once P is understood, we often just refer to S as the probability space. We can think of

this probability space as follows. We have some infinitely repeatable experiment (under identical
conditions), and the elements s ∈ S represent the different possible mutually-exclusive outcomes of
this experiment (exactly one outcome s in the space S occurs after each trial of the experiment).
The probability P (s) represents the fraction of the time we get outcome s. Similarly, the probability
P (A) represents the fraction of the time we get an outcome s ∈ A.

Example 2.2.2. We can model a fair coin flip with a probability space S = {H,T}, where H
represents heads and T tails, where the probability function is defined by P (H) = P (T ) = 1/2.

Example 2.2.3. We can model a fair die roll with a probability space S = {1, 2, 3, 4, 5, 6}, where
P (s) = 1/6 for all s ∈ S. Then the probability of rolling an even number is P ({2, 4, 6}) = 1/6 +
1/6 + 1/6 = 1/2. Here the set A = {2, 4, 6} represents the event of an even die roll.

This gives a little indication as to why it is convenient to define probabilities of subsets, rather
than just elements, of S. So does the next example.

Example 2.2.4. Consider an urn with n balls, m of which are red, and n−m are green. You draw
one at random (the balls are mixed so that each ball is drawn with equal probability). We can model
this with a probability space as follows. Think of the balls as being numbered from 1 to n, and for
convenience assume that balls 1 through m are red, and the remaining balls are green. Formally,
take S = {1, 2, . . . , n} and P (s) = 1

n for each n. Then A = {1, 2, . . .m} represents the event of
drawing a red ball and B = {m + 1,m + 2, . . . n} as represents the event of drawing a green ball.
Hence the probability that you pick a red ball is P (A) = P (1) + P (2) + · · · + P (m) = m

n , (unless
you are red-green color blind, in which case the probability is 1).

Alternatively, we can model this experiment with the probability space (S′, P ′) where S′ = {R,G}
and P ′(R) = m/n and P ′(G) = (n − m)/m. However the first model is more convenient if one
want to allow things like drawing k balls (without replacement) and counting how many are red or
green.

Example 2.2.5. Let G = (V,E) be an undirected graph. Then (V, P ) is a probability space where
P is the degree distribution.

All of the examples of probability spaces we just have have been finite spaces, but we do not
need to restrict ourself to finite spaces. In fact, we’ve seen a non-finite discrete probability space
before.

Example 2.2.6. Fix α > 1. Let S = N = {1, 2, 3, . . .} and P (s) = 1
ζ(s)sα . Then (S, P ) is a

probability space, where P is the power law distribution described in Section 2.1.2.

The other major type of probability space is a continuous probability space. (One can also have
mixtures of continuous and discrete probability spaces.) For instance if S ⊂ R is an interval, then
the distribution function will be an integrable function f : S → [0,∞) such that

∫
S f(x) dx = 1.

Events will be subsets A ⊂ S and the probability of an event is given by P (A) =
∫
A f(x) dx.†

†Technically, A should be what is called a measurable subset of S (think of a union of intervals) since there exist
strange sets that don’t make sense to integrate over. This is also why I assumed S was an interval.
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To be a little more concrete, think of S = [0, 1], and our random process is picking a number
between 0 and 1. If we model this with any continuous distribution f , then if A = {a} is a single
point, we see P (A) =

∫ a
a f(x) dx = 0. In other words, the probability of picking any specific

number must be 0, in contrast to the case of discrete distributions. This of course doesn’t mean
you never get any specific number—you always get some specific number, but you can think of this
as follows: even if you pick a (countably) number of random numbers between 0 and 1, according
to this distribution, you will never pick the same number twice.

Rather for continuous distributions, it is only meaningful to discuss the probability that our
random number lies in a given range. The simplest possible example is if we take f(x) to be the
constant function f(x) = 1—this is called the uniform distribution (on [0, 1]). For the uniform

distribution (on [0, 1]), we have P ([a, b]) = P ((a, b)) =
∫ b
a dx = b − a, i.e., the probability our

random number lies in any given interval is simply the length of that interval (and it doesn’t
matter whether we include endpoints or not, since the probability of an endpoint value is 0).

Python (and by extension Sage) has a built in (pseudo)random number generator called random(),
which returns a random number between 0 and 1.

Python 2.7
>>> from random import random # you don’t need this line in Sage

>>> random()

0.22445061772144392

>>> random()

0.103016249389979

>>> random()

0.90772991525930202

Technically this is a pseudorandom number generator, not a random number generator, because
the method is deterministic, i.e., not truly random. However, it is close enough to random for
our purposes, in the sense that each time random() is called, the probability the result x lies in a
specific range 0 ≤ a ≤ x ≤ b ≤ 1 is effectively b − a. In particular, if we want to do something
with probability p, say add 1 to some variable a with p = 0.5, we can write this in Python/Sage as
follows:

Python 2.7
>>> a = 0

>>> p = 0.5

>>> if random() < p:

... a = a + 1

...

>>> a

0

>>> if random() < p:

... a = a + 1

...

>>> a

1

This does what we want, because the probability that random() < p, i.e., that random() lies in
[0, p] is p− 0 = p.

There is one other basic concept we need from probability, and that is the notion of independent
events. To understand this concept, consider the following example. Suppose we have an urn with
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3 red balls and 5 green balls, and draw 2 balls in sequence (without replacing the first one). There
are two events that we are interested in—the color of the first ball and the color of the second ball.
The probability that the first ball is red is clearly 3/8. What about the probability the second ball
is red? It depends on whether the first ball was red or green—it is 2/7 if the first ball was red, and
3/7 if the first ball was green. Hence these events are not independent. Though it is still possible
to calculate the absolute probability the second ball is red:

3

8
· 2

7
+

(
1− 3

8

)
3

7
=

3

8
.

(And indeed, it makes sense that the probability the second ball is red is the same as the probability
the first one is red, provided we don’t know anything about what color the first ball is.) However,
these events would be independent if we replaced the first ball before drawing the second ball, in
the sense that then the probability the second ball is red would not depend upon whether the first
ball is red or not.

To give the formal definition of this sense of independence requires defining conditional prob-
abilities. This is not hard, but we will not do it as there is is an alternative, equivalent way to
state the notion of independence of two events, and this alternative formulation will actually be
more useful for us. Namely, if two events are independent, then the probability of both of them
happening is equal to the product of the probabilities of each of them happening separately. For
instance, in our urn example, if we replace the first ball we draw before drawing the second one,
then the probability that both balls are green is just the probability that the first is green times
the probability that the second is green, i.e., 3

8 · 38. Here is the formal definition.

Definition 2.2.7. Let A,B ⊂ S be two events in a probability space (S, P ). Then A and B are
independent if P (A ∩B) = P (A)P (B).

Note A ∩ B represents the event that both A and B happen. (Similarly, A ∪ B represents the
even that either A or B, or both, happen.)

Example 2.2.8. Consider our fair die roll example: S = {1, 2, 3, 4, 5, 6} and P (s) = 1/6 for all
s ∈ S. Let A = {2, 4, 6} be the event of an even die roll, and B = {1, 2} be the event of rolling ≤ 2.
Then

P (A ∩B) = P (2) =
1

6
=

1

2
· 1

3
= P (A)P (B).

Hence A and B are independent events.

We remark that it is the property of independence that makes most random number generators
on computers fail to be truly random—when we call our random number generator many times,
the results should look pretty close to the uniform distribution, but the results are not actually
independent. For instance, the simplest kind of random number generators repeat, although maybe
not until you run them 4 billion times. This is an issue for some applications (e.g., cryptography)
where (close to) true randomness is important, but it does not really for simple modeling/simulation
like what we will do.

2.2.2 Erdös–Rényi Model

Notions of random graphs were introduced by Paul Erdös and Alfréd Rényi, and independently by
Edgar Gilbert, in 1959. Two models were proposed, and these both now go by the name of the
Erdös–Rényi model.
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Here is the first model.

Definition 2.2.9. Let n ≥ 1 and 0 ≤M ≤ n(n−1)/2. The G(n,M) model for random graphs
is the probability space (S, P ), where S denotes the set of simple undirected graphs G on {1, 2, . . . , n}
with M edges (or equivalently, the set of all subgraphs G of Kn with n nodes and M edges) and
each graph G ∈ S is assigned equal probability P (G) = 1/|S|.

Let’s explain how to compute P (G) in terms of n and M .

Recall the following elementary fact from discrete mathematics: the binomial coefficient

(
n
m

)
=

n!
m!(n−m)! , often read “m choose n”, is the number of ways to choose m distinct objects out of n total

(distinct) objects. For instance, the maximum number of possible edges in a (simple undirected)

graph on n nodes is

(
n
2

)
= n(n−1)

2 , which is the number of way to choose 2 out of n vertices.

Similarly, the maximum number of possible triangles in a graph is

(
n
3

)
= n(n−1)(n−2)

6 . Note(
n
m

)
=

(
n

n−m

)
—choosing m objects to include in something is the same as choosing n − m

objects to exclude from something.
Thus the number of graphs in S in the G(n,M) model is simply the number of edges in Kn

choose M , i.e.,

(
n(n− 1)/2

M

)
, as we just need to choose which M edges to include in our graph.

Hence

P (G) =
1(

n(n− 1)/2
M

) , G ∈ S.

It is not hard to implement an algorithm to generate G(n,M) graphs in Python (they are
already implemented in Sage). Here is pseudocode

Pseudocode
set V = { 1, 2, ..., n }

set Eall = []

for i from 1 to n:

for j from i+1 n:

append {i, j} to Eall

set E = M randomly chosen edges from Eall

return G = (V, E)

That is, first we generate all possible undirected edges Eall, and then we randomly choose M of
them to include in our graph. This is the only tricky part, but there is a command shuffle in
the Python random module which makes this easy. For example, here is an example of how we can
randomly choose 5 elements from a list.

Python 2.7
>>> from random import shuffle

>>> l = range(20)

>>> l

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

>>> shuffle(l)

>>> l

93



Graph Theory/Social Networks Chapter 2 Kimball Martin (Spring 2014)

[6, 4, 9, 3, 18, 13, 12, 16, 19, 11, 17, 10, 0, 15, 7, 1, 2, 8, 5, 14]

>>> l[:5]

[6, 4, 9, 3, 18]

Now we’ll present the second Erdös–Rényi random graph model.
Consider the following random procedure for making a graph G = (V,E). Fix a probability

0 ≤ p ≤ 1.

Pseudocode
set V = { 1, 2, ..., n }

set E = { }

for i from 1 to n:

for j from i+1 to n:

with probability p, add {i, j} to E

return G = (V, E)

In other words, we start with n vertices, and for each (unordered) pair of vertices {i, j}, we include
the edge {i, j} in our graph with probability p. (Recall, we saw how to do something with probability
p in Python/Sage in Section 2.2.1.) Note in the pseudocode above we take i+ 1 ≤ j ≤ n to ensure
that we loop through each unordered pair of distinct vertices {i, j} exactly once.

This is the random process for the G(n, p) model. Note the G(n, p) model models a random
generation of graphs on n nodes where the probability of link formation is p, independent of the
choice of the link. To properly analyze the G(n, p) model, we need to be able to calculate the
probability of getting a given graph G of order n.

Let G be a random G(n, p) graph. For 1 ≤ i < j ≤ n, let Ai,j denote the event that the
edge {i, j} is included G, and Bi,j the event that the edge {i, j} is not included in G. Say G
has m edges: {i1, j1}, . . . , {im, jm}. Let {im+1, jm+1}, . . . , {iN , jN} denote the remaining pairs of
non-edges, where N = n(n− 1)/2. Since the Ai,j ’s and Bi′,j′ ’s are all pairwise independent events,
we see

P (Ai1,j1 ∩Ai2,j2 ∩ · · · ∩Aim,jm) ∩Bim+1,jm+1 ∩ · · · ∩BiN ,jN ) =

P (Ai1,j1)P (Ai2,j2) · · ·P (Aim,jm)P (Bim+1,jm+1) · · ·P (BiN ,jN ) = pm(1− p)N−m.

Because this list of edges and non-edges determines G, we get that P (G) = pm(1− p)N−m, i.e., the
probability only depends on how many edges m has.

With this in mind, we can also define of the G(n, p) model in terms of the probability space.

Definition 2.2.10. Let n ≥ 1 and 0 ≤ p ≤ 1. The G(n, p) model for random graphs is the
probability space (S, P ) where S is the set of all (simple undirected) graphs on {1, 2, . . . , n}, where
for G ∈ S with m edges, we define the probability function to be P (G) = pm(1− p)n(n−1)/2−m.

Note, if p = 0.5, then P (G) = pm(1 − p)n(n−1/2)−m = (0.5)m(0.5)n(n−1)/2−m = 0.5n(n−1)/2,
independent of m.

Example 2.2.11. Let n = 3 and p = 0.5. On V = {1, 2, 3}, there is

(
3
0

)
= 1 graph with 0 edges,(

3
1

)
= 3 graphs with 1 edge,

(
3
2

)
= 3 graphs with 2 edges and

(
3
3

)
= 1 graph with 3 edges. Let
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Am denote the subset of graphs on V with m edges. Hence, in the G(n, p) = G(3, 0.5) model.

P (A0) = P (0 edges) = 1 · (0.5)3 = 0.125

P (A1) = P (1 edge) = 3 · (0.5)3 = 0.375

P (A2) = P (2 edges) = 3 · (0.5)3 = 0.375

P (A3) = P (3 edges) = 1 · (0.5)3 = 0.125.

The G(n,M) and G(n, p) models are clearly different (the G(n, p) model can result in any
possible number of edges), but in many ways they behave rather similarly, particularly for large n.
These are both models where edge formations are independent—we can view the G(n,M) models
as randomly distributing M edges to the n(n− 1)/2 unordered pairs of distinct vertices, with each
pair getting equal consideration. Also note that in either model, all graphs with a fixed number of
edges m are equiprobable—it’s just that in the G(n,M) model this probability is 0 unless m = M .
However, the G(n, p) model is more commonly studied. Indeed, if people talk about random graphs
without any further qualification, they probably have in mind the G(n, p) model.

Let’s look at our two favorite social networks, and see how well these can be modeled by random
graphs. Let’s first try this with the G(n,M) model, since there’s less work for us to do here. Denote
the Florentine families network by F , and the karate club graph by K.

Start with F . Since F has 15 nodes and 20 edges, we can generate a random G(n,M) =
G(15, 20) graph in Sage as follows

Sage 6.1
sage: G = graphs.RandomGNM(15,20)

sage: G.show()

Then maybe you’ll get something that looks like this.

This particular example isn’t connected, but almost is (only 1 isolated node), and often this G(n,M)
random graph will be (we’ll be more precise below). If we compare some landmarks of this graph
G with F , they seem reasonably similar:

Sage 6.1
sage: F.degree_histogram()

[0, 4, 2, 6, 2, 0, 1]

sage: G.degree_histogram()

[1, 2, 4, 4, 3, 0, 1]

sage: F.cliques_maximum()
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[[0, 7, 8], [0, 8, 11], [1, 2, 13]]

sage: G.cliques_maximum()

[[1, 2, 14], [1, 5, 14], [6, 8, 11]]

sage: F.cluster_transitivity()

0.19148936170212766

sage: G.cluster_transitivity()

0.1836734693877551

They both have 3 cliques of size 3, very close overall clustering, and fairly close degree distributions.
To be a bit more scientific, I wrote a function testGNM(n,M) which test some statistics about

graphs in the G(n,M) model. Namely, it generates 1000 random G(n,M) graphs and counts the
number of times they are connected and the averages of the following quantities: maximum degree,
average distance (among connected graphs), average diameter (among connected graphs), max
closeness centrality, max betweenness centrality, clique number and transitivity. Here is the result.

Sage 6.1
sage: testGNM(15,20)

Connected: 476 / 1000 times

Average max degree: 5.249

Average distance: 2.5818927571

Average diameter: 5.4243697479

Closeness centrality: 0.530094239059

Betweenness centrality: 0.353480946831

Average clique number: 2.985

Average transitivity: 0.173241028715

To compare, F has maximum degree 6, average distance 2.4857..., diameter 5, clique number 3,
max closeness centrality 0.56, max betweenness centrality 0.52, and transitivity 0.1914... All in all,
not so far off, except perhaps for betweenness centrality, so the G(n,M) models many features of
F rather accurately.

What would it mean if the G(n,M) model is a good model for how the network F formed? It
might me that rather than the de Medici family having blessed foresight in forging connections to
let them rise to the top, maybe they just happened to be the lucky node that was most central. If
one generates a few more examples of random graphs, then we’ll see the above degree distribution
sometimes looks like our previous example, but not most of the time. For another randomly chosen
G, one gets the degree histogram [0, 2, 4, 6, 3], where there are many vertices with relatively
high degree centrality. Further, from doing a few trials, and looking at betweenness centrality, it
seems quite unusual for one node to have betweenness centrality much higher than all other nodes,
as the de Medicis do in F . This supports the hypothesis that indeed the de Medicis (as well as
other families) did not choose their connections at random, but selected them strategically (and
wisely in the case of the de Medicis).

Now let’s consider K, which has 34 nodes and 78 edges. Again, we can run our program to test
some statistics on a G(n,M) = G(34, 78) model.

Sage 6.1
sage: testGNM(34,78)

Connected: 796 / 1000 times

Average max degree: 8.979

Average distance: 2.41009190337

Average diameter: 4.78140703518
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Figure 2.6: Degree distibution for K and average degree distribution for 1000 G(34, 78) graphs

Closeness centrality: 0.520352742539

Betweenness centrality: 0.152535379873

Average clique number: 3.24

Average transitivity: 0.136935568331

Compare this to K, which has max degree 17, average distance 2.408..., diameter 5, max closeness
centrality 0.5689..., max betweenness centrality 0.4376..., clique number 5 and transitivity 0.2556...
Some of the statistics are close, but a few are far off: max degree, betweenness centrality, clique
number and transitivity.

In particular, the degree distribution in the G(n,M) model is way off from K. To see this
clearly, I computed the average degree distribution for 1000 G(34, 78) graphs and plotted this next
to the degree distribution for K in Figure 2.6. If G(n,M) is a good model for K (that is, if K
looks similar to an “average” graph from G(n,M) rather than a low probability one), these graphs
should have pretty close to the same shape, but the G(n,M) degree distribution has a much gentler,
rounder slope, with peak around degree 4, rather than degree 2.

Unlike the Florentine families graph, where at least sometimes the degree distributions of our
random graphs matched pretty closely, they never match closely for the Karate club graph. In fact,
the max degee ever achieved in this trial of the G(34, 78) model was 13, which only occured twice
(the max for K is 17). Part of this may be attributed to the size of the graphs—the Florentine
families graph is much smaller, so there is less possible variation for networks of this size. However,
part of it is undoubtedly due to the difference in the nature of the links in F and K—the links in
F are marriages, likely largely chosen strategically, whereas the links in K are friendships, where
one expect things like clustering and other small world phenomena.

Thus we can safely conclude that the friendships formed in K cannot be explained (at least not
entirely) by random, independent formation (independent chance encounters). We can’t explain
the large hubs (one degree 16 node and one degree 17 node) by random formation—they are
distinguished individuals in the clubs, the instructor and student founder. Moreover, the amount
of sizable cliques and clustering/transitivity in K is not present in a random G(n,M) graph.
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What about the G(n, p) model? We will get very similar results as with the G(n,M) model,
but let us explain how we can compare a given graph with the G(n, p) model. The difference here
is that while it was easy to see what M should be in the G(n,M) model, it is not immediately
obvious how to chose the appropriate probability p for edge formation.

Proposition 2.2.12. The average, or expected, number of edges in a graph in the G(n, p) model is

n(n−1)/2∑
m=0

m

(
n(n− 1)/2

m

)
pm(1− p)n(n−1/2)−m.

Proof. To average a random quantity over a discrete probability space, instead of just summing up
all values and dividing by the number of entries, we sum up all values weighted by the probability
of obtaining that value. So the expected number of edges in a graph in the G(n, p) model is

n(n−1)/2∑
m=0

P (m edges) ·m.

Now the probability of m edges is simply pm(1− p)n(n−1/2)−m times the number of graphs with m

edges, which we saw above is

(
n(n− 1)/2

m

)
.

Using this proposition, we can with trial and error, find a value of p that gives us the desired
expected number of edges. For example, when n = 15, p = 0.19 gives an expected 19.95 edges,
so we can try to model F with G(n, p) = G(15, 0.19). Similarly, with n = 34, p = 0.139 gives an
expected 77.979 edges, so this is reasonable choice to try to model K. I wrote a Sage function
testGNP which is the analogue of testGNM for the G(n, p) model, and you can see the results below
are very similar to those for G(n,M).

Sage 6.1
sage: testGNP(15,0.19)

Connected: 426 / 1000 times

Average max degree: 5.252

Average distance: 2.45504135927

Average diameter: 5.10328638498

Closeness centrality: 0.516331967533

Betweenness centrality: 0.340416128774

Average clique number: 2.944

Average transitivity: 0.171173755959

sage: testGNP(34,0.139)

Connected: 793 / 1000 times

Average max degree: 9.043

Average distance: 2.40368150011

Average diameter: 4.75283732661

Closeness centrality: 0.520815091198

Betweenness centrality: 0.154727157339

Average clique number: 3.255

Average transitivity: 0.136305968809
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2.2.3 Preferential Attachment Models

We saw in the last section that the Erdös–Rényi model is not suitable for modeling some friendship
networks, such as the karate club graph. There are a couple of issues here. One, there is not enough
clustering in this model of random graphs. Two, we don’t see nodes of high degree.

Let me briefly mention a couple of other simple models to deal with these specific issues.
The Watts–Strogatz model is one model to generate random graphs with a specified average

degree and large clustering. Here we fix a number of nodes n, the average degree κ, and a probability
0 ≤ β ≤ 1. The algorithm is as follows Arrange the n nodes in a circle, and initially connect each
node u to the κ nodes closest to u on the circle (say bκ/2c nodes on the left and dκ/2e nodes on the
right). So for κ = 2, this is just a cycle graph at this stage. (In general, it is a kind of generalization
of cycle graphs called circulant graphs.) Now, for each edge (u, v) in the graph, with probability β
replace it with an edge (u, v′) where v′ is chosen at random among all other vertices.

For whatever reason, Sage has not implemented the Watts–Strogatz model, but the closely
related Newman–Watts–Strogatz model, which is just like the Watts–Strogatz model except that
instead of randomly replacing existing edges, it simply adds new ones. The can be accessed via the
function graphs.RandomNewmanWattsStrogatz(n,kappa,beta) in Sage as follows.

Sage 6.1
sage: n = 16

sage: G = graphs.RandomNewmanWattsStrogatz(n,4,0.1)

sage: pos_dict = {}

sage: for i in range(n):

....: x = float(cos(pi/2 + ((2*pi)/n)*i))

....: y = float(sin(pi/2 + ((2*pi)/n)*i))

....: pos_dict[i] = [x,y]

....:

sage: p = G.graphplot(pos = pos_dict)

sage: p.show()

While we could’ve just done G.show() after the second line, Sage does not naturally arrange these
vertices in a circle, so we did a little more work to plot it like this. This code should give a graph
that looks something like this.

Note that in the Watts–Strogatz model, we will get precisely nκ edges. If β = 0, we get a κ-
regular graph with n cliques of order bκ2 c. On the other hand, as β → 1, the Watts–Strogatz random
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graphs get closer to the random graphs in a G(n,M) = G(n, nκ) model. Hence this model gives us
a hybrid of regular graphs with a lot of clustering and Erdös–Rényi random graphs. Consequently,
we will almost never get nodes of high degree like in the karate club graph. Another issue is that
the Watts–Strogatz model will almost always have a cycle of length n, unless β is quite high, and
this is not typically expected in social networks (e.g., look at the Florentine families or karate club
graphs).

A completely different idea for generating random graphs is preferential attachment, that is,
nodes tend to form links with nodes that have already high degree. The idea comes from considera-
tion of citation networks. Here we consider graph the nodes represent certain publications—e.g., all
mathematics publications as indexed by the American Mathematical Society (MathSciNet)—and
we draw a directed edge from paper A to paper B if paper A cites paper B. This is similar in spirit
to webpage hyperlink graphs.

Note that both citation networks and hyperlink graphs are dynamic in nature—new publications
and new webpages are always being born. Right away, this is completely different from the Erdös–
Rényi and Watts–Strogatz models, which are by nature static, in that the number of nodes do not
change in the generation process. (However, we could generate graphs in the G(n, p) model by
adding nodes at each stage.)

Preferential attachment is based on the following idea. When I do research, how do I find what
is already known about a subject? I look at other research papers or books, or go to conferences,
or talk to experts. If another paper in this area is highly cited, I am likely to come across it and/or
find it relevant, and likely to cite this also. Whereas, if a paper is not cited much, I am less likely
to both come across this paper and find it relevant. If we’re a bit more precise about this, we’ll
see this heuristic predicts that the probability I cite another paper is proportional to the number
of citations that paper already has, i.e., that paper’s in degree in the citation network. The exact
same heuristic makes sense for hyperlink graphs. Furthermore, it is not hard to see this heuristic
predicts a scale-free (power law) degree distribution.

One well-known preferential attachment model is the Barabási–Albert model. The algorithm
begins with an initial connected network of m0 nodes. There are fixed parameters of n (total number
of nodes, or papers), and m (the “out degree” or number of citations each new paper will make).
At each stage (until there are n nodes), we add a new node to the network and connect it to m
existing nodes chosen at random with respect to a “preferential” probability distribution. Here we
can use either directed or undirected edges—directed edges makes sense for a citation/hyperlink
network, but the Barabási–Albert model just works with undirected edges.

The actual description of the algorithm for this preferential attachment by Barabási–Albert in
their papers is a little vague but here is how I interpret it. Suppose we are at a stage with n0 nodes
numbered 1, 2, . . . , n0. Let di be the degree of node i. Set

pi =
di∑
di
.

Add a new vertex n0 + 1, and do the following m times. Connect n0 + 1 to one of the vertices
in {1, 2, . . . , n0}, where vertex i gets selected with probability pi. This choice can be practically
implemented as follows. Choose a random number x in [0, 1]. Divide [0, 1] into n0 intervals,
I1, . . . , In0 where interval I has length pi. For instance, if n0 = 3, we may take the following
partition:

[0, 1] = [0, p1) ∪ [p1, p1 + p2) ∪ [p1 + p2, p1 + p2 + p3 = 1] = I1 ∪ I2 ∪ I3.
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If the random number x lies in Ii, connect n0 + 1 to pi.
The ambiguity here, if m > 1, is what to do if you’re trying to add an edge you’ve just added,

e.g., if you randomly pick the edge (n0 + 1, 1) twice. One can either allow multi-edges or pick
another edge. Allowing multi-edges makes the analysis easier in some ways, but it seems that at
least the Sage implementation chooses m distinct edges. (I’m not sure what Barab’asi and Albert
originally did.) Picking m distinct edges can be done in one of two ways—(1) if we happen to
choose an edge we’ve just added, we can just randomly choose again until we get a new edge; or (2)
before a new edge is selected, we can update the probabilities for connecting to each vertex—that
is, compute the probabilities as above, but simply leave out all the vertices we already connected
to n0 + 1. For instance, in approach (2), say n0 = 3, m = 2 and we just added an edge from the
new vertex 4 to vertex 1. Then we set

p1 = 0, p2 =
d2

d2 + d3
, p3 =

d3
d2 + d3

and now add an edge from vertex 4 to vertex i with probability pi.
It is convenient to be able to do this without starting with an initial connected network of m0

nodes, but just start with the parameters n and m. Then one can start with a initial empty graph
on m nodes, and connect the next node added to each of these m nodes. Then proceed as above.
This appears to be how the algorithm is implemented in Sage.

While the algorithm is given for a fixed n, this model is dynamic as the networks are generated
by adding more nodes. Furthermore this graph generation can be done in stages, and the output
of each stage can be put in as the “input graph” in the next stage without affecting the probability
distribution in the model. For instance if we generate a preferential attachment graph G99, with
(n,m) = (99, 3), we can generate a graph G100 with (n′,m) = (100, 3) in this model by starting by
using G99 as our initial network of m0 nodes, and adding 1 node in the above process. Note we
cannot do this sort of thing in the Watts–Strogatz model or the G(n,M) model, though we can for
the G(n, p) model.

Assuming this implementation, the Barabási–Albert model always has (n − m)m edges. In
addition, it will always be connected, hence it is a tree for m = 1.

Now if we want to try to model the karate club graph this way, we can take n = 34 and either
m = 2 or m = 3. These will give us 64 and 93 edges respectively. Remember the karate club graph
as 78 edges.

Here is an attempt with m = 2.

Sage 6.1
sage: G = graphs.RandomBarabasiAlbert(34,2)

sage: G.degree_histogram()

[0, 0, 17, 5, 4, 1, 2, 2, 1, 0, 1, 0, 0, 0, 1]

sage: len(G.degree_histogram()) - 1

14

sage: G.show()
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We see this example has maximum degree 14, which is higher (by 1) than what we ever got with
1000 random G(n,M) = G(34, 78) graphs. However, one can get higher maximum degrees in this
model. Here are the maximum degrees and degree distributions for 10 such random graphs.

Sage 6.1
sage: for i in range(10):

....: dh = graphs.RandomBarabasiAlbert(34,2).degree_histogram()

....: print len(dh) - 1, ": ", dh

....:

12 : [0, 0, 12, 9, 6, 2, 1, 0, 2, 1, 0, 0, 1]

10 : [0, 1, 14, 8, 3, 2, 0, 0, 2, 3, 1]

11 : [0, 0, 14, 7, 4, 1, 4, 2, 0, 1, 0, 1]

13 : [0, 0, 18, 6, 2, 2, 1, 1, 0, 1, 1, 1, 0, 1]

17 : [0, 0, 13, 10, 4, 2, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1]

13 : [0, 0, 16, 6, 4, 1, 4, 1, 0, 0, 0, 0, 0, 2]

17 : [0, 0, 18, 5, 5, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1]

15 : [0, 0, 13, 12, 1, 2, 0, 3, 2, 0, 0, 0, 0, 0, 0, 1]

14 : [0, 0, 16, 4, 5, 3, 3, 0, 1, 1, 0, 0, 0, 0, 1]

10 : [0, 0, 17, 4, 3, 1, 5, 0, 2, 1, 1]

We see the maximum degree varies a lot, and we happened to get a couple instances where the
maximum degree is the same as that of the karate club graph, however it seems unlikely that we
get one node of degree 16 and one of degree 17. Of course these graphs have fewer edges than our
karate club graphs. If instead we look at degree distributions for preferential attachment graphs
with m = 3, we get something like the following.

Sage 6.1
sage: for i in range(10):

dh = graphs.RandomBarabasiAlbert(34,3).degree_histogram()

print len(dh) - 1, ": ", dh

....:

18 : [0, 0, 0, 9, 9, 7, 3, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1]

16 : [0, 0, 1, 13, 6, 3, 2, 1, 3, 1, 0, 1, 0, 1, 1, 0, 1]

16 : [0, 0, 0, 11, 5, 8, 2, 1, 2, 2, 0, 1, 0, 1, 0, 0, 1]

21 : [0, 0, 1, 15, 5, 2, 3, 1, 0, 2, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1]

18 : [0, 0, 0, 14, 5, 5, 1, 3, 2, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1]

16 : [0, 0, 1, 11, 6, 3, 2, 4, 4, 0, 0, 1, 0, 1, 0, 0, 1]

17 : [0, 0, 0, 10, 11, 2, 3, 1, 0, 1, 4, 1, 0, 0, 0, 0, 0, 1]

12 : [0, 0, 0, 13, 4, 5, 3, 1, 1, 3, 0, 2, 2]
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17 : [0, 0, 1, 15, 3, 4, 2, 2, 1, 2, 0, 1, 1, 0, 0, 1, 0, 1]

16 : [0, 0, 1, 13, 5, 4, 4, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1]

Here we see instances where we get a couple of nodes of large degree, though now have too few
nodes of degree 2 (the karate club had 11 such nodes, and 1 of degree 1).

This suggests that the Barabási–Albert model is not too bad at modeling the degree distribution
for the karate club graph, though ideally we would want to choose something like m = 2.5 in this
model. While m has to be an integer, we could modify this algorithm to allow fractional m. In this
case, m = 2.5 would mean that at half the stages in our algorithm we add 2 edges to new vertices,
and the other half of the time we add 3 edges.

In fact, analysis of this algorithm shows that the degree distribution follows a power law given
roughly by

P (d) =

{
2m2

d3
d ≥ m

0 else.

This is not exactly true of course for fixed n—for instance P (d) = 0 for d > n and some of the
initial m0 vertices may have degree less than m—but this is the limit of the degree distribution as
n→∞.

While we may view the Barabási–Albert model as a relatively good fit for the degree distribution
of the karate club graph, there are other ways in which it is less than ideal. First, we cannot choose
appropriate m to get the desired number of edges, but this can be remedied by allowing fractional
values of m. Second, whenever m > 2 there will never be many nodes of degree < m, but nodes
of small degree are common in many social networks. Third, graphs in this model tend to have
relatively low clustering compared with friendship networks.

Exercises

Exercise 2.2.1. Consider the process of flipping a fair coin twice. Write down a probability space
S to model this process, and say what the probability function P is. For the following pairs of events
A and B, write the events A and B explicitly as subsets of S and determine (with proof), whether
A and B are independent or not:

(i) A is getting heads on the first flip, and B is getting heads on the second flip
(ii) A is getting heads on the first flip, and B is getting heads on both flips
(iii) A is getting the same result on both flip, and B is getting different results on each flip
(iv) A is getting heads on the first flip, and B is getting heads on at least one flip

Exercise 2.2.2. Write a function GnM(n,M) in Python that returns the adjacency matrix for a
random graph in the G(n,M) model.

Exercise 2.2.3. Write a function Gnp(n,p) in Python that returns the adjacency matrix for a
random graph in the G(n, p) model.

Exercise 2.2.4. Let n = 4 and p = 0.5. For each 0 ≤ m ≤ n(n− 1)/2, compute the probability a
graph in the G(n, p) model has m edges.

Exercise 2.2.5. Write a function Prmedge(n,p,m) in Sage that returns the probability a graph in
the G(n, p) model has m edges. Then for n = 5, each p ∈ {0.1, 0.2, 0.3}, and each 0 ≤ m ≤ 10,
compute the probability that a graph in the G(n, p) model has m edges.
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Exercise 2.2.6. Write a function testGnpconn(n,p) in Sage that generates 1000 graphs in the
G(n, p) model and outputs (prints, returns, or both, your choice) the number that are connected.
For n = 20, how large should p be (to 2 decimal places) in order for random G(n, p) graphs to be
connected at least 99% of the time.

Exercise 2.2.7. Write a Sage function WattsStrogatz(n,kappa,beta) that generates and returns
a graphs in the Watts–Strogatz model.

Exercise 2.2.8. Write a Sage function PrefAttach(n,m) that generates a Barabási–Albert type
graph, but allows m to be fractional. Precisely if we write m = m′ + p where m′ is an integer and
0 ≤ p < 1, at each stage we add m′ edges to our new node with probability 1− p, and m′ + 1 nodes
with probability p.

Generate 20 such graphs with n = 34 and m = 2.5, and print out the maximum degrees and
degree distributions. Does this seem to match closely with the degree distribution of the karate club
graph?

Exercise 2.2.9. (i) For Barabási–Albert graphs with (n,m) = (34, 2), generate 100 random graphs
and compute the average of the following quantites: diameter, maximum closeness centrality, max-
imum betweenness centrality, and transitivity. Compare these with the corresponding values for the
karate club graph.

(ii) Do the same for (n,m) = (34, 3).

Exercise 2.2.10. (i) Design your own algorithm for generating random graphs to model friendship
network (not necessarily the karate club graph). Explain your reasoning behind your algorithm.

(ii) Code up your algorithm in Sage. By computing some examples, see how well it models some
features of the karate club graph, and compare it with the other models we’ve studied.
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Chapter 3

Spectral graph theory and random
walks on graphs

Algebraic graph theory is a major area within graph theory. One of the main themes of algebraic
graph theory comes from the following question: what do matrices and linear algebra tell us about
graphs? One of the most useful invariants of a matrix to look in linear algebra at are its eigenvalues
and eigenspaces. This is also true in graph theory, and this aspect of graph theory is known as
spectral graph theory.

Given a graph G, the most obvious matrix to look at is its adjacency matrix A, however there are
others. Two other common choices are the Laplacian matrix, motivated from differential geometry,
and what we will call the transition matrix, motivated from dynamical systems—specifically random
walks on graphs. The Laplacian and transition matrices are closely related (the eigenvalues of one
determine the eigenvalues of the other), and which to look at just depends upon one’s point of
view.

We will first examine some aspects of the adjacency matrix, and then discuss random walks on
graphs and transition matrices. On one hand, eigenvalues can be used to measure how good the
network flow is and give bounds on the diameter of a graph. This will help us answer some of the
questions we raised in the first chapter about communication and transportation networks. On the
other hand, eigenvectors will tell us more precise information about the flow of a networks. One
application is using eigenvectors to give a different kind of centrality ranking, and we will use this
idea when we explain Google PageRank.

Here are some other references on these topics.

• Algebraic Graph Theory, by Norman Biggs.

• Algebraic Graph Theory, by Chris Godsil and Gordon Royle.

• Modern Graph Theory, by Béla Bollobás.

• Spectra of Graphs, by Andries Brouwer and Willem Haemers.

• Spectral Graph Theory, by Fan Chung.

The first two books are “classical graph theory” books in the sense that they do not discuss
random walks on graphs, and cover more than just spectral theory. Bollobás’s book covers many
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topics, including some spectral theory and random walks on graphs (and random graphs). The
latter two books focus on spectral theory. Brouwer–Haemers cover the adjacency and Laplacian
spectra but does not really discuss random walks, whereas Chung’s book discusses random walks
but focuses entirely on the (normalized) Laplacian matrix.

3.1 A review of some linear algebra

Before we get started on applying some linear algebra to graph theory, we will review some standard
facts from linear algebra. This is just meant to be a quick reminder of the relevant theory, as well
as fixing some notation, but you should refer to a linear algebra text to make sense of what I’m
saying.

Let Mn(R) denote the set of real n × n matrices, and Mn(C) denote the set of complex n × n
matrices. In what follows, we mainly work with real matrices, though most of the theory is the
same for complex matrices.

Let A ∈Mn(R). We may view A as a linear operator

A : Rn → Rn

v 7→ Av

where we view v ∈ Rn as a n× 1 matrix, i.e., a column vector. We may sometimes write a column

vector v =

x1...
xn

 as v = (x1, . . . , xn) out of typographical convenience.

Let At denote the transpose of A. Then (At)t = A. For A,B ∈Mn(R), we have (AB)t = BtAt.
Recall AB does not usually equal BA, though it happens from time to time.

Denote by I = In the n × n identity matrix. This means AI = IA = A for any A ∈ Mn(R).
We use 0 for the number 0 as well as zero matrices.

Denote by diag(d1, . . . , dn) the diagonal matrix with A = (aij) with aii = di and aij = 0 if
i 6= j. Note I = diag(1, 1, . . . , 1).

Recall A is invertible if there is a matrix B ∈ Mn(R) such that AB = I. If there is such a
matrix B, it must be unique, and we say B is the inverse of A and write B = A−1. It is true that
AA−1 = A−1A = I, i.e., that the inverse of A−1 is just A, i.e., (A−1)−1 = A. For A,B ∈ Mn(R)
both invertible, we have that AB is also invertible and (AB)−1 = B−1A−1.

There is a function det : Mn(R)→ R called the determinant. It satisfies det(AB) = det(A) det(B),
and A is invertible if and only if detA 6= 0. We can define it inductively on n as follows. For n = 1,
put det[a] = a. Now A = (aij) ∈ Mn(R) with n > 1. Let Aij be the ij cofactor matrix, i.e., the
matrix obtained by deleting the i-th row and j-th column. Then

det(A) = a11 detA11 − a12 detA12 + · · ·+ (−1)n−1a1n detA1n. (3.1)

Hence the determinant can be computed by using a cofactor expansion along the top row. It can
be computed similarly with a cofactor expansion along any row, and since det(A) = det(At), it can
be also computed using a cofactor expansion along any column. (Just remember to be careful of
signs—the first sign is −1 if you start along an even numbered row or column.) For n = 2, we have

det

(
a b
c d

)
= ad− bc.
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Example 3.1.1. Let A =

 2 −1 0
0 2 −1
−1 0 2

. Then

detA = 2 det

(
2 −1
0 2

)
− (−1) det

(
0 −1
−1 2

)
+ 0 det

(
0 2
−1 0

)
= 2 · 4 + 1 · (−1) + 0 = 7.

For larger n, determinants are unpleasant to compute by hand in general, but some special cases
can be worked out. For instance, if D = diag(d1, . . . , dn) is diagonal, then detD = d1d2 · · · dn. In
particular, det I = 1, and det kIn = kn for a scalar k ∈ R. Also note that for invertible A, since
det(A) det(A−1) = det(AA−1) = det I = 1, we have det(A−1) = (detA)−1. If S is invertible, then
det(SAS−1) = detS detAdetS−1 = detA. Hence similar matrices have the same determinant.
Thus it makes sense to define the determinant detT of a linear transformation (i.e., this determinant
does not depend upon a choice of basis).

Given any linear transformation T : Rn → Rn, and any basis B = {v1, . . . vn}, we can associate
a matrix [T ]B in Mn(R) such that if

T (x1v1 + · · ·xnvn) = y1v1 + · · ·+ ynvn

then

[T ]B

x1...
xn

 =

y1...
yn

 .

In particular, let B0 = {e1, . . . , en} denote the standard basis for Rn, i.e., ei is the column vector
with a 1 in the i-th position and 0’s elsewhere. Then, if Tei = ui, the i-th column of [T ]B0 is ui,
i.e.,

[T ]B0 = [u1|u2| · · · |un].

Given any bases B = {v1, . . . , vn} and B′ = {v′1, . . . , v′n}, there is an invertible change of basis
matrix S, determined by requiring Svi = v′i for all i, such that

[T ]B′ = S[T ]BS
−1. (3.2)

For any matrices A,B ∈Mn(R), we say they are similar if A = SAS−1 for an invertible S ∈Mn(R).
This means A and B can be viewed as representing the same linear transformation T , just with
respect to different bases.

We say a nonzero vector v ∈ Rn is a (real) eigenvector for A with (real) eigenvalue λ ∈ R if
Av = λv. If λ is an eigenvalue for A, the set of v ∈ Rn (including the zero vector) for which
Av = λv is called the λ-eigenspace for A, and it is a linear subspace of Rn. Even if A ∈ Mn(R)
it may not have any real eigenvalues/vectors but it may have complex ones, so we will sometimes
consider those. The dimension of the λ-eigenspace is called the geometric multiplicity of λ.

Eigenvalues and eigenvectors are crucial to understanding the geometry of a linear transfor-
mation as A having real eigenvalue λ means A simply acts as scaling by λ on the λ-eigenspace.
Any complex eigenvalues must occur in pairs re±iθ, and complex eigenvalues means that A acts by
scaling by r together with rotation by θ on an appropriate 2-dimensional subspace.
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Eigenvalues can be computed as follows. If Av = λv = λIv for a nonzero v, this means (λI−A)
is not invertible, so it has determinant 0. The characteristic polynomial of A is

pA(λ) = det(λI −A). (3.3)

This is a polynomial of degree n in λ, and its roots are the eigenvalues. By the fundamental theorem
of algebra, over C it always factors into linear terms

pA(λ) = (λ− λ1)m1(λ− λ2)m2 · · · (λ− λk)mk . (3.4)

Here λ1, . . . , λk denote the distinct (possibly complex) eigenvalues. The number mi is called the
(algebraic) multiplicity of λi. It is always greater than or equal to the (complex) dimension of the
(complex) λi-eigenspace (the geometric multiplicity).

Now let us write the eigenvalues of A as λ1, . . . , λn where some of these may repeat. The
spectrum of A is defined to be the (multi)set Spec(A) = {λ1, λ2, . . . , λn}, where we include each
eigenvalue with (algebraic) multiplicity. (Multiset is like a set, except that elements are allowed to
appear with some multiplicity.) If A = (aij) is diagonal, then Spec(A) = {a11, a22, . . . , ann}. From
(3.4), we see the spectrum determines the characteristic polynomial, and vice versa.

Once we find the eigenvalues λi, we can find the eigenspaces by solving the system of equations
(λI −A)v = 0.

Suppose B is similar to A, e.g., B = SAS−1. Then

pB(λ) = det(λI − SAS−1) = det(S(λI −A)S−1) = det(S) det(λI −A) det(S)−1 = pA(λ), (3.5)

so A and B have the same eigenvalues and characteristic polynomials. (Their eigenspaces will be
different, but can be related by a change of basis matrix.)

One can shew that the spectrum a block diagonal matrix

(
A

B

)
is the Spec(A) ∪ Spec(B).

Black matrix entries represent zeroes.
We say A is diagonalizable if A is similar to a diagonal matrix D. A matrix A is diagonalizable

if and only if there is a basis of Cn consisting of eigenvectors for A. This is always possible if A has
n distinct eigenvalues, but not always possible when you have repeated eigenvalues (cf. Exercise
3.1.8).

If there is a basis of eigenvectors {v1, . . . , vn}, the matrix S = [v1| · · · |vn] will be invertible, and
doing the associated change of basis will give us a diagonal matrix D = SAS−1. Specifically, we
will get D = diag(λ1, . . . , λn) where λi is the eigenvalue associated to vi. Doing this change of basis
to get a diagonal matrix is called diagonalizing A.

One benefit of diagonalization is that it allows us to exponentiate easily. Suppose D = SAS−1

is diagonal. Thinking of A as a linear transformation, there are many instances where we want to
apply A repeatedly. We determine the resulting transformation by looking at powers of A. Note

Am = (S−1DS)m = (S−1DS)(S−1DS) · · · (S−1DS) = S−1DmS. (3.6)

For any two diagonal matrices X = diag(x1, . . . , xn) and Y = diag(y1, . . . , yn), we have XY =
Y X = diag(x1y1, . . . , xnyn). In particular, if D = diag(λ1, . . . , λn), then Dm = diag(λm1 , . . . , λ

m
n ).

In other words, Dm is easy to compute, so we may compute Am easily.
There is some information we can easily get about eigenvalues without determining them

exactly. First, suppose A is diagonalizable, i.e., D = SAS−1 is diagonal for some S. Then
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D = diag(λ1, . . . , λn) where the λi’s are the eigenvalues of A (with multiplicity). Consequently,
detA = detD = λ1λ2 · · ·λn. In other words, the determinant of a matrix A is the product of the
eigenvalues (with multiplicity). In fact, this is true for any A, not just diagonalizable matrices A.
(Any A is similar to an upper triangular matrix, whose diagonal entries must be the eigenvalues,
and now apply Exercise 3.1.1.)

The trace is another useful invariant to study eigenvalues. The trace of a matrix trA is the sum
of its diagonal entries. Note the trace map satisfies tr(A+B) = trA+trB. Unlike the determinant,
it does not satisfy tr(AB) = trAtrB (just like det(A+B) 6= detA+detB in general). Nevertheless,
similar matrices have identical trace. Therefore, we see if A is diagonalizable, then trA is the sum
of its eigenvalues. This statement is also true for any A ∈Mn(R).

Here is one of the main theorems on diagonalizability, often just called the spectral theorem.

Theorem 3.1.2. Let A ∈ Mn(R) be symmetric, i.e., At = A. Then A has only real eigenvalues
and is diagonalizable over R. In fact, A is diagonalizable by an orthogonal matrix S, i.e., there
exists S ∈Mn(R) with SSt = I and SAS−1 is diagonal.

Exercises

Exercise 3.1.1. Let A = (aij) ∈Mn(R) be upper triangular, i.e., aij = 0 whenever i > j.
(i) Prove detA = a11a22 · · · ann.
(ii) Use this to show that Spec(A) = {a11, a22, . . . , ann}.

Exercise 3.1.2. Analyze the running time of the algorithm to compute the determinant by recur-
sively using the cofactor expansion (3.1),

Exercise 3.1.3. Let A ∈Mn(R). Suppose v is an eigenvector with eigenvalue λ for A. Show, for
m = 1, 2, 3, . . ., that v is an eigenvector with eigenvalue λm for Am.

Exercise 3.1.4. Let A ∈ M2(R). Show pA(λ) = λ2 − tr(A)λ + det(A) in two different ways: (i)
use the definition pA(λ) = det(λI −A), and (ii) abstractly write pA(λ) = (λ− λ1)(λ− λ2).

Exercise 3.1.5. Let A ∈Mn(R) and write pA(λ) = λn+ c1λ
n−1 + c2λ

n−2 + · · ·+ cn−1λ+ cn. Show
c1 = −trA and cn = (−1)n detA.

Exercise 3.1.6. Show that A is diagonalizable if and only if the geometric multiplicity of each
eigenvalue λ equals the algebraic multiplicity.

Exercise 3.1.7. Diagonalize the rotation-by-θ matrix A =

(
cos iθ sin iθ
− sin iθ cos iθ

)
.

Exercise 3.1.8. Find a 2 × 2 matrix which is not diagonalizable. (Hint: you need to show it
does not have a basis of eigenvectors, so it must have a repeated eigenvalue. Try looking at upper
triangular matrices and use Exercise 3.1.1.)

Exercise 3.1.9. Diagonalize the matrix A = 1
2

(
0 2
1 1

)
and use this to write down a simple ex-

pression for Am. Can you make sense of limm→∞A
m?

3.2 Rudiments of spectral graph theory

I Here we assume graphs are undirected and simple unless stated otherwise.
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Adjacency spectra

Let’s start of by making some elementary observations on adjacency matrices. Let G = (V,E) be a
graph on the ordered set V = {1, 2, . . . , n} and A be the adjacency matrix with repect to V . Write
A = (aij) so aij = 1 if and only if (i, j) ∈ E.

Proposition 3.2.1. The (i, j) entry of the matrix A` is the number of paths of length ` from i to
j in G. This is still true if G is directed and/or non-simple.

Proof. This is clearly true when ` = 0 or 1. Now we prove this by induction on `. Suppose it is
true for ` = m. We show it is true for ` = m + 1. Write B = (bij) = Am and C = (cij) = Am+1.
Writing C = AB, we see

cij =
n∑
k=1

aikbkj .

By our induction hypothesis, aik is the number of paths of length 1 from i to k (which is 0 or 1)
and bkj is the number of paths of length m from k to j. Hence cij is the sum over all neighbors k
of vertex i of the number of paths of length ` from k to j. This must be the total number of paths
of length m+ 1 from i to j.

Let σ be a permutation of V , i.e., σ : V → V is a bijective map. Let B0 = {e1, . . . , en} be the
standard basis for Rn. Then we can also view σ as a permutation of B0 given by σ(ei) = eσ(i).
Thus we can express σ as a matrix S = [σ]B0 . This is a 0–1 matrix (a matrix whose entries are all
either 0 or 1) with exactly one 1 in each row and column. Such matrices are called permutation
matrices. Since σ is bijective, the associated matrix S must be invertible, as S−1 effects the inverse
permutation σ−1.

For instance, suppose V = {1, 2, 3, 4} and σ is the “cyclic shift” of V given by σ(1) = 4,
σ(2) = 1, σ(3) = 2 and σ(4) = 3. Then the corresponding matrix is

S =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

One readily checks Se1 = e4, Se2 = e1, Se3 = e2 and Se4 = e3. Note that S is the adjacency
matrix for the directed cycle graph on 4 vertices where the directed cycle goes in the clockwise
direction, and S−1 is the adjacency matrix for the directed cycle graph where the cycle goes in the
counterclockwise direction.

Now let B be the adjacency matrix for G with respect to the ordering σ(1), σ(2), . . . , σ(n).
Then B = SAS−1. Consequently all possible adjacency matrices for G are similar. Hence the
quantities detA, trA and Spec(A) and pA(λ) are all invariants of G, i.e., they do not depend upon
the labelling of vertices. Thus the following definition makes sense.

Definition 3.2.2. Let G be a (possibly directed and non-simple) graph, and A be any adjacency
matrix for G. We say λ is an (adjacency) eigenvalue for G if λ is an eigenvalue for A, and
the (adjacency) spectrum of G is SpecG = SpecA. The characteristic polynomial of G is
pG(λ) = pA(λ). We also define the determinant and trace of G by detG = detA and trG = trA.
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However, the eigenspaces of A in general depend upon the labelling (or ordering of vertices), so
eigenspaces/eigenvectors are not invariants of G. However, if Av = λv, then

BSv = (SAS−1)(Sv) = SAv = Sλv = Sv. (3.7)

That is, we can go from eigenvectors of A to eigenvectors of B by applying the permutation matrix
S (which just permutes the entries of v). This will be important for us later.

While isomorphic graphs, i.e., graphs that differ only up to labelling of vertices, must have the
same spectrum, knowing that SpecG1 = SpecG2 does not imply that G1 and G2 are isomorphic.
Since one can compare spectra in polynomial time, if this were true it would give us a polynomial
time algorithm to answer the graph isomorphism problem. However, it is conjectured that the
spectrum determines the isomorphism class of the graph “most of the time.” If true, this means
for “most” G1, there is a polynomial-time algorithm that can determine if any G2 is isomorphic
to G1.

∗ Much work is currently being done to determine which graphs are determined by their
spectra.

Spectral graph theory (which includes the above conjecture) is the study of what information
about graphs we can read off from the spectrum (and related data). For instance, the number of
elements (with multiplicity) in Spec(G) determines the order n of G. Spectral graph theory is an
extremely active area of research, and we will just present as sample of some basic results in this
section to motivate its utility.

Proposition 3.2.3. Spec(G) determines the number of closed paths of length ` for all `, and this
number is tr(A`). Here G may be directed and non-simple.

Proof. Note the number of closed paths of length ` is simply tr(A`). If Spec(A) = {λ1, . . . , λn},
then Spec(A`) = {λ`1, . . . , λ`n} by Exercise 3.1.3. Hence tr(A`) =

∑
i λ

`
i is determined by Spec(G) =

Spec(A).

In fact, one can rewrite the characteristic polynomial in terms of tr(A`) for 1 ≤ ` ≤ n, and
deduce the converse of this proposition, but we will not do this.

We can be more explicit about the traces tr(A`) of the first few powers of A.

Proposition 3.2.4. Write Spec(G) = {λ1, . . . , λn}. Then we have each λi ∈ R and
(i) tr(A) = λ1 + λ2 + · · ·+ λn = 0;
(ii) 1

2tr(A2) = 1
2(λ21 + λ22 + · · ·+ λ2n) is the number of edges of G; and

(iii) 1
6tr(A3) = 1

6(λ31 + λ32 + · · ·+ λ3n) is the number of triangles in G.

Proof. Each eigenvalue is real by the spectral theorem.
(i) The trace is zero because each diagonal entry of A is 0. For non-simple graphs, tr(A) will

just be the total number of loops.
(ii) Each closed path of length 2 is simply means traversing an edge (u, v) going back, and each

edge (u, v) corresponds to 2 closed paths of length 2.
(iii) is similar to (ii). Any closed path of length 3 must be a 3-cycle, and each triangle yields 6

different closed paths of length 3.

∗Of course, given any two random graphs G1 and G2, most of the time they will not be isomorphic and can
be easily distinguished in polynomial time by simple invariants such as degree distributions. The strength of this
statement is that if G1 lies outside of a conjecturally small class of graphs, then we get a polynomial-time algorithm
that works for any G2.
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These arguments no longer work for higher powers of traces because the closed paths of length
` will include more than just the of cycles of length ` for ` ≥ 4, but include paths with repeated
vertices. However, see Exercise 3.2.2 for ` = 4.

Since all eigenvalues of real, we will typically order them as λ1 ≥ λ2 ≥ · · · ≥ λn. By (ii), we
see that all eigenvalues are 0 if and only if G has no edges (this is not true for directed graphs—
see example below). From now on we will assume this is not the case. Then, as the sum of the
eigenvalues is 0, we know λ1 > 0 and λn < 0.

Now let us look at a few simple directed and undirected examples.

Example 3.2.5 (Directed path graphs). Let G be the directed path graph on n vertices. Then

pG(λ) = det


λ −1 0 · · · 0

0 λ −1
. . . 0

...
. . .

. . .
...

0 · · · 0 λ −1
0 · · · · · · 0 λ

 = λn,

by Exercise 3.1.1. Hence all eigenvalues are 0.

Example 3.2.6 (Directed cycle graphs). Let G be the directed cycle graph on n vertices. Then

pG(λ) = det


λ −1 0 · · · 0

0 λ −1
. . . 0

...
. . .

. . .
...

0 · · · 0 λ −1
−1 0 · · · 0 λ

 = λn − 1.

This can be seen by using a cofactor expansion along the first column, and using Exercise 3.1.1
and its analogue for lower triangular matrices (true since det(A) = det(At)). Thus Spec(G) =
{1, ζ, ζ2, . . . , ζn−1} is the set of n-th roots of unity, where ζ = e2πi/n. Hence we may get complex
eigenvalues (and also complex eigenvectors) for directed graphs.

Example 3.2.7 (Path graphs). Consider the path graph Pn on n vertices. Then

pPn(λ) = det



λ −1 0 · · · 0 0

−1 λ −1
. . . 0 0

0 −1 −λ . . . 0
...

. . .
. . .

. . .
. . .

...
0 · · · −1 λ −1
0 0 · · · −1 λ


From a cofactor expansion, we see we have the recursion

pPn(λ) = λpPn−1(λ)− pPn−2(λ), n ≥ 4.
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Thus we can compute the first few cases

pP2(λ) = λ2 − 1 Spec(P2) = {1,−1}
pP3(λ) = λ(λ2 − 2) Spec(P3) = {

√
2, 0,−

√
2}

pP4(λ) = λ4 − 3λ2 + 1 Spec(P4) = {

√
3 +
√

5

2
,

√
3−
√

5

2
,−

√
3−
√

5

2
,−

√
3 +
√

5

2
}.

Example 3.2.8 (Cycle graphs). Consider a cycle graph G = Cn. Explicit calculations give

pC3(λ) = λ3 − 3λ− 2 Spec(C3) = {2,−1,−1}
pC4(λ) = λ4 − 4λ2 Spec(C4) = {2, 0, 0,−2}.

It is easy to see in general that the all ones vector (1, 1, . . . , 1) is an eigenvector with eigenvalue
2. If n is even, one can check the vector with alternating entries (1,−1, 1,−1, . . . , 1,−1) is an
eigenvector with eigenvalue 2. One can show that the other eigenvalues are of the form 2 cos(2jπ/n)
for 1 ≤ j < bn2 c, each with multiplicity 2. See Exercise 3.2.3 for the case of n = 6.

Example 3.2.9 (Complete graphs). Take G = Kn. Then the adjacency matrix (with respect to
any ordering of vertices!) is

A =


0 1 1 · · · 1
1 0 1 · · · 1
...

. . .
. . .

. . .
...

1 · · · 1 0 1
1 · · · · · · 1 0

 .

In this case, due to the nature of A, the easiest way to find the eigenvalues is to guess a basis of

eigenvectors. Clearly the all ones vector v1 =

1
...
1

 is an eigenvector with eigenvalue n − 1. For

2 ≤ i ≤ n, let vi denote the vector with a 1 in position 1, −1 in position i, and 0’s elsewhere. Then
it is easy to see Avi = −vi for i ≥ 2. Hence −1 is an eigenvalue with multiplicity (geometric, and
therefore also algebraic) n− 1. That is,

Spec(G) = {n− 1,−1,−1, · · · ,−1},

and if you care
pG(λ) = (λ− (n− 1))(λ+ 1)n−1.

More generally, for a k-regular graph, the maximum eigenvalue will be k. We can also given
upper bound for arbitrary (simple, undirected) graphs in terms of degree.

Proposition 3.2.10. Let k be the maximum degree of a vertex in G. Then for any eigenvalue λ
of G, |λ| ≤ k. In particular, |λ| ≤ n − 1. Moreover, if G is k-regular, then in fact λ = k is an
eigenvalue.

Put another way, the maximum eigenvalue gives a lower bound for the maximum degree of G.
And for regular graphs, the maximum eigenvalue determines the degree.
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Proof. Let v = (x1, x2, . . . , xn) be an eigenvector for G with eigenvalue λ. Say |xm| achieves the
maximum of all |xj |’s. By scaling, we may assume xm = 1. Write Av = λv = (y1, y2, . . . , yn) and
Aij Then

|λ| = |λxm| = |ym| =

∣∣∣∣∣∣
n∑
j=1

amjxj

∣∣∣∣∣∣ ≤ k
since at most k of the entries amj are 1.

If G is k-regular, then all row sums of A are k, so Av = kv where v = (1, 1, . . . , 1).

In fact, for k-regular graphs G, the multiplicity of λ = k equals number of connected compo-
nents of G. More generally, to determine the spectrum of G it suffices to look at the connected
components.

Lemma 3.2.11. Let G1, . . . , Gr denote the connected components of a graph G. Then

Spec(G) = Spec(G1) ∪ Spec(G2) ∪ · · ·Spec(Gr).

Proof. We may order the vertices of G in such a way, that the adjacency matrix A for G is a block
diagonal matrix of the form

A =


A1

A2

. . .

Ar


where Ai is an adjacency matrix for Gi. The eigenvalues of a block diagonal matrix are just the
collection of the eigenvalues of the blocks, with multiplicity.

This implies that if G is k-regular, and G has r connected components, the multiplicity of λ = k
is at least r. To conclude it is exactly r, we need to show that this multiplicity is 1 if G is connected.
In fact, a similar argument will tell us something about the minimum eigenvalue too.

Proposition 3.2.12. If G is k-regular and connected, then the maximum eigenvalue λ1 = k occurs
with multiplicity 1. Furthermore, the minimum eigenvalue λn ≥ −k with λn = −k if and only if G
is bipartite. If G is bipartite, then λn = −k also occurs with multiplicity 1.

In any normal graph theory course, we would have defined bipartite by now. I was hoping to
avoid it all together, but it will be good to know a criterion for when |λ1| = |λn| later (in a more
general setting).

Definition 3.2.13. Let G = (V,E) be a directed or undirected graph. We say G is bipartite if
there is a partition V = V1 ∪ V2, V1 ∩ V2 = ∅, such that (u, v) ∈ E implies either u ∈ V1 and v ∈ V2
or u ∈ V2 and v ∈ V1.

In other words, no two vertices in V1 are connected by an edge, and similarly for V2. For
instance, Cn is bipartite if and only if n is even (draw pictures), where as a path graph on n
vertices is bipartite for any n. On the other hand, graphs like Kn, star graphs, and wheel graphs
are never bipartite. A convenient way to think the bipartite condition in terms of colorings: we
can color vertices in V1 red, and vertices in V2 green, so we see a bipartite graph G is one with a
2-coloring, i.e., χ(G) ≤ 2. (We need to allow the possibility χ(G) = 1 because technically graphs
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with no edges are bipartite.) In terms of matrices, bipartite means that one can order the vertices

so that the adjacency matrix is a block matrix of the form

(
0 A
B 0

)
.

Proof. Suppose v1 = (x1, . . . , xn) is an eigenvector for λ1 = k. As before, scale v1 to get a maximum
coordinate xm = 1 and |xi| ≤ 1 for 1 ≤ i ≤ n. Let (y1, . . . , yn) = Av1 = λv1 = kv1 and A = (aij)
Then

ym =
n∑
j=1

amjxj = k

implies that xj = 1 for all k neighbors j of vertex m. Similarly, xi = 1 for all neighbors of these
xj ’s, i.e., the vertices of distance 2 from m. Continuing in this manner shows xj = 1 for all j in
the connected component of m, which is the whole graph by assumption. Hence v1 is determined
uniquely up to a scalar, which means λ1 has multiplicity 1. (Since A is diagonalizable, the geometric
and algebraic multiplicity of an eigenvalue are the same.)

For the minimum eigenvalue, we saw already that λn ≥ −k in Proposition 3.2.10. So suppose
(x1, . . . , xn) is an eigenvector with eigenvalue −k, again satisfying xm = 1 and |xi| ≤ 1 for 1 ≤ i ≤ n.
Then we have the identity

ym =

n∑
j=1

amjxj = −k,

so now we see xj = −1 for all neighbors j of m. The same reasoning shows that if xj = −1, then
xi = +1 for any neighbor i of j. Let V1 = {i : 1 ≤ i ≤ n, xi = +1} and V2 = {j : 1 ≤ j ≤ n, xj =
−1}. By connectedness, every vertex of G lies in either V1 or V2, and the reasoning above says
that no two vertices in V1 are connected by a (single) edge, and similarly for V2. Hence G must be
bipartite. In addition, this eigenvector is determined uniquely up to scaling, so if G is bipartite,
λ = −k has multiplicity 1.

We won’t prove this, but another standard fact is that the spectrum {λ1, . . . , λn} of G is
symmetric about 0, i.e., λj = λn−j+1 for 1 ≤ j ≤ n

2 , if and only if G is bipartite.
Now let’s prove a result about the diameter.

Proposition 3.2.14. G connected simple undirected. If G has r distinct eigenvalues, then diam(G) <
r.

Proof. Let λ1, . . . , λr denote the distinct eigenvalues of G, and mi the multiplicity of λi. Then we
may diagonalize A as D = SAS−1 where D is a block diagonal matrix of the form

D =

λ1Im1

. . .

λrImr

 .

Consider the polynomial in A given by

m(A) = (λ1I −A)(λ2I −A) · · · (λrI −A).

Note that

m(D) = (λ1I −A)(λ2I −A) · · · (λrI −A)

= S(λ1I −A)S−1S(λ2I −A)S−1 · · ·S(λrI −A)S−1 = Sm(A)S−1.
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Each λiI − D is a block diagonal matrix where the i-th diagonal block is all zeroes, so when we
multiply them all together, we see m(D) = 0. For example, if r = 3, we have

m(D) =

0 · Im1

(λ1 − λ2)Im2

(λ1 − λ3)Im3

(λ2 − λ1)Im1

0 · Im2

(λ2 − λ3)Im3


×

(λ3 − λ1)Im1

(λ3 − λ2)Im2

0 · Im3

 = 0.

(Block diagonal matrices multiply like diagonal matrices:

(
A1

A2

)(
B1

B2

)
=

(
A1B1

A2B2

)
.)

Consequently, m(A) = 0, so we have a nontrivial linear dependence relation among the first r powers
of A and I = A0:

m(A) = crA
r + cr−1A

r−1 + · · ·+ c1A+ c0 = 0.

(This is nontrivial as cr = (−1)r 6= 0.)
Now let d be the diameter of G. Say vertices i and j are distance d apart. By Proposition 3.2.1,

the (i, j)-th entry of Ad is nonzero but the (i, j) entry of A` is 0 for all 0 ≤ ` < d. Hence, any
nontrivial linear dependence relation among I, A,A2, . . . , Ad−1, Ad must not involve Ad. Similarly,
there must exist a vertex j′ such that d(i, j′) = d − 1, and therefore the (i, j′) entry of A` = 0 for
all 0 ≤ ` < d − 1, but the (i, j′) entry of Ad−1 is nonzero. Thus any nontrivial linear dependence
relation among I, A,A2, . . . , Ad−1, Ad cannot involve either Ad or Ad−1. Continuing in this way, we
see there is no nontrivial linear dependence relation among I, A,A2, . . . , Ad−1, Ad. Consequently,
d < r.

The polynomial m(A) in the proof is known as the minimal polynomial of A—it is the minimum
degree polynomial such that m(A) = 0, the n× n zero matrix.

For instance, Kn has only 2 distinct eigenvalues, so this result says diam(Kn) = 1. Go back to
our examples of (undirected) path and cycle graphs and see what this result tells you about their
diameters.

Before we move on, let us just mention a few other simple yet interesting results about adjacency
spectra.

• The maximum eigenvalue λ1 is at least the average degree of G.

• We can bound the chromatic number in terms of the maximum and minimum eigenvalues λ1
and λn by

1 +
λ1
|λn|

≤ χ(G) ≤ 1 + λ1(G).

• If G is regular and not complete, then the clique number of G is at most n − 1 minus the
number of eigenvalues in (−1, 1).

Before we move on to random walks, let us say a word about Laplacian eigenvalues.
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Definition 3.2.15. Let G = (V,E) be a directed or undirected graph on the ordered set V =
{1, 2, . . . , n}. Let A be the adjacency matrix with respect to V and D be the degree matrix given
by D = diag(deg(1),deg(2), . . . ,deg(n)). Here deg(i) denotes the degree of i if G is undirected and
the out degree of i if G is directed. The Laplacian of G (with respect to the ordering on V ) is

L = D −A.

The Laplacian eigenvalues are the eigenvalues of L, and the Laplacian spectrum SpecL(G)
is Spec(L).

As with the adjacency matrix, the Laplacian matrix depends upon the ordering of vertices in
general, but if L is the Laplacian with respect to an ordered set V and L′ is the Laplacian with
respect to an ordered set V ′, then L′ = SLS−1 for a suitable permutation matrix S. Consequently,
the Laplacian spectrum is also an invariant for G, and in some ways it is nicer than the adjacency
spectrum.

For instance, we saw some nice results about adjacency spectra of regular graphs. One nice
thing here is that the all-one vector is always an eigenvector for regular graphs, and the eigenvalue
is the degree. This was because for regular graphs the adjacency matrix has constant row sums.

By definition of the Laplacian matrix, each row sum is zero—the i-th diagonal entry deg(i)
of D is precisely the sum of the entries of the i-th row of A. Consequently the all-one vector
v = (1, 1, . . . , 1) is an eigenvector for L with eigenvalue 0. Assuming G is undirected, L is also
a symmetric matrix, so it is diagonalizable and has real eigenvalues by the spectral theorem. We
write the eigenvalues of L in increasing order as λL,1 ≤ λL,2 ≤ · · · ≤ λL,n, where as the adjacency
eigenvalues are arranged in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λn. This is because for regular graphs,
the adjacency and Laplacian eigenvalues correspond, but with reverse ordering.

Proposition 3.2.16. Let G be a k-regular graph. Then λL,i = k − λi for 1 ≤ i ≤ n, and we have
0 = λL,1 ≤ λL,2 ≤ · · · ≤ λL,n ≤ 2k.

Proof. Since G is k-regular, the degree matrix d = kI. Thus

pL(λ) = det(λI − L) = det(λI − (D −A)) = det(λI − kI +A)

= det(−((k − λ)I −A)) = (−1)npA(k − λ).

Since the eigenvalues of A are the roots λi of pA(λ), the Laplacian eigenvalues, are the roots of
pA(k− λ), which are just the numbers k− λi. It is clear this map λi 7→ k− λi reverses inequalities
λi ≥ λj , so the increasing ordering of λL,i’s is justified.

The final statement then follows from Proposition 3.2.10.

In general, it is still the case that 0 is the minimum eigenvalue λL,1, so all other (distinct)
eigenvalues of L are positive. We also know trL =

∑
deg(i) =

∑
λL,i is twice the number of edges

of G. (This is equal to the number of edges when G is directed, but some eigenvalues might be
complex.)

In fact, it’s often even better to work with the normalized Laplacian L = D−1/2LD−1/2.
(Since D is diagonal with nonnegative entries, D−1/2 makes sense—just replace each nonzero entry
of D with the reciprocal of the square root of that entry. E.g., if D = diag(2, 1, 1, 0), let D−1/2 =
diag(1/

√
2, 1, 1, 0).) Again all eigenvalues λL,1 ≤ · · ·λL,n of L are real since L is still symmetric,
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but now they lie in the range [0, 2], with the minimum one being λL,1 = 0. If G is connected,
0 occurs with multiplicity 1. It turns out that the sizes of the smallest positive eigenvalue λL,2
and the largest eigenvalue λL,n give us a lot of information about the network flow, that is not
easily accessible from adjacency eigenvalues in general. We will see this by working with the closely
related transition matrices in the next section, which have eigenvalues in the range [−1, 1].

Note: you can numerically compute eigenvalues in Sage as with the command spectrum(). If
you set the optional parameter to True, it will return the (non-normalized) Laplacian eigenvalues.
You can also compute the characteristic polynomial pG(λ) exactly with the charpoly() function.
For example:

Sage 6.1
sage: G = graphs.CycleGraph(5)

sage: G.charpoly()

x^5 - 5*x^3 + 5*x - 2

sage: G.spectrum()

[2, 0.618033988749895?, 0.618033988749895?, -1.618033988749895?,

-1.618033988749895?]

sage: G.spectrum(True)

[3.618033988749895?, 3.618033988749895?, 1.381966011250106?,

1.381966011250106?, 0]

Exercises

Exercise 3.2.1. Write a function in Sage countpaths(G,u,v,l) which counts the number of paths
from u to v of length l in G by exponentiating the adjacency matrix of G.

Exercise 3.2.2. Let G be a k-regular graph. Prove an exact relation between tr(A4) and the number
of 4-cycles in G.

Exercise 3.2.3. Determine (by hand) the spectrum of C6. Verify Propositions 3.2.10 and 3.2.14
hold for this graph.

Exercise 3.2.4. Determine (by hand) the spectrum of the star graph on 5 vertices. Verify Propo-
sitions 3.2.10 and 3.2.14 hold for this graph.

Exercise 3.2.5. Let G be a connected graph with maximum degree k. Show that k is an eigenvalue
of G if and only if G is regular.

Exercise 3.2.6. Let G be a directed graph. Show that all eigenvalues of G are 0 if and only if G
has no cycles (including cycles of length 1 or 2).

Exercise 3.2.7. Suppose G is regular. Express the eigenvalues of the normalized Laplacian L in
terms of the adjacency eigenvalues.

3.3 Random walks on graphs

I Here our graphs may be directed or undirected, simple or non-simple.

Since the works of Erdös, Rényi and Gilbert on random graphs, it was realized that probabilistic
methods provide a powerful tool for studying graph theory. One revelation was that you can learn
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a lot about the graph by studying random walks. Random walks are simply walks or paths along
a graph, where at each stage you choose a direction (edge) to travel along at random. Here is a
somewhat more formal definition.

Definition 3.3.1. A random walk on a graph G = (V,E) starting at v0 ∈ V is a random process
which generates an infinite path (v0, v1, v2, . . .) on G subject to the following rule:

• At any time t = 1, 2, 3, . . ., vt is chosen at random from among the neighbors of vt−1. Each
neighbor is equally likely to be chosen. If vt−1 has no neighbors, then vt = vt−1.

Example 3.3.2 (Gambler’s Ruin). For this example only, we will allow G to be infinite. Namely,
let G = (V,E) where V = Z and E = {{i, i+ 1} : i ∈ Z}.

0 1 2−1−2· · · · · ·

Let’s consider a random walk on G starting at v0 = 0. Then, we either go left or right with equal
probability. Hence at our next step, t = 1, we go to v1 = 1 with probability 1/2 and v1 = −1 with
probability 1/2. We can write this as P (v1 = 1) = P (v1 = −1) = 1/2. At our the next step, t = 2,
we see our probabilities depend on what v1 was. For instance, if v1 = 1, then we are at 0 with
probability 1/2 and 2 with probability 1/2.

If we want to be systematic, we can list out all possibilities for the walk up to t = 2 as

(0,−1,−2, . . .)

(0,−1, 0, . . .)

(0, 1, 0, . . .)

(0, 1, 2, . . .)

which must each occur with the same probabilities, namely 1/4. Hence P (v2 = −2) = P (v2 = 2) =
1/4 and P (v2 = 0) = 1/2.

This example is called Gambler’s Ruin for the following reason. Imagine playing a fair game
of chance repeatedly, where your odds of winning are 50–50. Each time you win you gain $1, and
each time you lose, you lose $1. Then this random walk models your winnings/losings—namely vt
models the number of dollars you have won (or lost if it is negative) after t rounds of the game.
One can prove that with probability 1, vt will get arbitrarily large and arbitrarily small (meaning
arbitrarily negative) as t→∞. (In fact with probability 1, vt will make large positive and negative
swings infinitely often.) Consequently, if you keep playing, you are guaranteed to go bankrupt at
some point.

But I say, go for it anyway! It’s fun, right! And if you lose all your money, don’t get down on
yourself—you just verified a mathematical theorem!∗

Example 3.3.3. Suppose G is a path graph on 3 vertices.

1 2 3

∗Legal disclaimer: While I may find mathematical satisfaction in your gambling debts, I do not claim any respon-
sibility. Do not tell anyone to break my legs instead of yours.
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Take a random walk starting, say, at v0 = 1. Then at the first step, t = 1, we have to walk to
vertex v1 = 2. At t = 2, we go to either vertex v2 = 1 or v2 = 3, with equal probability. Then,
regardless of this choice, at t = 3, we see we must be back to vertex 2, and therefore this process
repeats. Hence we can describe the random walk as v2i+1 = 2 for all i ≥ 0 and v2i is either 1 or 3,
each with probability 1/2, for any i ≥ 1.

We note the condition about vt+1 having no neighbors in the definition of random walk is mostly
to deal with the situation of nodes of out degree 0 in directed graphs. It can never happen that we
reach a node of degree 0 for undirected graphs (unless we start at one). But consider this directed
example:

1 2 3

Again, if we start at vertex 1, we must go to vertex 2 next, and from there we either go to 1 or 3. If
we go to 1, we must go back to 2 and repeat the process, but if we go to vertex 3, the random walk
rule says vt = 3 from this point out. (One could alternatively terminate the random walk here,
but this definition will give us a more uniform treatment of random walks.) One can easily check
that, as t → ∞, the probability of only bouncing back and forth between vertices 1 and 2 goes to
0—thus with probability 1 we will eventually go to vertex 3, where we will be stuck for eternity.
How ad infinitum.

As you might expect, these elementary logical arguments for understanding random walks will
get cumbersome very quickly with more complicated graphs. There’s a better way to look at this
problem using probability and linear algebra. In fact, this is a more precise way to think about
random walks. At each time t, let us think of the state vt of the random walk as a probability
distribution on the graph G (or more precisely, on the set of vertices V ). Namely, regard vt as a
probability vector (a vector with non-negative entries which sum to 1) vt = (p1(t), p2(t), . . . , pn(t)),
where pi(t) is the probability that we are at vertex i at time t. (We think of these vectors as column
vectors, despite me just having written all the entries in a row.) Then to describe the random walk,
we just need to explain how to get from the probability vector vt to the next one vt+1. This will
be done by means of the transition matrix T (which will independent of both our time t and the
initial state v0).

Let’s see how this works first by redoing Example 3.3.3. Consider the matrix

T =

0 1
2 0

1 0 1
0 1

2 0

 .

Then

Tvt =

0 1
2 0

1 0 1
0 1

2 0

p1(t)p2(t)
p3(t)

 =

 p2(t)/2
p1(t) + p3(t)
p2(t)/2

 .

First observe that as long as vt is a probability vector, i.e. p1(t) + p2(t) + p3(t) = 1 and all entries
are non-negative, then so is Tvt. Now the key point is that multiplication by T perfectly describes
this random walk process: the probability that we are at vertex 1 (or 3) at time t+ 1 must be 1/2
the probability we were at vertex 2 at time t, and the probability that we are at vertex 2 at time
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t+ 1 must be the probability that we were at either vertex 1 or 3 at time t. Thus we can compute
the random walk as

v0 =

1
0
0

 , v1 = Tv0 =

0
1
0

 , v2 = Tv1 =

1
2
0
1
2

 , v3 = Tv2 =

0
1
0

 = v1, . . .

Here the state vector v0 means that (with probability 1) we are at vertex 1 at time 0, v1 means
(with probability 1) we are at vertex 2 at time 1, and so on.

Here is the general way to compute this.

Definition 3.3.4. Let G = (V,E) be a graph (possibly directed and non-simple) with the ordered
set of vertices V = {1, 2, . . . , n}. Let A = (aij) be the adjacency matrix with respect to V . Then
the transition matrix for G with respect to V is the matrix T = (tij) where

tij =
aji

deg(j)

if deg(j) 6= 0 and

tij =

{
0 i 6= j

1 i = j

if deg(j) = 0. Here deg(j) denotes the out degree of j in the case G is directed.

Put more plainly, for undirected graphs aij = aji, so the transition matrix T is the matrix
obtained by dividing each entry aij of A by the j-th column sum (unless the j-th column is all 0’s,
in which case we just change the diagonal entry ajj to 1). For directed graphs, we need to first
take the transpose of A and then divide by column sums (except for zero columns, where we set
the diagonal entry to 1). For instance, for the graph

1 2 3

we have

A =

0 1 0
1 0 1
0 0 0

 , AT =

0 1 0
1 0 0
0 1 0

 , T =

0 1
2 0

1 0 0
0 1

2 1

 .

Consequently, the matrix T will be a matrix of non-negative entries whose columns all sum to
1. Note that T need not be symmetric even if A is (we computed the transition matrix T for the
path graph on 3 vertices above, and it was not symmetric). However if G is a k-regular graph, then
we simply have T = 1

kA, so T is symmetric in this case.
Now let’s see why this transition matrix does what we want. Consider a probability vector

vt = (p1(t), p2(t), . . . , pn(t)). (Again this is a column vector—you just can’t tell because your head
is sideways.) Then

Tvt =


∑

j t1jpj(t)∑
j t2jpj(t)

...∑
j tnjpj(t)

 .
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Again, we can first note that each entry of the vector on the right must be non-negative, and
the entries sum to 1:

n∑
i=1

n∑
j=1

tijpj(t) =

n∑
j=1

(
pj(t)

n∑
i=1

tij

)
=

n∑
j=1

pj(t) · 1 = 1, (3.8)

as each column of T and the vector vt does. (Whenever you see a double sum, you should always
try to change the order of summation to get what you want. Even if you don’t know what you
want, interchange the order of summation and whatever you get is undoubtedly what your soul
was desperately longing for.)

What about the i-th entry of Tvt? This is
∑

j tijpj(t). The only contributions to this sum are

from j with tij 6= 0, i.e., those j which have an edge to i. For such a j, tij = 1
deg(j) (or tij = 1

if i = j and deg(j) = 0), but this is precisely the probability that we will proceed from vertex j
to vertex i. Thus tijpj(t) is the probability—STOP THE PRESSES!!! I HAVE JUST REALIZED
I’M USING t FOR TOO MANY THINGS—that you go from vertex j at time t to vertex i at time
t+1. Hence summing this up over all i must yield pi(t+1), the probability that you went to vertex
i (from some vertex) at time t+ 1.

This shows that the transition matrix can always be used to express the state of the random
walk. That is, for any state vt

vt+1 = Tv.

In particular, for any initial state v0, we see

v1 = Tv0, v2 = Tv1 = T 2v0, v3 = Tv2 = T 3v0,

and in general
vt = T tv0.

Example 3.3.5. Consider G = C3 and a random walk starting at vertex 1. Here the transition
matrix is

T =
1

2
A =

1

2

0 1 1
1 0 1
1 1 0

 .

The first few steps of the random walk (as probability distributions) is then given by

v0 =

1
0
0

 , v1 = Tv0 =

 0
0.5
0.5

 , v2 = Tv1 =

 0.5
0.25
0.25

 , v3 = Tv2 =

 0.25
0.375
0.375

 .

Continuing in this manner we see

v4 =

 0.375
0.3125
0.3125

 , v5 =

 0.3125
0.34375
0.34375

 , v6 =

 0.34375
0.328125
0.328125

 .

If we do some more calculations, it will be apparent that vt → (1/3, 1/3, 1/3) as t→∞.
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However, there’s a more elegant way to see this. We saw in Example 3.2.9 that a basis of
eigenvectors for A (and therefore T ) is (1, 1, 1), (1,−1, 0), (1, 0,−1). These have, respectively,
eigenvalues 2,−1,−1 for A and therefore eigenvalues 1,−1

2 ,−
1
2 for T . Hence if we take

S =

1 1 1
1 −1 0
1 0 −1

 , S−1 =
1

3

1 1 1
1 −2 1
1 1 −2


then

D = STS−1 =

1
−1

2
−1

2

 .

(Recall T can be diagonalized by taking S the matrix whose columns are a basis of eigenvectors—in
this example S happens to be symmetric, so the rows are also eigenvectors, but this is not true in
general.) Therefore

T t = S−1DtS = S−1

1
(−12 )t

(−12 )t

S.

In particular,

vt = T tv0 = S−1DtSv0 = S−1Dt

1
1
1

 = S−1

 1
(−2)−t

(−2)−t

 =
1

3

1 + 2(−2)−t

1− (−2)−t

1− (−2)−t

 .

In particular, we see that as t→∞, vt → (1/3, 1/3, 1/3).

Note that from the symmetry of C3, we see we get the same result no matter where we start
the random walk. This means that if we do a random walk, starting anywhere on this graph, after
a reasonable number of steps, we are (essentially) as likely to be at any one vertex i as at any other
vertex j. Put another way, in any random walk, we will (with proabability 1) be spending an equal
amount of time at each vertex.

Contrast this to the case of the path graph on 3 vertices from Example 3.3.3. Even though the
distribution for the random walk doesn’t “stabilize,” i.e. vt does not have a well-defined limit, we
can still say that at any time t > 0, we are twice as likely to be at vertex 2 as at vertex 1 or 3 (if
we do not know if t is even or odd). This should be fairly evident, but we can formally do this
analysis by averaging the vt’s (see Exercise 3.3.3). Said differently, for a random walk on the path
graph on 3 vertices (starting at any vertex in fact), we expect to be spending twice as much time
at vertex 2 as at vertices 1 or 3. This indicates that vertex 2 is more central than vertices 1 or 3,
unlike the case of C3 where every vertex is equally central.

As you might have guessed now, this idea can be used to define another notion of centrality:
eigenvector centrality. To see how this limiting behavior of random walks is related to eigenvectors,
suppose v∗ = limt→∞ vt exists. Then

Tv∗ = T lim
t→∞

vt = lim
t→∞

Tvt = lim
t→∞

vt+1 = v∗,

i.e., any limiting distribution v∗ for the random walk (there can be more than one—think about
disconnected graphs) must be an eigenvector for T with eigenvalue 1.
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Some graphs, like the path graph of length 3, may not have limits for random walks starting at
any vertex. This will clearly be the case for any bipartite graph or something like a directed cycle
graph. However, one can still often make sense of the percentage of time pi spent at vertex i in a
random walk, and (p1, . . . , pn) will then be an eigenvector with eigenvalue 1. We just illustrate this
with a couple of examples.

Example 3.3.6. Consider a star graph G on n vertices—say the hub is vertex n. (For n = 3
this is the path graph on 3 vertices, just with a different labeling of vertices.) This is a bipartite
graphs. Take a random walk starting at vertex 1, say. I.e., v0 = (1, 0, . . . , 0). Then at time t = 1,
we must travel to the hub. From there, we travel to one of the n − 1 “satellite” vertices, then
back again to the hub, and so forth. Hence, for t ≥ 1, we have vt = (0, . . . , 0, 1) if t is odd and
vt = (1/(n − 1), . . . , 1/(n − 1), 0) if t is even. So on average, we expect to spend pn = 1/2 of the
time at the hub, and pi = 1/2(n− 1) percent of our time at any other given vertex i < n.

For the star graph, the transition matrix is

T =


0 · · · 0 1

n−1
...

...
...

0 · · · 0 1
n−1

1 · · · 1 0

 ,

and one easily sees that

v =

p1...
pn

 =


1/2(n− 1)

...
1/2(n− 1)

1/2


is an eigenvector for T with eigenvalue 1.

Example 3.3.7. Consider a directed cycle graph G on n vertices, and a random walk starting at
v0 = 1. Then the random walk really has no randomness at all—it must be the infinite repeating
path (1, 2, 3, . . . , n, 1, 2, 3, . . . , n, 1, 2, 3, . . .). Consequently we spend pi = 1/n percent of our time at
vertex i. Here the transition matrix equals the identity matrix

T = AT =


0 0 0 · · · 1

1 0 − . . . 0
...

. . .
. . .

...
0 · · · 1 0 0
0 0 · · · 1 0


and we see

v =

p1...
pn

 =

1/n
...

1/n


is an eigenvector for T with eigenvalue 1.

Hence it seems reasonable to use the values of an eigenvector with eigenvalue 1 to define a
centrality measure. For this we would like to know if 1 is always an eigenvalue, and if so, if the
eigenspace is 1-dimensional. The following well-known theorem from linear algebra addresses this
(though this is not typically covered in a first course on linear algebra).
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Theorem 3.3.8 (Perron–Frobenius). Let G be a graph with transition matrix T . Then any (real
or complex) eigenvalue λ of T satisfies |λ| ≤ 1. In addition, λ = 1 is an eigenvalue and it has an
eigenvector with all positive entries. The Furthermore, if G is undirected and connected, or directed
and strongly connected, the eigenvalue λ = 1 has multiplicity 1.

For the adjacency matrix A, there is a number ρ > 0, called the spectral radius of A, such
that ρ is an eigenvalue of A and any λ of A satisfies |λ| ≤ ρ. The eigenvalue ρ has an eigenvector
with all positive entries. If G is undirected and connected, or directed and strongly connected, the
eigenvalue λ = ρ has multiplicity 1.

Note we have already proved this in the case that G is k-regular, as then T = 1
kA, so Spec(T ) =

{λk : λ ∈ Spec(A)} (cf. Proposition 3.2.10 and 3.2.12).
Due to time constraints, we won’t prove this in general, but we’ll just sketch out the ideas for

T .
Suppose v is an eigenvector for T with eigenvalue λ, and the sum s of the entries of v is nonzero.

We may scale v so s = 1. Then the calculation in (3.8) showing that T takes probability vectors to
probability vectors means that the sum of the entries of Tv = λv, which is λ, must also be 1.

To complete the first part of the theorem, it remains to show λ = 1 if s = 0. Let me just explain
what to do if λ and v are real. Then some of entries are positive and some are negative. So we can
write v = v+ + v− where all entries of v+ are positive and all entries of v− are ≤ 0. Now one can
use the fact that the sums of entries of Tv+ and Tv− are the same as the sums of the entries of v+

and v− (this follows as in (3.8)) to deduce that |λ| ≤ 1.
If all eigenvalues |λ| < 1, then T must shrink the “size” of any v, i.e., T tv → 0 as t → ∞.

However this contradicts the fact that left multiplication by T preserves column sums. Hence we
must have some |λ| = 1, and looking at v’s with positive column sums will tell us in fact some
λ = 1.

One can show that any eigenvector v for λ = 1 must have all nonnegative entries. Hence we
can scale v to be a probability vector. Then v must essentially be the limiting distribution of some
random walk. If G is (strongly) connected, then in any random walk we will spend a nonzero
percentage pi of our time at vertex i. One can prove then that v = (p1, p2, . . . , pn).

Note that if G is not connected, e.g., a disjoint union of two copies of the cycle graph C3, then
v1 = (1/3, 1/3, 1/3, 0, 0, 0) and v2 = (0, 0, 0, 1/3, 1/3, 1/3) are both eigenvectors with eigenvalue 1.
Consequently, so is any linear combination of v1 and v2. So λ = 1 will have multiplicity > 1 (it will
be the number of connected components if G is undirected).

Eigenvector centralities

Definition 3.3.9. Let G be a (strongly) connected graph and v = (p1, . . . , pn) the unique probability
vector such that Tv = v. Then the random walk eigenvector centrality of vertex i is pi.

In other words, the eigenvector centrality of vertex i is the percentage of the time you spend at
vertex i if you just wander around the graph randomly. We can explain how this reflects “centrality”
as follows.

Let’s think of a social network, like a Twitter graph, or a graph of webpages. Pretend you just
start out somewhere random in the graph, and randomly visit other Twitter users or webpages on
this network by randomly clicking users followed or webpage links. This is a random walk. The
more popular a Twitter user or webpage is, the more it will be followed by or linked to from other
nodes in the graph. Consequently, the more often you will visit it on this random walk.
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However, this does not just give a measure of degree centrality, because the amount of time you
spend at a given node will depend on the amount of time you spend at nodes that link to it. In
other words the centrality of a given node is determined by not only the number of nodes linking
to it, but by their centrality also. If you only have a few links to your webpage, but they’re from
Youtube, Wikipedia, the New York Times and Black People Love Us, you will get a lot more traffic
than if you are linked to from 100 webpages the Internet has never heard of.

Another way to think of this is that each nodes links in the graph count as a sort of “popularity
vote” for the nodes they link to. But these votes aren’t democratic or limited—you can vote as
many times as you want, however the more votes you make, the less each individual vote is worth.
On the other hand, your votes count for a lot more if you personally are popular, i.e., if you got a
lot of votes yourself.

For instance, let’s say I tweet about graph theory, and my arch-nemesis Steve tweets about
differential equations. I only have 3 followers, and Steve has 10, but none of our followers are too
popular. Then, one day, Kanye West gets interested in social network analysis and decides to start
following me. If Kanye only follows me and a few other people, I will get a lot of kickback traffic
from Kanye’s followers (though people tracing followers or from Kanye retweeting my brilliant
graph theory tidbits), and I may get some more direct followers this way. Thus my popularity will
blow Steve’s to bits!

However, if Kanye follows 10000 people, almost no one will notice Kanye’s following me, and
he’s not likely to often retweet my pith. So maybe Steve and I will stay at around the same level
of popularity, until someone finds out his last name is Hawking, and he becomes super popular
because people confuse him with a genius who can’t walk. I don’t know why everyone thinks
Stephen Hawking is so smart anyway. His wheelchair does all the talking for him. Anyone could
be a genius with that wheelchair, even Steve! Twitter’s stupid, with stupid followers anyway. I
don’t need Twitter. I can make my own social network—a social network of one—and it won’t
have followers, just leaders. And no Steves allowed.

The probability vector (p1, . . . , pn) with eigenvalue 1 (assuming the graph is stongly connected)
can be interpreted as pi representing the percentage of votes vertex i gets. This is for the following
reason. Lets say we will vote in rounds for the centrality of a vertex, and a really large number
of ballots can be cast. Start with some initial distribution (p1(0), . . . , pn(0)) of how important the
nodes are—namely pi(0) represents the percentage of total votes (ballots) vertex i has to start with.
At each round of voting, we revise the centrality (number of total votes) vertex vi by giving i the
percentage pi(t+ 1) of votes it just received. This is given by the rulep1(t+ 1)

...
pn(t)

 = T

p1(t)...
pn(t)

 .

If this converges, it must converge to (p1, . . . , pn). Even if it does not converge for our intial choice
of (p1(0), . . . , pn(0)), if we were to take (p1(0), . . . , pn(0)) = (p1, . . . , pn), thenp1(t)...

pn(t)

 = T t

p1...
pn

 =

p1...
pn


for all t since this is an eigenvector with eigenvalue 1 for T . In other words, with this judicious
choice of initial centralities (p1, . . . , pn), voting does not change any nodes popularity at any step.
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This means (p1, . . . , pn) must be a solution to the recursively-defined problem: find a measure of
centrality where each the centrality of each node is proportional to the centrality of the nodes
linking to (or voting for) it.

This notion of eigenvector centrality is the basis for Google’s PageRank algorithm, however we
will need to address the issue that hyperlink graphs are not strongly connected.

This is all rather clever, but for undirected graphs, this turns out to be a little too clever, and
we might want to modify this measure of centrality (it’s still very useful for directed graphs, as
evidenced by PageRank). The issue is that the value of node j voting for node i diminishes with the
number of nodes vertex j votes for. Suppose we’re in an undirected social network. Having a higher
degree (e.g., Kanye) should make a node more important. And being connected to important people
should make you more important. However, if you’re connected to Kanye, but he’s connected to
1,000,000 other people, this connection doesn’t transfer much influence to you. In fact, this measure
simply reduces to a measure of degree centrality. (This is less of an issue for directed graphs, where,
say, Kanye probably has a lot more followers than followees.)

So we might like to allow nodes to be able to vote in such a way that their voting power does
not get divided. We can do this by just using the adjacency matrix rather than the transition
matrix, but now we will need to scale the values since Av does not typically have the same sum as
v. Start with some initial probability vector v0 = (p1(0), . . . , pn(0)) and iterate this by

vt+1 =
1

|Avt|
Avt,

where |v| denotes the sum of entries in the vector v. This way vt+1 will still be a probability vector,
and this process does not dilute the votes of nodes of high degree—each of Kanye’s votes are worth
more than each of mine, which was not true under the random walk process using T . Under some
mild hypotheses, v∗ = limt→∞ vt exists, and is an eigenvector for A with eigenvalue ρ, the largest
positive eigenvalue. We’ll see this below, but let’s first state the definition and see a couple of
examples.

Definition 3.3.10. Let G be a connected undirected graph with adjacency matrix A. Say ρ is
the maximum positive eigenvalue of A, and v = (p1, . . . , pn) is a probability vector which is an
eigenvector for eigenvalue ρ. Then pi is the (adjacency) eigenvector centrality of vertex i.

The Perron–Frobenius theorem guarantees the existence and uniqueness of such a v. One can
similarly define adjacency eigenvector centrality for directed graphs, but then it makes more sense
to use the transpose AT . Some authors normalize the eigenvector v so that the maximum entry is
1.

Example 3.3.11. Let G be a k-regular graph. Then each vertex has both random walk and adja-
cency eigenvector centrality 1

n . This is because v = (1/n, . . . , 1/n) is an eigenvector for A, whence
for T = 1

kA.

So for regular graphs, no nodes are more central than any other nodes—that is in any random
walk we will eventually spend an equal amount of time at any vertex. This will happen sooner, say
for complete graphs than for cycle graphs, and we will come back to this point as a way to measure
how good network flow is.

Example 3.3.12. Consider the tree G given by
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By iterating a random walk (and averaging), we can numerically find an eigenvector v = (p0, . . . , p12)
of T with eigenvalue 1 given by

pi =


1
8 i = 0
1
6 i = 1, 2, 3
1
24 else

and verify it is an eigenvector by matrix multiplication. In other words, the random walk eigenvector
centrality of vertex i is just deg(i)

24 . Note 24 is twice the size of G, i.e., the sum of all vertex degrees.
By iterating the process v 7→ 1

|Av|Av (and averaging), we can numerically find an eigenvector

v = (p0, . . . , p12) (which again we can verify afterwards) with maximium eigenvalue ρ =
√

6 to get
the eigenvector centralities

pi =


1
10 i = 0
1
5 i = 1, 2, 3
1
30 else.

Example 3.3.13. Recall the Florentine families graph
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By iterating a random walk, we numerically compute the random walk eigenvector centralities in
Sage as

[ 0.10000000000?]

[ 0.07500000000?]

[ 0.15000000000?]

[ 0.07500000000?]
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[ 0.10000000000?]

[0.025000000000?]

[0.025000000000?]

[ 0.07500000000?]

[ 0.07500000000?]

[0.025000000000?]

[ 0.05000000000?]

[ 0.07500000000?]

[0.025000000000?]

[ 0.07500000000?]

[ 0.05000000000?]

Again, these numbers are simply the degrees of the vertices divided by the sum of all vertex degrees.
Similarly, by iterating v 7→ 1

|Av|Av, we can estimate the adjacency eigenvector centralities in
Sage as

[ 0.1016327190110338?]

[ 0.0930282524780531?]

[ 0.1228533246839824?]

[ 0.0696496754352986?]

[ 0.0825427479718137?]

[0.01279427383906794?]

[0.03773016288451399?]

[ 0.0807396638222649?]

[ 0.0787212547936576?]

[0.02139049639712334?]

[ 0.0416594829674572?]

[ 0.0739521897453467?]

[ 0.0253501590935615?]

[ 0.0975135686688800?]

[ 0.0604420282079456?]

These are much more interesting. We see the most central nodes are the vertex 2 and vertex 0.
We also note that vertex 1 (0.093...) has considerably higher eigenvector centrality than vertex 11
(0.073...), even though they both have degree 3, because the neighbors of 13 are more central than
the neighbors of 11.

Computing stable eigenvectors

Now let’s consider the problem of computing random walk and eigenvector centralities. We already
seen that we can sometimes do this by looking at limits of random walks. Let explain this in more
detail. Suppose G is graph with transition matrix T . Let {λ1, . . . , λn} be the (possibly complex)
eigenvalues of T (with multiplicity). Assume for simplicity that (at least over C), we have a basis
of eigenvectors v1, . . . , vn for T . (This is always the case if G is T -regular, and is true “most” of
the time. When it is not, the conclusions we we make will still be valid, but one needs to modify
the arguments below—e.g., by putting T in upper triangular form—see Exercise 3.3.4 for the case
of n = 3.) Hence any v ∈ Cn can be written as a linear combination

v0 = c1v1 + · · ·+ cnvn.
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Then
T tv0 = c1T

tv1 + · · ·+ cnT
tvn = c1λ

t
1v1 + · · ·+ cnλ

t
nvn. (3.9)

Since each |λi| ≤ 1, these terms are bounded, and in fact λti → 0 if |λi| < 1.
We know 1 is an eigenvalue of T—say λ1 = 1. If all other eigenvalues are strictly less than 1 in

absolute value (real or complex), then we in fact have

lim
t→∞

T tv0 = lim
t→∞

(c1λ
t
1v1 + · · ·+ cnλ

t
nvn) = c1v1.

If v is a probability vector then, using the fact that multiplication by T preserves column sums, we
must have c1 = 1 if we scale v1 so it’s sum is 1. (The above limit implies that we can scale v1 to
get a probability vector.) In other words, |λi| < 1 for all 2 ≤ i ≤ n, then T tv0 → v1 for any initial
state probability vector v0. That is, no matter where you start the random walk, the long term
behavior is exactly the same. Furthermore, this method is typically very fast, even for really large
networks, so iterating T tv0 allows us to numerically compute v1 (and thus eigenvector centralities)
very quickly. In this case v1 is called a dominant or principal eigenvector because it dominates
the limiting behavior of the random walk.∗ The existence of a dominant eigenvector is what make
random walks an extremely useful tool for analyzing networks.

If the eigenvalue λ1 = 1 occurs with multiplicity m > 1, say λ1 = · · · = λm = 1 but |λi| < 1 for
i > m, then it is still true that T tv0 always has a limit, but it is no longer uniquely determined.
Namely,

T tv0 = c1v1 + · · ·+ cmvm.

Hence the behavior of random walks can depend upon the initial starting position. The Perron–
Frobenius theorem says this doesn’t happen for (strongly) connected graphs. In fact the multiplicity
m of λ = 1 will, for undirected graphs, be the number of connected components of G, and one
obviously will get a different limit for random walks starting in different components.

Now assume G is (strongly) connected, so λ1 = 1 occurs with multiplicity 1. Then the only
issue in investigating these limits is that there may be other eigenvalues of absolute value 1. First,
suppose for simplicity that G is undirected, in which case all eigenvalues of T are real. Then any
other eigenvalue of absolute value 1 is −1—this happens if G is bipartite, but only with multiplicity
1. Assume the eigenvalues are ordered so that λ1 = −1. Then we have

T tv0 ≈ c1v1 + (−1)tcnvn

for large t as all other eigenvalue powers λti → 0. This only converges if cn = 0, otherwise it
oscillates between 2 values: c1v1 + cnvn and c1v1 − cnvn. However, averaging these values gives
c1v1, and if v1 is scaled to have sum 1, then c1 = 1 if v0 is a probability vector. Thus we can still
quickly numerically evaluate the unique normalized (so the sum of entries is 1) eigenvector v1 of
multiplicity 1 for bipartite graphs.

Now suppose G is directed. Then there could be many eigenvalues of absolute value 1. Recall
the directed cycle graph from 3.2.6. Here T = A and all eigenvalues have absolute value 1—e.g.,
for n = 4 they are ±1 and ±i. However it is the case that any eigenvalue of absolute value 1 must
be a root of unity, i.e., λm = 1 for some m. This means there is a single m such that λm = 1 for all
λ of absolute value 1. Consequently, when we try to take the limit of T tv0 it will (approximately,
for t large) oscillate periodically amongst a finite number of states. Again, one can numerically
recover the unique normalized eigenvector by averaging these periodic states.

∗This is the basis of an important technique is statistics and financial mathematics called principal component
analysis.
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PageRank

The original version of Google’s PageRank algorithm was published in a paper titled “The PageRank
Citation Ranking: Bringing Order to the Web” in 1999 by Larry Page, Sergey Brin, Rajeev Motwani
and Terry Winograd. It was originally designed as a way to find the most significant webpages
linking to your webpage.

To do a web search, first one “crawls” the web. This is done by following links from known
pages to find new ones, and indexing each webpage. (And in olden days, people and business
manually submitted their pages for categorized listings in Yahoo like an online Yellow Pages. Let
me explain—in historic times, there were things called books. They were made out of primitive
substances known as ink and paper. Papers were thin rectangles cut out of trees. Ink is a liquid
that comes out of sea creatures private parts, and I think also elephants in India. This ink gets
sprayed on the paper in the shape of words, and then you glue a bunch of paper together to get
something called a book. Glue is a sticky substance made out of dead horses that children squirt
in their noses to keep their brains from falling out. Books were what contained all the information
we knew before the Internet. A phone book was a kind of book, not made out of cell phones as
one might first think, but a book with a list of phone numbers of every person and business in
your village. The Yellow Pages were the part of the phone book where business were listed by
categories—e.g., Blacksmiths or Cobblers. No one knows how these categories were arranged.)

Once a search engine has a reasonable index of the web, it can accept searches from users,
compare those searches to the pages it knows, and return a list of the ones it thinks most relevant,
hopefully with pages your more likely to be interested in at the top of the list. Prior to Google,
search engines (e.g., Altavista and Lycos) would just compare the text of the webpages indexed
to the text you entered in the search box. These would return results in an ordering based on
similarities of the text entered and text on the webpage (e.g., if all of your search words were in
the title or at the top of the page, or if your search words appears on the page many time or close
to each other and in order, the webpage gets ranked higher).

The idea behind PageRank is what the authors called the “random surfer model.” It is a
variant of the notion of a random walk. Consider a (directed) hyperlink graph. We want to model
a “random surf” of the internet. In a random walk, we will start with a random webpage, and
randomly visit pages by randomly clicking on links. There are a couple of issues with this. One, we
might get stuck on a page with no links. This we can resolve by picking another page at random
and starting over again. The more serious issue is that, as our graph is almost surely not strongly
connected, we will get stuck in a small portion of the web. This means we won’t converge to a
meaningful distribution (as in random walk eigenvector centrality) on the nodes—it will be highly
dependent on not just our starting node, but the actual choices we make in our random walk as
well. Again, this can be resolve by randomly restarting our walk from time to time.

This is all accomplished with the following elegant conceptual idea. When people actually
surf the web, they don’t search forever (well, maybe in some sense they do, but they don’t follow
links without restarting forever). People sometimes click on links to continue visiting pages, but
sometimes they will start a new “surfing session” at another page. Let’s say α is the “restart
probability”—the probability that a person starts a new surfing session at any given time. So 1−α
is the “click-through” probability—the probability of clicking on some link on a given page (i.e.,
continuing your surfing session).

Our default restart probability will be α = 0.15, so the click-through probability is 1 − α =
0.85. This is the value Google originally used—see the 1998 paper “The anatomy of a large-scale
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hypertextual Web search engine” by Brin and Page, where they explain their original version of
the Google search engine.” There 1− α = 0.85 is called the damping factor d.

Note we can model this random surfing with restarts as a random walk on a weighted directed
graph. Here the weights will denote relative probabilities of taking an edge. For instance, let’s
consider the directed graph

1 2

34

Now we form a complete weighted graph, where the new edges added are in gray.

1 2

34

At each step, with probability 1 − α, we will travel along a black edge. With probability α, we
randomly restart, which means with probability α we take any edge. (Technically, I should have
included loops, because there is also the possibility we restart at the vertex we are already at.)

Definition 3.3.14. Let J denote the all 1 matrix. The PageRank matrix Rα for G with restart
probability α is

Rα = (1− α)T +
α

n
J,

where T is the transition matrix.

Note the matrix 1
nJ is the transition matrix for the complete graph Kn with a loop at each

vertex. That is, using 1
nJ for a random walk just means we pick a new vertex at random at each

time t—there is no dependence on where we were at time t− 1—the probability of being at vertex
i at time t is 1

n for all i and all t. So Rα is a weighted combination two random processes: (i) doing
a random walk on G and (ii) just picking a node completely at random at each step. We do (i)
with probability 1− α, and (ii) with probability α.

Example 3.3.15. For the directed graph on 4 vertices pictured above, we have

T =


0 0 0 0

0.5 0 0 0
0.5 1 0 0
0 0 1 1
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so with α = 0.15,

Rα = (1− α)T +
α

4
J =

1

4


0.15 0.15 0.15 0.15
1.85 0.15 0.15 0.15
1.85 3.55 0.15 0.15
0.15 0.15 3.55 3.55

 .

One can think of each (j, i) entry of this matrix as the weight of the edge (or loop if i = j) from
vertex i to j.

One key advantage of working with Rα is that now all entries are positive (for α > 0). We
stated earlier the Perron–Frobenius theorem in our context—this was the version for matrices with
non-negative entries. However the Perron–Frobenius theorem for matrices with only positive entries
is actually quite a bit stronger—in our case it says the following.

Theorem 3.3.16 (Perron–Frobenius, positive matrix version). Let G be any graph (directed or not,
simple or not, connected or not), and 0 < α ≤ 1. The PageRank matrix Rα has one eigenvalue 1,
and all other eigenvalues λ satisfy |λ| < 1. Furthermore, λ = 1 has an eigenvector with all positive
entries.

This means there is a unique probability vector v∗ for such that Rαv
∗ = v∗.

Definition 3.3.17. Let G be any graph on V = {1, . . . , n} and 0 < α ≤ 1, and v∗ = (p1, . . . , pn)
the probability vector such that Rαv

∗ = v∗. Then the PageRank centrality (with respect to α) of
vertex i is pi.

In other words, the PageRank matrix lets us define a centrality measure analogous to random
walk eigenvector centrality for any graph, not just strongly connected ones.

For Google, what is key is that v∗ can be computed efficiently. Since every other eigenvalue |λ| <
1 by this stronger version of Perron–Frobenius, as we argued above, v∗ is a dominant eigenvector,
in the sense that

v∗ = lim
t→∞

Rtαv0

for any initial state probability vector v0.

Algorithm 3.3.18. (PageRank)

1. Start with the initial state v0 = (1/n, . . . , 1/n) and a threshold ε > 0.

2. Compute Rtαv0 successively for t = 1, 2, . . . until each entries do not change more than ε.
Record the result as the (approximate) eigenvector v∗.

3. Output v∗ as the vector of (approximate) PageRank centralities.

Some remarks are in order:

• In practice, for large graphs, one does not literally need to represent Rα as a matrix to do these
calculations. Brin and Page originally considered 24 million webpages and Google indexes
many many more now. Instead, one does the calculation with adjacency lists.
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• Since the web graph is sparse, in that the number of edges grows roughly linearly in the
number of nodes. (With about 24 million webpages, there were around 500 million links.) As
long as α is not too small, the convergence of Rtαv0 to v∗ is quite fast. Google could take the
maximum t to be between 50 to 100. (We’ll discuss rate of converge of random walks in the
next section.) In 1998, Google could perform do their PageRank in a few hours on a personal
computer (and of course faster with more advanced hardware). Note: Google does not need
to recompute PageRanks all the time, but just recompute them periodically as they update
their index of the web and store the result for use in their search algorithm.

• There are some technical differences with actual original PageRank I have suppressed. For
example, if one considers dynamic webpages (e.g., a Google search page), there is no limit to
the possible number of webpages. These dynamic pages are essentially ignored when indexing
the web. Also, Google dealt with nodes with out-degree 0 (“dangling links”) separately. The
actual version of PageRank used by Google constantly gets tinkered with to combat people
trying to game the system, and the details of the version of PageRank actually in use are
private (to make it harder for people to game the system). Companies created vast “farms” of
essentially contentless webpages with links to businesses who paid money to these companies
to get them increased web traffic, but now this strategy is not so effective. For instance, I
heard that at some point (and perhaps still), getting a link from a page which was deemed
unrelated to your page would actually lessen your PageRank score.

• PageRank is just one component of Google’s search algorithm. In the original version, Google
would index the words on each page and count their occurrence. In addition, Google would
take in to account “anchor text”—the words on the pages linking to a given page (this allows
one to meaningfully index pages without much text—e.g., images or collections of data—
and in general provides better context for each webpage). Based on this, Google would give
each page a similarlity ranking to your search query, and combine this ranking with the
PageRank to give you an ordered set of results. Google started outperforming the popular
search engines like Altavista right away (verified by the fact that you probably never heard
Altavista, though I used to use it a lot). Note that in practice, one does not need to compute
these similarity rankings for all webpages dynamically—Google can get away first with just
checking the webpages with high PageRanks against your query, and also storing results
for common queries. (I do not know how this is actually implemented, these are just my
speculations on how Google returns search results so quickly—I’m fairly certain Google must
implement some form of the first speedup I suggest, but I don’t know about the second.)

• The term “link analysis” is used for web search algorithms that use the structure of the
network (i.e., what pages link to what pages). Google seemed to be the first use of link
analysis for web searching, but there are other algorithms. For example, around the same
time another link analysis algorithm called HITS by Jon Kleinberg was proposed, where
the idea is to classify webpages on a given topic as either hubs (jumping points for more
information) or authorities (providing detailed information). This algorithm is the basis for
the search engine Ask.com.

• PageRank can be used for ranking other things as well—e.g., sports teams within a conference.
One forms a win–loss matrix and applies PageRank to the associated graph. One can vary
this by weighting wins with appropriated factors—for instance, by score differentials or how
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recent the win was. These algorithms have done quite well in betting tournaments, such as
March Madness.

Exercises

Exercise 3.3.1. In Example 3.3.2, determine the set of possibilities for vt for t ≥ 1. When t = 3,
compute the probability of each of these vertices.

Exercise 3.3.2. Fix m ≥ 0. In Example 3.3.2, prove that the probability vt lies in the fixed finite
interval [−m,m] goes to 0 as t→∞.

Exercise 3.3.3. For a random walk (v0, v1, v2, . . .), let v̄t = (v0 + v1 + · · ·+ vt)/(t+ 1). Compute
the limit limt→∞ v̄t (and show it exists) in the following cases (the answer does not depend on which
vertex you start at, but you may start at vertex 1 for simplicity):

(i) G is the path graph on 3 vertices;
(ii) G = C4;
(iii) G is a star graph on n vertices (say vertex n is the hub)

Exercise 3.3.4. Let T be a 3 × 3 matrix with column sums 1. Suppose T = S−1BS for 3 × 3
(possibly complex) matrices B,S where B is of the form

B =

1 a b
λ c

λ

 ,

and |λ| < 1.
(i) For any vector v ∈ C3 show v∗ = limt→∞B

tv exists and satisfies Bv∗ = v∗.
(ii) Deduce that for any probability vector v0, limt→∞ T

tv0 exists and equals the unique proba-
bility vector v∗ such that Tv∗ = v∗.

3.4 The spectral gap and network flow

In computing random walk/adjancency eigenvector or PageRank centralities, we approximated a
dominant eigenvector by looking at the convergence of some kind of random walk. This is only an
efficient procedure if the convergence is fast.

Let’s think about two simple examples: Cn and Kn. Take a random walk starting at vertex
1. Then, as long as n is odd for Cn (otherwise Cn is bipartite), the random walk converges to the
“flat” distribution (1/n, . . . , 1/n). How fast will these things converge?

For Cn, it is not even possible to get to every vertex before time t = (n− 1)/2. However at this
point, you are much more likely to still be closer to vertex 1 than one of the vertices diametrically
opposite it. So it will take even more time for this distribution to even out.

On the other hand, for Kn, already at t = 1 you are equally likely at any vertex besides 1, i.e.,
each vertex besides 1 had probability 1/(n − 1). At t = 2, the probability of going back to 1 is
simply 1/(n− 1). For any other vertex i, the probability of being there at t = 2 is the probability
you weren’t there at t = 1 (which is 1 − 1/(n − 1)) times 1/(n − 1), i.e., 1/(n − 1) − 1/(n − 1)2.
Thus, already at t = 2 all of these probabilities are close to the limiting probability of 1/n, at least
for n reasonably large.
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In other words, the time required for convergence (say for each coordinate to get within some
threshold ε > 0 of the limiting value) grows (at least) linearly for Cn as n → ∞, whereas it is
bounded for Kn. (In fact, for Kn, convergence is faster for larger values n.) Remark: the fast
convergence for Kn is what ensures the PageRank algorithm converges quickly if α is not too
small—since with probability α we are essentially doing a random walk on Kn (with loops).

We can think of the meaning of this time required for convergence as the amount of time
required for a random walk to even out—or, put another way, the time required for the random
walk to “forget” it’s initial state. The random walk will even out faster, the faster you can get from
the initial vertex to every other vertex in the graph. However, the speed of converges is not just
determined by distance/diameter. In order for this convergence to be fast, there should be many
short ways to get from one vertex to another.

For instance, consider a graph G on 2n+ 1 vertices formed as follows: take two disjoint copies
of Kn’s and a vertex v0, and connect v0 to each Kn with a single link.

This graph has diameter 4, no matter how large n is. Now do a random walk, say starting at some
vertex in the first copy of Kn. If n is large, it will take a long time to get to the “bridge vertex”
v0. First one has to get to the vertex in Kn connected to v0, which on average happens one every
n steps. From this vertex, the chance of going to v0 is 1/n, so we expect it will take about n2 steps
to get to the hub. From the hub, it will now go to each copy of Kn with equal probability. But
the point is this argument shows it will take on the order of n2 steps for the random walk to get
reasonably close to the limiting distribution.

The issue is that if there aren’t many paths from one part of your graph to another, then it will
take a long time for a random walk to spread out evenly over these parts. In fact, one can also do a
similar argument with a diameter 2 graph—connect v0 to every other vertex in the example above.
Then a similar argument says it will take on the order of n steps for a random walk starting in
one of the Kn’s to approach it’s limit. In this graph, there are in some sense many paths from one
Kn to the other, but they all travel through the “hub” v0, and the chances of getting to the hub
are small (around 1/n) at each step. So a better conclusion to draw is that if there’re aren’t many
disjoint paths from one part of a graph to another, then the random walk will be slow to converge.

Turning this idea around, we see that if the random walk converges quickly, there should be
many disjoint ways to get from any one part of the graph to any other part of the graph. In
addition, these should also be short paths. (Think of the cycle graph. Or, in our example of 2 Kn’s
connected by v0, think about extending the distance between the Kn’s by inserting many extra
vertices on the links from each Kn to v0. Now it will take much longer to get to v0—this time is
not just extended by the number of vertices added to this path because with high probability there
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will be considerable backtracking, and possibly one will first return to the Kn one came from. Cf.
Exercise 3.4.1.)

These were precisely the criteria we wanted our communication/transportation networks to
have—having small diameter means the network is efficient. Having many short paths between two
points means that the network is still efficient even if some nodes/links fail (which implies good
vertex/edge connectivity), and rerouting can be done to handle traffic issues. In short, we can
summarize this as saying: (strongly/connected) networks where random walks converge quickly
have good network flow.

Now let’s think about we can measure this notion of network flow—in other words, the rate
of convergence of the random walk—more precisely. For simplicity, let us assume we are working
with a graph G such that the transition matrix T has a basis of eigenvectors {v1, . . . , vn} and v1
is a dominant eigenvector v1—i.e., if λ1, . . . , λn are the eigenvalues, then λ1 = 1 and |λi| < 1 for
all i ≥ 2. This happens “most of the time” (with high probability for random (strongly) connected
graphs). In particular, we know it happens for regular, non-bipartite graphs (cf. Section 3.2). Let
v0 be the initial state vector for a random walk. Write

v0 = c1v1 + · · · cnvn.

Then
vt = T tv0 = c1v1 + c2λ

t
2v2 + · · ·+ cnλ

t
nvn.

Writing v∗ = c1v1 (the limiting value of vt’s), we know

lim
t→∞

(vt − v∗) = lim
t→∞

c2λ
t
2v2 + · · ·+ cnλ

t
nvn = 0. (3.10)

Asking for how fast vt converges to v∗ is the same as asking how fast this quantity goes to 0. This
is equivalent to asking the rate at which the λti’s go to 0 (for i ≥ 2). This is simply determined
by |λi. The smaller each |λi is, the faster the term ciλ

t
ivi → 0. If we order the λi’s so that

1 = λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| ≥ 0, then the rate at which the expression in (3.10) goes to zero
is determined by the most dominant term, c2λ

t
2v2, i.e., by |λ2|. (It might be that |λi| = |λ2| for

some other i, but then term i still go to zero at the same rate as term 2, and all other terms go to
zero faster, so it suffices to look at |λ2|. Also note that ordering of eigenvalues is not necessarily
unique, but this again is not important for us.) Hence the smaller the second largest (in absolute
value) eigenvalue |λ2| is, the faster the random walk converges, and the better the network flow.

Definition 3.4.1. Let G be a graph (directed or undirected, weighted or unweighted, simple or not)
with transition matrix T . Order the eigenvalues of T so that 1 = λ1 ≥ |λ2| ≥ |λ3| ≥ · · · ≥ |λn| ≥ 0.
The number 1− |λ2| the (random walk) spectral gap.

The quantity 1−|λ2| is called the spectral gap, as it is the size of the gap between the largest and
second largest (absolute value of) eigenvalues of T , and from the point of network flow/random
walks, λ2 is the most important eigenvalue. Note if the spectral gap is 0, i.e., |λ2| = 1 (which
happens, say, if G is not (strongly) connected or if G is bipartite) this means a typical random
walk will not converge to a unique distribution. As long as the spectral gap is > 0, i.e., |λ2| < 1,
then the random walk converges to a unique dominant eigenvector, and the spectral gap measure
the rate of convergence—the larger the spectral gap (i.e., the smaller |λ2|), the better the network
flow.
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Example 3.4.2. Let G = Kn. From Example 3.2.9, we know that the eigenvalues of T = 1
n−1A

are {1,− 1
n−1 , . . . ,−

1
n−1}. Hence the spectral gap for Kn is 1− | 1

n−1 | =
n−2
n−1 . This is large (getting

closer to 1 for large n), and of course this has the best network flow possible for simple, undirected
graphs.

Example 3.4.3. Let G = Cn. From Example 3.2.8, we know the second largest (absolute) eigen-
value of T = 1

2A is |λ2| = 1 if n is even and |λ2| = cos(2π/n) if n is odd. Hence the spectral gap
is 0 when n is even or 1 − cos(2π/n), which is close to 0 for n large, when n is odd. This agrees
with our observations that small spectral gap should mean poor network flow.

Thus we can compare the network flow in different graphs by looking at the spectral gap (for
large graphs, one way to estimate is by looking at how fast random walks converge). But if we
want to actually construct a network with as good of a flow as possible, it would be nice to have
a good theoretical upper bound on the spectral gap. One is at least known in the case of regular
graphs.

Theorem 3.4.4 (Alon–Bopanna). The spectral gap for any k-regular graph G on n nodes satisfies

|λ2| ≥
2
√
k − 1

k
− ε(n, k)

i.e., the spectral gap

gap(G) ≤ 1− 2
√
k − 1

k
+ ε(n, k)

where for a fixed k, the error ε(n, k)→ 0 as n→∞.

Fix k ≥ 2. In other words, for n large, the best we can do for the spectral gap is about 1− 2
√
k−1
k .

(In fact a more precise bound is given by Nilli involving the diameter of G.) This motivates the
following definition

Definition 3.4.5. We say a k-regular graph G on n nodes is Ramanujan if the second largest
(absolute) eigenvalue λ2 satisfies

|λ2| ≤
2
√
k − 1

k

i.e., if the spectral gap is

gap(G) ≥ 1− 2
√
k − 1

k
.

The Alon–Bopanna theorem says that this is optimal for n large. This terminology was in-
troduced by Lubotzky–Phillips–Sarnak in 1988, who explicitly constructed infinite families of Ra-
manujan graphs for k = p+1 where p is a prime of the form 4x+1 by making use of the something
in number theory known as the Ramanujan Conjecture (which has been already proven). Their con-
struction is somewhat technical so we will not describe it here. Since, other constructions has been
made, but it is not known if infinitely many Ramanujan graphs exist for all k. (When k = 2, the
bound above is simply that |λ2| ≥ 0, which is automatic, so cycle graphs, and unions thereof—these
are the only 2-regular graphs—are automatically Ramanujan.)

One might wonder if random regular graphs are likely to be Ramanujan, or “almost Ramanujan”
in the sense that the spectral gap is not too far from optimal. This seems reasonable from the point
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of view of the Alon–Bopanna theorem, which says that as n gets large, k-regular graphs get closer
and closer to being Ramanujan. Indeed, Alon conjectured that “most” random regular graphs are

almost Ramanujan (for any ε > 0, most random k-regular graphs satisfy |λ2| ≤ 2
√
k−1
k + ε), and

this has been proved by Friedman.

Let me just mention another notion of graphs which make good networks and has been well
studied in mathematics and computer science. This is the notion of expander graphs (whose
definition makes sense for non-regular graphs as well). Technically, individual graphs are not
defined to be expander graphs, but a family of graphs is. (Similar to the way it doesn’t make sense
to define a single graph to be a random graph.) I won’t give the precise definition, but the idea
is that an expander family is a sequence of graphs Gn with increasing orders n (these graphs need
not be subgraphs of each other) such that the network flow is good as n → ∞. Here the notion
of network flow is defined by a geometric parameter, called expansion, rather than a spectral one
in terms of eigenvalues. Roughly, the expansion parameter measures the percentage of nodes that
are neighbors of vertices in S as S ranges over different subsets of vertices. For instance, suppose
you know that for any pair of vertices in G, the union of their neighbors contains ever other vertex
in the graph. This implies the diameter is at most 2. A consequence of the definition is that in
a sequence of expanders Gn, the number of edges grows at most linearly in n while the diameter
grows very slowly—logarithmically in n. In other words, the networks maintain low cost yet are
efficient.

Here is the first explicit construction of expanders.

Example 3.4.6 (Margulis, 1973). Let Vn = {(i, j) : 0 ≤ i, j < n}. Define Gn on Vn as by the
rule: the neighbors of (i, j) are defined to be (i + j, j), (i− j, j), (i, i + j), (i, i− j), (i + j + 1, j),
(i− j+ 1, j), (i, i+ j+ 1), (i, j− i+ 1). Here these operations are taken mod n so the results always
lie between 0 and n− 1—e.g., if i+ j > n we subtract n, or if i− j < 0 we add n. This gives us a
family Gn of 8-regular graphs, which is a family of expander graphs.

If a family of graphs Gn has spectral gaps that don’t get too small (e.g., don’t go to 0), it will
be a family of expanders. In particular, any sequence of Ramanujan graphs (with growing orders)
will be a sequence of expanders. However it is possible that in a family of expanders the spectral
gap goes to 0. It is known that if one takes a sequence of random regular graphs, then with very
high probability, it will be a family of expanders (in fact with good expansion).

Expanders have many applications in mathematics, computer science and engineering. Detailed
surveys can be found in the Bulletin of the AMS, “Expander graphs and their applications” by
Hoory, Linial and Wigderson (2006), or the 2003 course notes by Linial and Wigderson of the same
name (available online), which have a strong computer science flavor. Applications to circuit design,
error-correcting codes and analysis of randomized algorithms are discussed. There is also a more
recent 2012 Bulletin article by Lubotzky, “Expander graphs in pure and applied mathematics”
with more of a bent towards pure mathematics (e.g., number theory and group theory). These
surveys are all quite long and technical, and require more mathematical sophistication than we
have assumed in these notes (sorry, these are the main introductory references I’m familiar with,
and the subject nature itself is quite technical), but may be worth a glance if you’re interested in
getting a sense of some non-obvious applications, and want more meat than the Wikipedia entry.
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Exercises

Exercise 3.4.1. Let Pn be the path graph on V = {1, 2, . . . , n}. Consider a random walk on Pn
starting at vertex 1.

(i) Let pt denote the probability that we reach vertex n for the first time at time t. Compute
this (for all t) for n = 3, 4, 5.

(ii) For n = 3, 4, 5, compute the expected amount of time it will take to reach vertex n—
this is given by

∑∞
t=1 ptt. (If you can’t evaluate this sum exactly, use a computer to estimate it

numerically.)
(iii) How do you think the expected amount of time to reach vertex n grows with n (e.g., linearly,

quadratically)?

Exercise 3.4.2. Verify that Kn is a Ramanujan graph.
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Chapter 4

This is not the chapter you’re looking
for [handwave]

The plan of this course was to have 4 parts, and the fourth part would be half on analyzing random
graphs, and looking at different models, and half on other issues in social networks such as diffusion
(disease spread, or information) and graph partitioning (as with the Karate club). Well, we just
finished the third part with one lecture left, so needless to say we won’t get that far. I hope to
reteach this course again in the future as a year-long course, and at that point I can expand and
revise these notes further (and maybe actually include a proper reference section).

Here’s just a little taste of things.

4.1 Two random results

To analyze random graphs, one typically proves (or at least heurstically argues) that some property
is true for most graphs, possibly by proving it in the limit.

Proposition 4.1.1. For n ≥ 4, most graphs on n vertices are connected.

This is a cute result motivated by a MathOverflow post I came across recently. Here “most”
just means more than half, and it is valid if we are counting labelled graphs or unlabelled graphs.
For n = 1 it is all graphs, and for n = 2 or n = 3 it is exactly half the graphs.

Proof. Suppose G = (V,E) is disconnected. Then I claim the complement, Ḡ = (V, Ē), is con-
nected. Here Ē = {(u, v) : u 6= v, (u, v) 6∈ E} is the set complement of E inside V × V − ∆V =
{(u, v) : u, v ∈ V, u 6= v}. In other words, all edges of G are not edges off Ḡ, and vice versa. Put
another way, the adjacency matrix Ā of Ḡ is formed by changing all non-diagonal entries of A from
0’s to 1’s or 1’s to 0’s.

To prove the claim, we want to show any u, v ∈ V lie in the same component in Ḡ. If u, v are
in different components in G, then they must be connected by an edge in Ḡ, hence in the same
component in Ḡ. If they are in the same component in G, take w ∈ V in a different component in
G, so u and v are connected to w in Ḡ, and again in the same component. This shows the claim.

If there are m disconnected graphs on n vertices (labelled or unlabelled, the argument is the
same), taking complements gives m connected graphs (whose complement is disconnected, as the
complement of the complement of G is simply G). Now we just observe that for n ≥ 4, there
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are other connected graphs, i.e., there are connected graphs whose complements are connected.
We can, for example, just take the path graph on n vertices (exercise—check its complement is
connected for n ≥ 4).

Proposition 4.1.2. Fix 0 < p ≤ 1. In the random G(n, p) model, the probability of having an
isolated node goes to 0 as n→∞.

Proof. Let G be a G(n, p) graph. The probability a given vertex i is isolated is simply (1− p)n−1.
(Vertex i pairs with n − 1 other vertices, and all of these pairs are non-edges with independent
probability 1 − p.) If Ai denotes the event that vertex i is isolated, the probability that G has at
least one isolated node is

P (A1 ∪ · · · ∪An) ≤ P (A1) + · · ·+ P (An) = n(1− p)n−1.

But this goes to 0 as n→∞.

This says that for large n, we don’t expect isolated nodes.
These results hint at the idea that random graphs tend to be fairly well connected, at least

if n is large. Indeed, one can prove under certain conditions on n, p statements like: almost all
random G(n, p) graphs have a giant component, or almost all random G(n, p) graphs are connected,
or almost all random G(n, p) graphs have a clique of size m.

4.2 Spectral graph partitioning

Take a graph G with transition matrix T . Assume for simplicity that T has a basis of eigenvectors
v1, . . . , vn with corresponding eigenvalues λ1, . . . , λn. As before, we order these so that 1 = λ1 ≥
|λ2| ≥ · · · ≥ |λn|. Further assume 1 > |λ|2 > |λ3|.

Take a random walk on G with initial state v0. Write

v0 = c1v1 + · · · cnvn.

Then the t-th state of the random walk is

vt = T tv0 = c1λ
t
1v1 + c2λ

t
2v2 + · · ·+ cnλ

t
nvn

= c1v1 + c2λ
t
2v2 + · · ·+ cnλ

t
nvn.

For t of moderate size, λti are really small for i ≥ 3, so

vt ≈ c1v1 + c2λ
t
2v2. (4.1)

There is a lot packed into this approximation. We’ve seen already that v1 gives a centrality ranking
of vertices and λ2 measures the rate of convergence of the random walk, i.e., network flow. We
might call λ2 the second dominant eigenvector and v2 the second dominant eigenvector. This is
because λ2 and v2 are the second most important things (after λ1 = 1 and v1) in determining the
behavior of the random walk. Namely |λ2| measures how fast the random walk converges, and v2
tells us how it actually converges.

One way to see this is to look at

vt+1 − vt ≈ c2λt2(λ2 − 1)v2. (4.2)
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So in some sense, v2 is essentially a “directional derivative” of this random walk. (Apologies again
for the conflicting notation of v2 and vt—v2 is not vt with t = 2. Remind me to change this in the
next version of these notes.)

Example 4.2.1. Let G be the path graph on 2 vertices. Then we can take λ1 = 1, λ2 = −1,
v1 = (1, 1) and v2 = (1,−1). (Okay, here λ1 6> λ2, but this is the simplest example possible, and
I think it is somewhat illustrative anyway.) Any random walk will just flip back and forth between
vertices 1 and 2. From the derivative point of view, we can think of(

y1
y2

)
= cλt2v2 = (−1)tc

(
1
−1

)
as representing the approxmate change in vt at time t. If y1 > 0 then this means we’re more likely
to be at vertex 1 at the next step, and if y1 < 0 this means we’re less likely to be at vertex 1 at the
next step. Similarly the sign of y2 tells us if we’re more or less likely to be at vertex 2 at the next
step.

Now let’s engage in a though experiment with the above example: suppose we had 1 > λ2 > 0.
Then the signs of yi’s don’t change at each step, and the random walk won’t keep flipping back and
forth between vertices. Say y1 < 0 and y2 > 0. This would mean that at every step we’re getting
more and more likely to be at vertex 2 and less likely to be at vertex 1. In other words, the random
walk is getting “pulled” towards vertex 2.

This suggests that the signs of the entries of v2 can tell us if a random walk is converging towards
or away from from certain vertices. Note that the signs of the entries of v2 are not determined
uniquely, since −v2 is also an eigenvector with eigenvalue λ. What will be important for us is which
vertices have the same sign (assuming v2 is real)—this is uniquely determined.

Consider the following graph, which is two copies of K5 connected by a single vertex with two
edges.

If we start a random walk on the left copy of K5, it will wander around there for awhile, but it will
gradually get pulled to the other side.

In Sage, I computed the transition matrix (the single “bottleneck” or “bridge” vertex in the
middle is the last vertex in this ordering), the eigenvalues and dominant and second dominant
eigenvectors.

Sage 6.1
sage: T

[ 0 1/4 1/4 1/4 1/4 0 0 0 0 0 1/2]

143



Graph Theory/Social Networks Chapter 4 Kimball Martin (Spring 2014)

[1/5 0 1/4 1/4 1/4 0 0 0 0 0 0]

[1/5 1/4 0 1/4 1/4 0 0 0 0 0 0]

[1/5 1/4 1/4 0 1/4 0 0 0 0 0 0]

[1/5 1/4 1/4 1/4 0 0 0 0 0 0 0]

[ 0 0 0 0 0 0 1/4 1/4 1/4 1/4 1/2]

[ 0 0 0 0 0 1/5 0 1/4 1/4 1/4 0]

[ 0 0 0 0 0 1/5 1/4 0 1/4 1/4 0]

[ 0 0 0 0 0 1/5 1/4 1/4 0 1/4 0]

[ 0 0 0 0 0 1/5 1/4 1/4 1/4 0 0]

[1/5 0 0 0 0 1/5 0 0 0 0 0]

sage: T.eigenvalues()

[1, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4, -0.2086308764964376?, 0.9586308764964376?,

-0.5319705149024926?, 0.2819705149024927?]

sage: ev = T.eigenvectors_right()

sage: ev[0][1] # dominant eigenvector

[

(1, 4/5, 4/5, 4/5, 4/5, 1, 4/5, 4/5, 4/5, 4/5, 2/5)

]

sage: ev[3][1] # next dominant eigenvector

[(1, 0.9586308764964376?, 0.9586308764964376?, 0.9586308764964376?,

0.9586308764964376?, -1, -0.9586308764964376?, -0.9586308764964376?,

-0.9586308764964376?, -0.9586308764964376?, 0)]

Here we see λ2 ≈ 0.9586 is large, i.e., the spectral gap is small, i.e., the network flow is bad, and
this is due to the bottleneck as discussed in the last chapter. In the second dominant eigenvector
v2, all signs for the left hand K5 are positive, while all signs for the right hand K5 are negative,
and the vertex in the middle has value 0.

This means in a random walk, when t is of moderate size so the behavior is dominated by v2,
we have vt ≈ c1v1 + λt2c2v2. If we started our random walk on the left hand K5, then c2 will be
negative, so the signs of the entries of v2 will be negative for the left hand K5 and positive for the
right-hand K5. This means the random walk is getting “pulled” towards the right hand K5. That
is, if we start on the left, for quite some time we are much more likely to be on the left, but we
gradually become more likely to be on the right hand K5. On the other hand, if we started on the
right hand K5, then c2 would be positive and the random walk would get pulled to the left.

We can use this idea to partition graphs. Let’s just think about the problem of bipartitioning,
i.e., splitting partitioning a graph into two subsets V1 and V2. Roughly the idea is to partition
so that the subgraphs corresponding to V1 and V2 should be well connected, but there shouldn’t
be too many connections between V1 in V2. Hence if we start a random walk in V1, it will stay
in V1 for awhile, then eventually get pulled towards V2, and vice versa. Thus if we look at the
second dominant eigenvector v2, the signs of the entries for the V1 vertices should be (say) positive,
while for V2 will be (say) negative. If the value of the entry is 0 (or maybe close to 0), we can say
that vertex is “on the fence.” Note if we apply this algorithm to the above example of two K5’s
connected to a single vertex, it does perfectly—the signs of the entries of v2 partition the graph
into 3 pieces: the two K5’s and the middle vertex which has value 0.

To close the semester, let’s revisit the Karate club graph.
Sage’s innate linear algebra functions are not so fast (Sage’s focus is on precision, not speed),

so we’ll use numpy, a numerical method package for Python.
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Figure 4.1: The Karate Club, actual split

Sage 6.1
sage: from numpy.linalg import eig

sage: w, v = eig(T)

sage: w # eigenvalues

array([ 1.00000000e+00 +0.00000000e+00j,

8.67727671e-01 +0.00000000e+00j,

7.12951015e-01 +0.00000000e+00j,

6.12686767e-01 +0.00000000e+00j,

-7.14611347e-01 +0.00000000e+00j,

3.87769460e-01 +0.00000000e+00j,

3.51007053e-01 +0.00000000e+00j,

2.92791798e-01 +0.00000000e+00j,

2.60042011e-01 +0.00000000e+00j,

2.29089383e-01 +0.00000000e+00j,

1.77057148e-01 +0.00000000e+00j,

1.35167055e-01 +0.00000000e+00j,

9.31839984e-02 +0.00000000e+00j,

-1.05380839e-01 +0.00000000e+00j,
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-1.59299956e-01 +0.00000000e+00j,

-2.68023547e-01 +0.00000000e+00j,

-6.11909588e-01 +0.00000000e+00j,

-5.69506603e-01 +0.00000000e+00j,

-3.51778259e-01 +0.00000000e+00j,

-3.93104541e-01 +0.00000000e+00j,

-4.16915851e-01 +0.00000000e+00j,

-4.48579382e-01 +0.00000000e+00j,

-4.97030113e-01 +0.00000000e+00j,

-5.83333333e-01 +0.00000000e+00j,

-8.49622483e-17 +0.00000000e+00j,

-1.17901012e-16 +0.00000000e+00j,

-5.32777279e-17 +0.00000000e+00j,

3.97274886e-17 +1.75808521e-17j,

3.97274886e-17 -1.75808521e-17j,

3.63910315e-17 +0.00000000e+00j,

-5.74878926e-18 +0.00000000e+00j,

2.32016470e-18 +1.32924556e-17j,

2.32016470e-18 -1.32924556e-17j, 1.52951722e-17 +0.00000000e+00j])

sage: v[:,0] # dominant eigenvector v_1

array([ 0.45958799+0.j, 0.25851825+0.j, 0.28724249+0.j, 0.17234550+0.j,

0.08617275+0.j, 0.11489700+0.j, 0.11489700+0.j, 0.11489700+0.j,

0.14362125+0.j, 0.05744850+0.j, 0.08617275+0.j, 0.02872425+0.j,

0.05744850+0.j, 0.14362125+0.j, 0.05744850+0.j, 0.05744850+0.j,

0.05744850+0.j, 0.05744850+0.j, 0.05744850+0.j, 0.08617275+0.j,

0.05744850+0.j, 0.05744850+0.j, 0.05744850+0.j, 0.14362125+0.j,

0.08617275+0.j, 0.08617275+0.j, 0.05744850+0.j, 0.11489700+0.j,

0.08617275+0.j, 0.11489700+0.j, 0.11489700+0.j, 0.17234550+0.j,

0.34469099+0.j, 0.48831224+0.j])

sage: v[:,1] # second dominant eigenvector v_2

array([ 0.48059815+0.j, 0.13792141+0.j, -0.01149982+0.j, 0.11431394+0.j,

0.18758378+0.j, 0.28082530+0.j, 0.28082530+0.j, 0.07290804+0.j,

-0.04788581+0.j, -0.03189334+0.j, 0.18758378+0.j, 0.03461614+0.j,

0.05657271+0.j, 0.04233999+0.j, -0.06450152+0.j, -0.06450152+0.j,

0.16181649+0.j, 0.05227675+0.j, -0.06450152+0.j, 0.02170870+0.j,

-0.06450152+0.j, 0.05227675+0.j, -0.06450152+0.j, -0.17767894+0.j,

-0.09509451+0.j, -0.10191495+0.j, -0.07308313+0.j, -0.10937613+0.j,

-0.05632550+0.j, -0.14756600+0.j, -0.05787797+0.j, -0.12720276+0.j,

-0.35334004+0.j, -0.45092074+0.j])

This says the second dominant eigenvalue λ2 ≈ 0.8677. By looking at the signs of the entries of v2,
we are led to the partition of the Karate club graph in Figure 4.2.

Note vertices 8 and 2 are classified as going with 32 and 33, rather than with 0 as actually
happened. However this makes sense from an algorithmic point of view: 8 is friends with 30, 32
and 33 which, so will more likely go with those; then 2 is friends with 32, 28, 8 and 9 and may
go with them. It in fact makes more sense for at least 8 to go with 33 than with 0, based solely
on the information in the graph. (Factors that may have played a role, such as strength of ties,
convenience and beliefs are not accounted for in this graph.)
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Figure 4.2: The Karate Club, spectral partition (starred vertices mispartitioned)

However, it is true that the values of v2 for vertices 2 and 8, -0.0114... and -0.04788... are quite
close to 0, so they’re “on the fence” from this spectral partitioning point of view (along with some
other vertices like 9 and 13).

This technique also falls under the heading of spectral clustering, as it divides the graph into
2 “clusters” (or more with repeated application). However, if λ2 < 0, one won’t get a partition
into 2 clusters but into 2 whatever-the-opposite-of-clusters-are. Namely if your graph is close to
bipartite, e.g., one can partition the vertices into V1 and V2 such that most connections are from V1
to V2, rather than within V1 and within V2, this spectral partitioning method will separate V1 and
V2. If G actually is bipartite (and connected) with partition V1 ∪ V2, then λ2 = −1 and all entries
of v2 for V1 will have the same sign, while V2 will have the opposite sign, so this method will split
V1 from V2, as in Example 4.2.1.

Well, that’s all. Have a good life. If there’s one thing you take away from this course, make it
this: random walks are f**king awesome.
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