
Chapter 4

This is not the chapter you’re looking

for [handwave]

The plan of this course was to have 4 parts, and the fourth part would be half on analyzing random
graphs, and looking at different models, and half on other issues in social networks such as diffusion
(disease spread, or information) and graph partitioning (as with the Karate club). Well, we just
finished the third part with one lecture left, so needless to say we won’t get that far. I hope to
reteach this course again in the future as a year-long course, and at that point I can expand and
revise these notes further (and maybe actually include a proper reference section).

Here’s just a little taste of things.

4.1 Two random results

To analyze random graphs, one typically proves (or at least heurstically argues) that some property
is true for most graphs, possibly by proving it in the limit.

Proposition 4.1.1. For n ≥ 4, most graphs on n vertices are connected.

This is a cute result motivated by a MathOverflow post I came across recently. Here “most”
just means more than half, and it is valid if we are counting labelled graphs or unlabelled graphs.
For n = 1 it is all graphs, and for n = 2 or n = 3 it is exactly half the graphs.

Proof. Suppose G = (V,E) is disconnected. Then I claim the complement, Ḡ = (V, Ē), is con-
nected. Here Ē = {(u, v) : u �= v, (u, v) �∈ E} is the set complement of E inside V × V − ∆V =
{(u, v) : u, v ∈ V, u �= v}. In other words, all edges of G are not edges off Ḡ, and vice versa. Put
another way, the adjacency matrix Ā of Ḡ is formed by changing all non-diagonal entries of A from
0’s to 1’s or 1’s to 0’s.

To prove the claim, we want to show any u, v ∈ V lie in the same component in Ḡ. If u, v are
in different components in G, then they must be connected by an edge in Ḡ, hence in the same
component in Ḡ. If they are in the same component in G, take w ∈ V in a different component in
G, so u and v are connected to w in Ḡ, and again in the same component. This shows the claim.

If there are m disconnected graphs on n vertices (labelled or unlabelled, the argument is the
same), taking complements gives m connected graphs (whose complement is disconnected, as the
complement of the complement of G is simply G). Now we just observe that for n ≥ 4, there

141

Graph Theory/Social Networks Chapter 4 Kimball Martin (Spring 2014)

are other connected graphs, i.e., there are connected graphs whose complements are connected.
We can, for example, just take the path graph on n vertices (exercise—check its complement is
connected for n ≥ 4).

Proposition 4.1.2. Fix 0 < p ≤ 1. In the random G(n, p) model, the probability of having an
isolated node goes to 0 as n → ∞.

Proof. Let G be a G(n, p) graph. The probability a given vertex i is isolated is simply (1− p)n−1.
(Vertex i pairs with n − 1 other vertices, and all of these pairs are non-edges with independent
probability 1 − p.) If Ai denotes the event that vertex i is isolated, the probability that G has at
least one isolated node is

P (A1 ∪ · · · ∪An) ≤ P (A1) + · · ·+ P (An) = n(1− p)n−1.

But this goes to 0 as n → ∞.

This says that for large n, we don’t expect isolated nodes.
These results hint at the idea that random graphs tend to be fairly well connected, at least

if n is large. Indeed, one can prove under certain conditions on n, p statements like: almost all
random G(n, p) graphs have a giant component, or almost all random G(n, p) graphs are connected,
or almost all random G(n, p) graphs have a clique of size m.

4.2 Spectral graph partitioning

Take a graph G with transition matrix T . Assume for simplicity that T has a basis of eigenvectors
v1, . . . , vn with corresponding eigenvalues λ1, . . . ,λn. As before, we order these so that 1 = λ1 ≥
|λ2| ≥ · · · ≥ |λn|. Further assume 1 > |λ|2 > |λ3|.

Take a random walk on G with initial state v0. Write

v0 = c1v1 + · · · cnvn.

Then the t-th state of the random walk is

vt = T tv0 = c1λ
t
1v1 + c2λ

t
2v2 + · · ·+ cnλ

t
nvn

= c1v1 + c2λ
t
2v2 + · · ·+ cnλ

t
nvn.

For t of moderate size, λt
i are really small for i ≥ 3, so

vt ≈ c1v1 + c2λ
t
2v2. (4.1)

There is a lot packed into this approximation. We’ve seen already that v1 gives a centrality ranking
of vertices and λ2 measures the rate of convergence of the random walk, i.e., network flow. We
might call λ2 the second dominant eigenvector and v2 the second dominant eigenvector. This is
because λ2 and v2 are the second most important things (after λ1 = 1 and v1) in determining the
behavior of the random walk. Namely |λ2| measures how fast the random walk converges, and v2
tells us how it actually converges.

One way to see this is to look at

vt+1 − vt ≈ c2λ
t
2(λ2 − 1)v2. (4.2)

142

Graph Theory/Social Networks Chapter 4 Kimball Martin (Spring 2014)

So in some sense, v2 is essentially a “directional derivative” of this random walk. (Apologies again
for the conflicting notation of v2 and vt—v2 is not vt with t = 2. Remind me to change this in the
next version of these notes.)

Example 4.2.1. Let G be the path graph on 2 vertices. Then we can take λ1 = 1, λ2 = −1,
v1 = (1, 1) and v2 = (1,−1). (Okay, here λ1 �> λ2, but this is the simplest example possible, and
I think it is somewhat illustrative anyway.) Any random walk will just flip back and forth between
vertices 1 and 2. From the derivative point of view, we can think of

�
y1
y2

�
= cλt

2v2 = (−1)tc

�
1
−1

�

as representing the approxmate change in vt at time t. If y1 > 0 then this means we’re more likely
to be at vertex 1 at the next step, and if y1 < 0 this means we’re less likely to be at vertex 1 at the
next step. Similarly the sign of y2 tells us if we’re more or less likely to be at vertex 2 at the next
step.

Now let’s engage in a though experiment with the above example: suppose we had 1 > λ2 > 0.
Then the signs of yi’s don’t change at each step, and the random walk won’t keep flipping back and
forth between vertices. Say y1 < 0 and y2 > 0. This would mean that at every step we’re getting
more and more likely to be at vertex 2 and less likely to be at vertex 1. In other words, the random
walk is getting “pulled” towards vertex 2.

This suggests that the signs of the entries of v2 can tell us if a random walk is converging towards
or away from from certain vertices. Note that the signs of the entries of v2 are not determined
uniquely, since −v2 is also an eigenvector with eigenvalue λ. What will be important for us is which
vertices have the same sign (assuming v2 is real)—this is uniquely determined.

Consider the following graph, which is two copies of K5 connected by a single vertex with two
edges.

If we start a random walk on the left copy of K5, it will wander around there for awhile, but it will
gradually get pulled to the other side.

In Sage, I computed the transition matrix (the single “bottleneck” or “bridge” vertex in the
middle is the last vertex in this ordering), the eigenvalues and dominant and second dominant
eigenvectors.

Sage 6.1
sage: T
[0 1/4 1/4 1/4 1/4 0 0 0 0 0 1/2]

143

Graph Theory/Social Networks Chapter 4 Kimball Martin (Spring 2014)

[1/5 0 1/4 1/4 1/4 0 0 0 0 0 0]
[1/5 1/4 0 1/4 1/4 0 0 0 0 0 0]
[1/5 1/4 1/4 0 1/4 0 0 0 0 0 0]
[1/5 1/4 1/4 1/4 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1/4 1/4 1/4 1/4 1/2]
[0 0 0 0 0 1/5 0 1/4 1/4 1/4 0]
[0 0 0 0 0 1/5 1/4 0 1/4 1/4 0]
[0 0 0 0 0 1/5 1/4 1/4 0 1/4 0]
[0 0 0 0 0 1/5 1/4 1/4 1/4 0 0]
[1/5 0 0 0 0 1/5 0 0 0 0 0]
sage: T.eigenvalues()
[1, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4, -0.2086308764964376?, 0.9586308764964376?,
-0.5319705149024926?, 0.2819705149024927?]
sage: ev = T.eigenvectors_right()
sage: ev[0][1] # dominant eigenvector
[
(1, 4/5, 4/5, 4/5, 4/5, 1, 4/5, 4/5, 4/5, 4/5, 2/5)
]
sage: ev[3][1] # next dominant eigenvector
[(1, 0.9586308764964376?, 0.9586308764964376?, 0.9586308764964376?,
0.9586308764964376?, -1, -0.9586308764964376?, -0.9586308764964376?,
-0.9586308764964376?, -0.9586308764964376?, 0)]

Here we see λ2 ≈ 0.9586 is large, i.e., the spectral gap is small, i.e., the network flow is bad, and
this is due to the bottleneck as discussed in the last chapter. In the second dominant eigenvector
v2, all signs for the left hand K5 are positive, while all signs for the right hand K5 are negative,
and the vertex in the middle has value 0.

This means in a random walk, when t is of moderate size so the behavior is dominated by v2,
we have vt ≈ c1v1 + λt

2c2v2. If we started our random walk on the left hand K5, then c2 will be
negative, so the signs of the entries of v2 will be negative for the left hand K5 and positive for the
right-hand K5. This means the random walk is getting “pulled” towards the right hand K5. That
is, if we start on the left, for quite some time we are much more likely to be on the left, but we
gradually become more likely to be on the right hand K5. On the other hand, if we started on the
right hand K5, then c2 would be positive and the random walk would get pulled to the left.

We can use this idea to partition graphs. Let’s just think about the problem of bipartitioning,
i.e., splitting partitioning a graph into two subsets V1 and V2. Roughly the idea is to partition
so that the subgraphs corresponding to V1 and V2 should be well connected, but there shouldn’t
be too many connections between V1 in V2. Hence if we start a random walk in V1, it will stay
in V1 for awhile, then eventually get pulled towards V2, and vice versa. Thus if we look at the
second dominant eigenvector v2, the signs of the entries for the V1 vertices should be (say) positive,
while for V2 will be (say) negative. If the value of the entry is 0 (or maybe close to 0), we can say
that vertex is “on the fence.” Note if we apply this algorithm to the above example of two K5’s
connected to a single vertex, it does perfectly—the signs of the entries of v2 partition the graph
into 3 pieces: the two K5’s and the middle vertex which has value 0.

To close the semester, let’s revisit the Karate club graph.
Sage’s innate linear algebra functions are not so fast (Sage’s focus is on precision, not speed),

so we’ll use numpy, a numerical method package for Python.

144

Graph Theory/Social Networks Chapter 4 Kimball Martin (Spring 2014)

9

14

15

18

20

22
23

24
25

26

27

28

29

30

31

32

33

0

1

2

3
4

5

6

7

8

10

11

12

13

16

17

19

21

Figure 4.1: The Karate Club, actual split

Sage 6.1
sage: from numpy.linalg import eig
sage: w, v = eig(T)
sage: w # eigenvalues
array([1.00000000e+00 +0.00000000e+00j,

8.67727671e-01 +0.00000000e+00j,
7.12951015e-01 +0.00000000e+00j,
6.12686767e-01 +0.00000000e+00j,

-7.14611347e-01 +0.00000000e+00j,
3.87769460e-01 +0.00000000e+00j,
3.51007053e-01 +0.00000000e+00j,
2.92791798e-01 +0.00000000e+00j,
2.60042011e-01 +0.00000000e+00j,
2.29089383e-01 +0.00000000e+00j,
1.77057148e-01 +0.00000000e+00j,
1.35167055e-01 +0.00000000e+00j,
9.31839984e-02 +0.00000000e+00j,

-1.05380839e-01 +0.00000000e+00j,

145

Graph Theory/Social Networks Chapter 4 Kimball Martin (Spring 2014)

-1.59299956e-01 +0.00000000e+00j,
-2.68023547e-01 +0.00000000e+00j,
-6.11909588e-01 +0.00000000e+00j,
-5.69506603e-01 +0.00000000e+00j,
-3.51778259e-01 +0.00000000e+00j,
-3.93104541e-01 +0.00000000e+00j,
-4.16915851e-01 +0.00000000e+00j,
-4.48579382e-01 +0.00000000e+00j,
-4.97030113e-01 +0.00000000e+00j,
-5.83333333e-01 +0.00000000e+00j,
-8.49622483e-17 +0.00000000e+00j,
-1.17901012e-16 +0.00000000e+00j,
-5.32777279e-17 +0.00000000e+00j,
3.97274886e-17 +1.75808521e-17j,
3.97274886e-17 -1.75808521e-17j,
3.63910315e-17 +0.00000000e+00j,

-5.74878926e-18 +0.00000000e+00j,
2.32016470e-18 +1.32924556e-17j,
2.32016470e-18 -1.32924556e-17j, 1.52951722e-17 +0.00000000e+00j])

sage: v[:,0] # dominant eigenvector v_1
array([0.45958799+0.j, 0.25851825+0.j, 0.28724249+0.j, 0.17234550+0.j,

0.08617275+0.j, 0.11489700+0.j, 0.11489700+0.j, 0.11489700+0.j,
0.14362125+0.j, 0.05744850+0.j, 0.08617275+0.j, 0.02872425+0.j,
0.05744850+0.j, 0.14362125+0.j, 0.05744850+0.j, 0.05744850+0.j,
0.05744850+0.j, 0.05744850+0.j, 0.05744850+0.j, 0.08617275+0.j,
0.05744850+0.j, 0.05744850+0.j, 0.05744850+0.j, 0.14362125+0.j,
0.08617275+0.j, 0.08617275+0.j, 0.05744850+0.j, 0.11489700+0.j,
0.08617275+0.j, 0.11489700+0.j, 0.11489700+0.j, 0.17234550+0.j,
0.34469099+0.j, 0.48831224+0.j])

sage: v[:,1] # second dominant eigenvector v_2
array([0.48059815+0.j, 0.13792141+0.j, -0.01149982+0.j, 0.11431394+0.j,

0.18758378+0.j, 0.28082530+0.j, 0.28082530+0.j, 0.07290804+0.j,
-0.04788581+0.j, -0.03189334+0.j, 0.18758378+0.j, 0.03461614+0.j,
0.05657271+0.j, 0.04233999+0.j, -0.06450152+0.j, -0.06450152+0.j,
0.16181649+0.j, 0.05227675+0.j, -0.06450152+0.j, 0.02170870+0.j,
-0.06450152+0.j, 0.05227675+0.j, -0.06450152+0.j, -0.17767894+0.j,
-0.09509451+0.j, -0.10191495+0.j, -0.07308313+0.j, -0.10937613+0.j,
-0.05632550+0.j, -0.14756600+0.j, -0.05787797+0.j, -0.12720276+0.j,
-0.35334004+0.j, -0.45092074+0.j])

This says the second dominant eigenvalue λ2 ≈ 0.8677. By looking at the signs of the entries of v2,
we are led to the partition of the Karate club graph in Figure 4.2.

Note vertices 8 and 2 are classified as going with 32 and 33, rather than with 0 as actually
happened. However this makes sense from an algorithmic point of view: 8 is friends with 30, 32
and 33 which, so will more likely go with those; then 2 is friends with 32, 28, 8 and 9 and may
go with them. It in fact makes more sense for at least 8 to go with 33 than with 0, based solely
on the information in the graph. (Factors that may have played a role, such as strength of ties,
convenience and beliefs are not accounted for in this graph.)

146

Graph Theory/Social Networks Chapter 4 Kimball Martin (Spring 2014)

9

14

15

18

20

22
23

24
25

26

27

28

29

30

31

32

33

2∗

8∗

0

1

3
4

5

6

7

10

11

12

13

16

17

19

21

Figure 4.2: The Karate Club, spectral partition (starred vertices mispartitioned)

However, it is true that the values of v2 for vertices 2 and 8, -0.0114... and -0.04788... are quite
close to 0, so they’re “on the fence” from this spectral partitioning point of view (along with some
other vertices like 9 and 13).

This technique also falls under the heading of spectral clustering, as it divides the graph into
2 “clusters” (or more with repeated application). However, if λ2 < 0, one won’t get a partition
into 2 clusters but into 2 whatever-the-opposite-of-clusters-are. Namely if your graph is close to
bipartite, e.g., one can partition the vertices into V1 and V2 such that most connections are from V1

to V2, rather than within V1 and within V2, this spectral partitioning method will separate V1 and
V2. If G actually is bipartite (and connected) with partition V1 ∪ V2, then λ2 = −1 and all entries
of v2 for V1 will have the same sign, while V2 will have the opposite sign, so this method will split
V1 from V2, as in Example 4.2.1.

Well, that’s all. Have a good life. If there’s one thing you take away from this course, make it
this: random walks are f**king awesome.

147

