
Chapter 1

Basic Graph Theory: Communication

and Transportation Networks

In this section, we will introduce some basics of graph theory with a view towards understanding
some features of communication and transportation networks.

1.1 Notions of Graphs

The term graph itself is defined differently by different authors, depending on what one wants to
allow. First we will give a fairly typical definition. For elements u and v of a set V , denote by �u, v�
the unordered pair consisting of u and v.∗ (Here u and v are not necessarily distinct, and the pair
being unordered just means that �v, u� = �u, v�.) Denote by Sym(V × V) the set of all unordered
pairs �u, v� for u, v ∈ V .

Definition 1.1.1. An (undirected) graph (or network) G = (V,E) consists of a set of vertices
(or nodes) V together with an edge set E ⊂ Sym(V × V). The elements of E are called edges
or links. The number of elements in V is called the order of G, and we often say G is a graph
on V .

A priori, the order of a graph could be infinite, i.e., it could have infinitely many vertices.
Infinite graphs can be quite useful in theory, but we will focus on networks that arise in real-life
situations, which are finite, i.e., they have finitely many vertices.

� Unless otherwise specified, we will always assume our graphs are finite.

Example 1.1.2. Let V = {1, 2, 3}. Then V × V is the the set of all order pairs of vertices and E
should be a symmetric subset of this. Take E = {�1, 1�, �1, 2�, �2, 3�}. To draw the graph, draw and
label each node, and draw a link between two vertices if there is an edge between them, like this:

1

23

∗This is not standard notation. Most authors write (u, v) or {u, v}, but I want to reserve (u, v) for the ordered
pair and {u, v} for the set of u and v.

10

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

1

23

Figure 1.1: The simple graph associated to Example 1.1.2.

In the above example there is an edge from vertex 1 to itself.

Definition 1.1.3. Let G = (V,E) be a graph. An edge of the form �v, v� ∈ E is called a loop. If
G has no loops, we say G is simple.

It is clear that given any graph, we can make it into a simple graph just by deleting all loops.
For instance, the above example gives rise to the simple graph:

Here the edge set is now E = {�1, 2�, �2, 3�}.

� Unless otherwise specified, we assume all graphs are simple.

Note that if we are working with simple graphs, then the unordered pair �u, v� is simply the
set {u, v}, and you can define an edge as simply a subset of V of size 2. Some authors will use
this definition, which implies that any graph for them is simple. (If we are not working with
simple graphs, then you can have a loop �v, v� whose associated set {v, v} = {v} has size 1, not
2.) So if you prefer curly braces to angle brackets, feel free to write your edges with those, e.g.,
E = {{1, 2}, {2, 3}}.

In many instances, the graphs we want to consider are not naturally “symmetric” (undirected).
For example, we might want to make a graph of webpages and draw a directed link from one page
to another if there is a hyperlink from one page to another. Another example is with citation
graphs—graphs of all research documents in a field with a directed link from paper A to paper B if
paper A cites paper B. In this case, one should think of these directed links as ordered pairs (u, v),
rather than unordered pairs �u, v�. This leads us to the following definition.

Definition 1.1.4. A directed graph (or digraph) G = (V,E) consists of a set V of vertices and
an edge set E ⊂ V × V . The elements of E are called (directed) edges or links. If G contains
no loops, then we say G is simple.

If e = (u, v) ∈ E is a directed edge, we say e is an edge from u to v, or starting at u and
ending at v. Further u is called the initial vertex of e and v is called the terminal vertex of
e.

� Except where otherwise specified, the term graph used by itself means undirected graph.

Example 1.1.5. Consider V = {1, 2, 3} and E = {(1, 2), (2, 3), (3, 2)}. We draw simple directed
graphs as follows. If (u, v) ∈ E but (v, u) �∈ E, then we draw a edge from u to v with an arrow
pointing towards v. If (u, v) and (v, u) are both in E, then we can either draw a single edge from
u to v with an arrow on each end or two different edges, one with an arrow to u and one with an
arrow to v.

11

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

1

23

1

23

or

For directed graphs, edges are thought of as having direction, so the edge (2, 3) is considered
different than the edge (3, 2), and this digraph has 3 edges not 2, as one might think from the
drawing on the left.

Note that we can consider undirected graphs as a special case of directed graphs in the following
way. Suppose G = (V,E) is an undirected graph. Then one can consider a directed graph G� =
(V,E�) on the same vertex set V where now the edge set

E� = {(u, v), (v, u) : �u, v� ∈ E}

contains both edges (u, v) and (v, u) for any undirected edge �u, v� in G. (For non-simple graphs, the
loop �v, v� just becomes (v, v).) E.g., for Example 1.1.2 the edge set is E� = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)}.
The corresponding directed graph can then be drawn as follows:

1

23

1

23

or

(For non-simple directed graphs, for any loop, we just draw an arrow on one end of the loop.)

Consequently, we can think of undirected graphs simply as directed graphs whose edge sets
E are symmetric, i.e., (u, v) ∈ E implies (v, u) ∈ E. (The set of unordered pairs of elements of
V corresponds to symmetric subsets of the set V × V of ordered pairs, which is why I used the
notation Sym(V × V) above.) The only real difference is that when counting edges, the directed
graph will have more edges (precisely twice as many for simple graphs.) This perspective is useful
as we can study both directed and undirected graphs in a unified framework. With this in mind, I
will often use the ordered pair notation (u, v) for edges in an undirected graph. In this case, I will
write the edge set as a symmetric subset of V × V—for example, for Example 1.1.2, I may write
the edge set as E = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)}, with the understanding that (u, v) and (v, u)
represent the same edge (so this graph still has 3 edges, not 5).

Realizing the edge set as a subset of the ordered pairs is also more natural from the matrix
point of view, and often useful from an algorithmic point of view.

There are two other generalizations of graphs worth mentioning now. Some authors allow
multiple edges between vertices in their definition of graph—I will call these multigraphs. For
instance, consider the Seven Bridges of Königsberg in Figure 1. Euler considered this situation
with the multigraph formed by making each landmass a vertex and each bridge an edge:

12

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

However, one can reduce multigraphs to graphs by adding in appropriate vertices, e.g., for
Euler’s example above, we can just add in new vertices along certain edges to get a graph:

•

•

•

•

Thus we will not have much reason to consider multigraphs except in certain special cases.
Another generalization of graph that we will sometimes consider is a weighted graph. This

is just a (directed or undirected) graph G = (V,E) with a weight function w : E → R that assigns
each edge a weight. For instance, if the graph represents cities on a map, then a natural weight
function to consider would just be the distance between the cities. Another possible weight function
is the cost to get from one city to the other. Note that a weighted graph generalizes the concept
of multigraph: a multigraph can be considered as a weighted graph where the weight of an edge
(u, v) is just the number of edges from u to v in the corresponding multigraph. We will say more
about weighted graphs later.

Exercises

Exercise 1.1.1. (a) For V = {1, 2} and V = {1, 2, 3}, draw all possible graphs on V .
(b) How many possible graphs are there on V = {1, 2, 3, 4}? Draw all such graphs having 4

edges.
(c) Draw all possible directed graphs on V = {1, 2}. Then draw all possible directed graphs

V = {1, 2, 3} which contain the edge (1, 2).

1.2 Representations of Graphs

Now let’s discuss different ways one can represent graphs in Python. You can work directly with
sets in Python 2.7 (using curly brackets, as in math), so the most naive way you can represent a
graph G is with an (ordered) list (denoted by square brackets) consisting of the vertex set V and
the edge set E. For example, the graph in Figure 1.1 can be represented as:

13

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Python 2.7
>>> V = {1, 2, 3}
>>> V
set([1, 2, 3])
>>> E = [{1, 2}, {2, 3}]
>>> E
[set([1, 2]), set([2, 3])]
>>> G = [V, E]
>>> G
[set([1, 2, 3]), [set([1, 2]), set([2, 3])]]

(Lines beginning with >>> denote input to the Python interpreter, and other lines denote the
Python output. I wrote V , E, and G on separate lines after the definitions just so you can see how
Python will output this data to you when you want it later. E.g., the Python output set([1, 2])

just means the set consisting of 1 and 2, or what we would typically write in mathematical notation
as {1, 2}.)

Also note that while spacing (indentation) is important in Python for nested statements over
multiple lines (e.g., “for loops” or “if... then” statements), it is not important within individual
lines. In particular, I could write something like V={1,2,3} or V = { 1 , 2 , 3 } for the first
line with the same result.)

Here V is represented as a set of vertex names, and the edge set E is an ordered list of edges e,
where each edge is represented as a set of size 2. For technical reasons, using the built-in set type in
Python, one cannot write E as a set, i.e., E = { {1, 2}, {2, 3} } will result in an error, because
Python does not by default handle sets of sets, or sets of lists. For similar reasons, G must also be
defined as a list G=[V,E], rather than a set G={V,E}. Even if it were possible to define G={V,E}

in Python, it is better to define it as a list, because to actually do things with G, one will need to
recover the vertex and edge sets V and E. If you define G as a list, you can just get the vertex set
back with G[0] and the edge set by G[1]. (Python naturally numbers list positions starting at 0,
not at 1.) But if one could and did define G as a set, there is no order, so it would not be as easy
to recover the vertex set or the edge set.

Many programming languages do not have a built in data structure for sets (i.e., unordered
lists), but one can similarly represent a graph in terms of lists (or arrays). In this case one can
write the vertex sets as a list, and the edge set as a list of ordered pairs (a list of lists of size 2).
For example, this same graph can be represented as

Python 2.7
>>> V = [1, 2, 3]
>>> V
[1, 2, 3]
>>> E = [[1, 2], [2, 1], [2, 3], [3, 2]]
>>> E
[[1, 2], [2, 1], [2, 3], [3, 2]]
>>> G = [V, E]
>>> G
[[1, 2, 3], [[1, 2], [2, 1], [2, 3], [3, 2]]]

This method of representing edges as (ordered) lists of size 2 is of course also advantageous as
one can represent directed graphs in the same way.

14

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

However, these naive ways of representing a graph in a computer is not so useful in practice.
For example, consider the following problem.

Given a node u of a (directed or undirected) graph G = (V,E), we say a node v ∈ V is adjacent
to u, or a neighbor of u, if (u, v) ∈ E. (Note for undirected graphs, being neighbors is a symmetric
relation, but not so for directed graphs, i.e., v may be adjacent to u without u being adjacent to
v.) Write an algorithm which, given a node u returns all the neighbors v of u. This is one of the
most basic procedures one will want to do when working with graphs.

Let’s see how to do this using where we represent V as a list and E as a list of lists of size 2,
as in the latter snippet of code. (Thus we are working with directed edges.) In fact, whether V is
a set or a list is not important to our algorithm—however it does make a difference in syntax that
each edge is a list of size 2, not a set.

Python 2.7
>>> V = [1, 2, 3]
>>> E = [[1, 2], [2, 1], [2, 3], [3, 2]]
>>> G = [V, E]
>>>
>>> def VE_neighbors(G, u):
... neigh = set() # start with an empty set
... E = G[1] # let E be the edge set
... for e in E:
... if e[0] == u: # for each edge of the form (u,v)
... neigh.add(e[1]) # add v to the set neigh
... return neigh
...
>>> VE_neighbors(G, 1)
set([2])
>>> VE_neighbors(G, 2)
set([1, 3])

Here I have written a function VE_neighbors that takes as input two things: the graph G=[V,E]

represented in the above “vertex set-edge set representation” (I use “VE” at the beginning of this
function name to indicate this), and the vertex u one wants to find the neighbors of. The algorithm
is to just go through each element of the edge set E, and check if the edge starts at u (i.e., is of
the form (u, v)), and if so, add the corresponding element to the set of neighbors. (If e=[u,v] is a
directed edge, then e[0] returns the initial vertex u and e[1] returns the terminal vertex v.) The
remarks after the hash signs # are comments to help you understand the code and ignored by the
Python interpreter. (You should always comment your code.)

Note: one uses the double equals == in the if statement to test if two things are the same—do
not use e[0]=u, which will set e[0] equal to u.

Then at the end of this snippet of code, I test the function VE_neighbors on the graph from
Figure 1.1 for the vertices 1 and 2. As expected, the Python output says the set of neighbors for
the vertex 1 is just {2}, and the set of neighbors for the vertex 2 is {1, 3}. In this implementation,
I encoded the neighbors of u as a set, rather than a list, but one could do this also (Exercise 1.2.2).

When we write programs, we are often concerned with efficiency, particular if we are working
with a large amount of data. For small graphs, this not a big deal, but if you want to work with
graphs with hundreds or thousands or millions of nodes, it’s crucial. The algorithm VE_neighbors

requires going through each element of the edge set E, so we say the running time is O(|E|).

15

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

(This notation, called Big Oh notation, will be explained in detail later—roughly it means that the
algorithm requires on the order of |E| steps to finish.) Here |E| denotes the size of the set E, i.e,
the number of (in this case directed) edges.

Note that for a not-necessarily-simple directed graph G = (V,E) on n nodes, the maximum
number of possible edges |E| is n2—this is simply the number of ordered pairs V ×V (see Exercise
1.2.1). Thus we can give an upper bound for the run time of this algorithm as O(n2). This is
horribly inefficient for such a basic operation, and we will see we can do much better using a
different representation for a graph.

Adjacency matrices

Whenever you have a finite collection of objects, and some relations between them, you can keep
track of them in a table. For example, in linear algebra if you’re working with two variables x and
y, you can keep track of linear combinations

3x+ 2y

x− y

by just writing the coefficients in a box

�
3 2
1 −1

�
.

Of course one needs to keep track of the order of x and y, so you know x corresponds to the first
column, and y the second.

We can do something similar (though not exactly the same) for graphs.

Definition 1.2.1. Let G = (V,E) be a directed or undirected graph, not necessarily simple.∗ Write
V as an ordered set {v1, v2, . . . , vn}. The adjacency (or incidence) matrix for G (with respect
to the ordering v1, v2, . . . , vn) is the n× n-matrix

A = (aij), aij =

�
1 (vi, vj) ∈ E

0 (vi, vj) �∈ E.

Example 1.2.2. Let V = {1, 2, 3}, as an ordered set. Then the adjacency matrix for the undirected
graph in Example 1.1.2 is

1 2 3

1
2
3




1 1 0
1 0 1
0 1 0



 .

For clarity, I labeled which rows and which columns correspond to which vertex in red, but I won’t
typically do this. In other words, there is an edge from 1 to 1 (a loop), and edge from 1 to 2, an
edge from 2 to 1 an edge from 2 to 3, and an edge from 3 to 2.

∗From now on, we will often implicitly realize the edge set E for undirected, graphs as a symmetric set of ordered
pairs (u, v), rather than a set of unordered pairs.

16

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Similarly, the adjacency matrix for the directed graph on V in Example 1.1.5 is

1 2 3

1
2
3




0 1 0
0 0 1
0 1 0



 .

In other words, there is a (directed) link from 1 to 2, and a link both directions between 2 and 3.
Note that these adjacency matrices depend on the ordering we chose for V . If for some perverse

reason, we wanted to use a different ordering, say V = {3, 2, 1} then, e.g., the adjacency matrix for
the directed graph in Example 1.1.5 is

3 2 1

3
2
1




0 1 0
1 0 0
0 1 0



 .

Let’s make a couple of elementary observations now. First, having a loop (vi, vi) ∈ E means
that the i-th diagonal element of the matrix aii = 1, so having no loops (i.e., being simple) is
equivalent to the statement that all the diagonal entries of the adjacency matrix are zero. (As we
see from this argument, this fact does is independent of which ordering we choose for V .)

Moreover, note that the (a priori directed) graph G is undirected† if an only if the matrix A is
symmetric. Again this will not depend on the ordering we choose for V . For any ordering, G being
undirected means that (vi, vj) ∈ E is equivalent to (vj , vi) ∈ E for all 1 ≤ i, j ≤ n, which means
the value of aij must equal the value of aji for all i, j, which is equivalent to A being symmetric as
asserted.

Next, given some vertex vi, it is easy to read off its neighbors—just go to the i-th row and look
at which spots have a 1. If there is a 1 in the column corresponding to vj , this means there is a
(directed) edge from vi to vj . This process requires going through each element of a single row in
A, which has n elements, so the running time for such an algorithm is O(n). This is in general
much better than the O(n2) bound we got for using the “vertex set-edge” set representation above.

Note that to represent an arbitrary graph in a computer, we need a little more than the just
the adjacency matrix—we also need the ordered list of vertices. For example, the graph

purple

monkeydishwasher

with respect to the vertex ordering {purple,monkey, dishwasher} has the same adjacency matrix
we saw in the first part of Example 1.2.2. Of course this graph and the graph from Example 1.1.2
are essentially the same—only the names of the vertices have changed, but they are technically
different graphs. We will discuss this more when we get to the notion of graph isomorphisms below.

†Technically, I mean G can be viewed as an undirected graph, i.e., that E is symmetric.

17

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

For now, I just want to make the point that to use adjacency matrices to encode the complete
information about any graph G = (V,E), we need to store the ordered pair (V,A), where V is an
ordered set of vertices and A is the associated adjacency matrix.

For example, we can encode the purplemonkeydishwasher graph in Python as:

Python 2.7
>>> V = ["purple", "monkey", "dishwasher"]
>>> A = [[1, 1, 0], [1, 0, 1], [0, 1, 0]]
>>> G = [V, A]
>>> G
[[’purple’, ’monkey’, ’dishwasher’], [[1, 1, 0], [1, 0, 1], [0, 1, 0]]]

Here we represent the adjacency matrix

A =




1 1 0
1 0 1
0 1 0





as a list of lists. The lists [1, 1, 0], [1, 0, 1] and [0, 1, 0] represent the three rows of A,
and then the matrix A is encoded in Python as a list of the three row vectors. Then we can access,
e.g., the top row of A by the code A[0] (this will give you [1, 1, 0]) and the individual entries
of the top row by A[0][0], A[0][1] and A[0][2].

However, we don’t really care about purplemonkeydishwashers in this class. We are primarily
interested in just studying the structure of graphs in this class. The names of the vertices will only
be important when we are looking at specific networks/applications (e.g., the graph in Figure 2).
Consequently, to simplify things, we will often assume—at least when we are working by hand—that
we are working with an ordered vertex set of the form V = {1, 2, . . . , n}. When we are working with
graphs on the computer, we will typically assume the vertex set V = {0, 1, . . . , n − 1}. With this
assumption in mind, we can simplify our lives a bit and represent a graph G by just its adjacency
matrix A. For instance, by default we will interpret the adjacency matrix

A =





0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0





as representing the graph

1 2

34

if we are working by hand, but as

0 1

23

18

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

if we are working on the computer.
The reason for the difference working by hand versus on the computer is that humans naturally

count from 1, where as computers naturally count from 0.∗ Namely, if V = {1, 2, 3, 4} and you
want to check if there is an edge from vertex 1 to vertex 3, you would look at the entry a13 of
A = (aij) working by hand, but you would need to look at A[0][2] in Python. The need to shift
indices in Python is just an unnecessary complication that we can avoid by assuming our vertex
set is V = {0, 1, 2, 3}, for then the entry A[0][2] tells us about the existence or nonexistence of an
edge from vertex 0 to vertex 2.

Now let’s explain the algorithm to find the neighbors of a given vertex u in a graph G. Assume
V = {0, 1, . . . , n− 1}, and say we want to find vertex i. (We’ll often use i and j to denote vertices
when are vertex set is {0, 1, . . . , n− 1} or {1, 2, . . . , n}.) Let A be the associated adjacency matrix.
Then A[i] gives the i-th row of A, and we just need to go through each element of the row, and if
there is a 1 in position j of this row, we add vertex j to our (initially empty) list of neighbors for
i. The code, with an example on the above graph, is here.

Python 2.7
>>> def neighbors(A, i):
... n = len(A) # let n be the size (number of rows) of A
... neigh = [] # start with an empty set neigh
... for j in range(n):
... if A[i][j] == 1: # for each index 0 <= j < n
... neigh.append(j) # append j to the list neigh if the i-th
... return neigh # row has a 1 in the j-th position
...
>>> A = [[0, 1, 1, 1], [1, 0, 1, 0], [1, 1, 0, 0], [1, 0, 0, 0]]
>>> neighbors(A,0)
[1, 2, 3]
>>> neighbors(A,1)
[0, 2]
>>> neighbors(A,2)
[0, 1]
>>> neighbors(A,3)
[0]

Adjacency Lists

There is a third common way to represent graphs, and this is with adjacency lists. Fix a (directed
or undirected, simple or not) graph G = (V,E)—we do not need to assume V is ordered or consists
of numbers. An adjacency list for G is merely a list of all the vertices v ∈ V together with its set of
neighbors n(v) ⊂ V . This can be implemented in Python with a structure known as a dictionary.

You can think of a dictionary in Python as basically a table consisting of keywords (called keys)
and their associated data/definitions (called values). A dictionary is defined using curly braces
like sets. Each dictionary entry is given in the form key:value, and the entries are separated by
commas. For example, if I wanted to define a dictionary that gave me course titles associated to
the course numbers I am teaching this semester, I can enter this as follows

∗This is also one reason why androids don’t make good life partners.

19

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Python 2.7
>>> courses = { 4383 : "Cryptography", 4673 : "Graph Theory", \
... 5383 : "Cryptography", 5673 : "Graph Theory" }
>>> courses[4383]
’Cryptography’
>>> courses[5383]
’Cryptography’
>>> courses[4673]
’Graph Theory’
>>> courses[5673]
’Graph Theory’

Note the keys and the values can be numbers or strings (you can define strings in Python using
single or double quotes). In fact, the values can be other things like lists or sets also. The single
backslash on the first line just means the input will be continued on the subsequent line. Then we
see we can access the entries of the dictionary by using the key in square brackets, in the same way
we would access the elements of a list using their index.

Using this dictionary structure, we can encode our purplemonkeydishwasher graph as an adja-
cency list as follows

Python 2.7
>>> G = { "purple" : { "purple", "monkey" }, \
... "monkey" : {"purple", "dishwasher"}, \
... "dishwasher" : { "monkey" } }
>>> G["monkey"]
set([’purple’, ’dishwasher’])

Here the keys are strings, the names of the vertices, and the values are the sets of neighbors,
encoded as sets of strings. For instance, the first line says that the node purple is assigned the
neighbors purple and monkey. The order in which the vertices are given in the adjacency list is
irrelevant. One could alternatively encode the neighbors of each vertex as lists instead of sets.

Note that, conversely, given an adjacency list, one can reconstruct the graph. One simply draws
all the vertices (keys) in the adjacency list and draws the (a priori directed) edges from each key
to each of its neighbors. (Do this now for the purplemonkeydishwasher adjacency list.) Hence the
adjacency list structure gives a valid way to represent a graph (i.e., all the information about the
graph is present in the adjacency list).

By design, finding the neighbors of a given vertex using an adjacency list takes only one step!
Using our Big Oh notation, which I’ll formally get to soon, we would say this can be done in O(1),
or constant, time. In other words, it doesn’t matter how many vertices there are in the graph, you
just look at the entry for the vertex you want, which is the set of neighbors.∗

Remarks on implementation: Dictionaries work a bit differently than lists in Python, so you
can’t append things to a dictionary. If you want to make an adjacency list in Python, and
not enter everything by hand the easiest way is to make a list al of ordered pairs of the form
(v, {neighbors of v}). For example, to make an adjacency list for the following graph

∗Technically, there are a couple of issues here: (1) We’ve ignored the time it takes to locate the entry for a given
vertex, however this can be implemented to be done very very quickly. (2) If we want to actually, say, print out
the list of neighbors, the amount of time this takes depends upon the amount of neighbors, which is a priori only
bounded by the order n of the graph. However, for large graphs that arise in practice, the number of neighbors of
any vertex is generally much much smaller than n.

20

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

0

1

2

3

4

5

6

7

we can use the following code
Python 2.7

>>> al = []
>>> for x in range(8):
... al.append((x, {(x-1)%8, (x+1)%8})) # for x = 0, 1, 2, ..., 7
... # associate the set {x-1 mod 8, x+1 mod 8}
>>> al
[(0, set([1, 7])), (1, set([0, 2])), (2, set([1, 3])), (3, set([2, 4])),
(4, set([3, 5])), (5, set([4, 6])), (6, set([5, 7])), (7, set([0, 6]))]
>>> G = dict(al)
>>> G
{0: set([1, 7]), 1: set([0, 2]), 2: set([1, 3]), 3: set([2, 4]), 4: set([3, 5]),
5: set([4, 6]), 6: set([5, 7]), 7: set([0, 6])}
>>> G[7]
set([0, 6])

Here the command x%8 returns x mod 8, which is the value r ∈ {0, 1, 2, . . . , 7} such that 8 = qx+r,
i.e., x mod 8 is (at least for x ≥ 0) the remainder upon dividing x by 8. So, for 0 ≤ x ≤ 6, x + 1
mod 8 is just x, for x = 7 it is 8%8 = 0. Similarly, for 1 ≤ x ≤ 7, x− 1 mod 8 is just x, whereas for
x = 0 it is -1%8 = 7. In other words, by using the mod function we can use addition/subtraction to
right/left shift the numbers {0, 1, 2, . . . , 7} with the convention that we wrap around at the edges.

Adjacency matrices versus adjacency lists

When working with graphs on computers, one typically uses either the adjacency matrix representa-
tion or the adjacency list representation. The vertex set-edge set representation that we used for the
standard mathematical definition is too cumbersome and slow to work with in actual algorithms.
We’ve seen this for just the problem of finding the neighbors of a given vertex, where the adjacency
list representation runs in constant time (O(1)), the adjacency matrix representation runs in linear
time (O(n)), and the vertex set-edge set representation runs in quadratic time (O(n2)).

Adjacency matrices are suitable for small graphs, and have some advantages over adjacency
lists. As an example, suppose you have a directed graph G on V = {1, 2, . . . , n} and want to find
all the vertices with an edge to a fixed vertex j (the inverse to the problem of finding neighbors).
With an adjacency matrix, one just looks at the j-th column of an adjacency matrix, where as

21

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

things are a bit more complicated with the adjacency list. In addition, it is easier to go between
theory and practice using matrices (much of the theory is easier to present in terms of matrices,
and some of the coding is also).

For large graphs, the adjacency list representation is typically far superior in practice, particu-
larly for sparse graphs, i.e., graphs with relatively few edges (closer to n than n2). Social networks
tend to be rather sparse. (Consider the graph of webpages where the directed edges are hyperlinks.
According to Kevin Kelly’s What technology wants (2010), there are about a trillion webpages and
each webpage has, on average, about 60 out of a possible 1 trillion links. If this graph weren’t
sparse, any useful sort of web searching might be virtually impossible.)

For these reasons, we will primarily use adjacency matrices, at least at the beginning of this
course. Towards the end of the course, when we want to work with large graphs, we won’t program
our own algorithms for everything, and will use the graph theory library in SAGE, which (I believe)
uses primarily adjacency lists.

Exercises

Remarks on programming exercises: In all exercises that I ask you to code up a function, you
must also test your function on some examples. I will let you choose your own examples to test on
(you might choose some from the notes, or some more complicated ones). The more complicated
the code is, the more testing you should do. In this section, testing your code on a couple of
examples should suffice to convince you (and me) whether it works correctly all of the time or not.

In coding, choosing good examples to test your code on is of paramount importance—you should
try to test different situations (e.g., directed and undirected, simple or not, include vertices with no
neighbors) as it often happens that code will fail for certain very specific cases (for mathematical
code, it is often extreme cases, such as code failing when some parameter is minimal or maximal).
You also need to choose test cases where you can easily verify that the answer you get is correct
(or at least seems reasonable if you don’t know the correct answer yourself). (Of course, the first
step is to get the code to run without any errors.)

When there is a bug, it is often helpful to choose good examples and examine how the output
differs from what it should be to figure out what the bug is. Many times one can figure out what
the bug is just by looking a few sample inputs and outputs, and not even looking at the original
code! (Though this approach comes easier with experience, but it can be very helpful to try to
reason out how the computer is getting from your input to its output.)

If you are having trouble getting your code to run correctly, the first thing you should try to do
is test different parts of your code separately. You can also try printing out the values of variables
at various steps to help see what is going on.

Exercise 1.2.1. Let V be a set with n elements.
(a) How many simple undirected graphs are there on V ? What is the maximum number of

possible edges? What if we don’t require simple?
(b) How many simple directed graphs are there on V ? What is the maximum number of possible

edges? What if we don’t require simple?

Exercise 1.2.2. Write an analogue of the function VE_neighbors, called VE_neighbors_list,
that uses a list instead of a set for neigh, and consequently returns a list instead of a set. (Read
the note above about testing your code.)

22

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Exercise 1.2.3. Let G be a graph, directed or undirected, simple or not, on V = {0, 1, . . . , n− 1}.
Let A the adjacency matrix for G (with respect to our usual ordering on V). Write a function
called AM_to_AL, whose input is the adjacency matrix A and output is the adjacency list for G.

Exercise 1.2.4. Let G be a graph, directed or undirected, simple or not, on V = {0, 1, . . . , n− 1},
given as an adjacency list. Write a function called AL_to_AM, whose input is G and output is the
adjacency matrix A for G (with respect to our usual ordering on V).

1.3 Basic Algorithm Analysis

In this section we will explain the notion of algorithms and how to analyze their efficiency. To do
this, we will first introduce Landau’s Big Oh notation and discuss asymptotic growth.

1.3.1 Asymptotic growth and Big Oh notation

Let N = {1, 2, 3, . . .} and R>0 denote the set of positive real numbers. Recall a function f on N is
just the same thing as a sequence of numbers (an)n by taking an = f(n).

Definition 1.3.1 (Big Oh, Version 1). Consider functions f, g : N → R>0, i.e., (f(n))n and (g(n))n
are sequences of positive real numbers. We say f(n) is (big) O of g(n) if there exists a constant
C such that f(n) ≤ Cg(n) for all n ∈ N. In this case, we write f(n) ∈ O(g(n)) or f(n) = O(g(n)).

Roughly what f(n) ∈ O(g(n)) means is that, for sufficiently large values of n, f(x) grows no
faster than g(n). We can think of O(g(n)) as the class of functions which don’t grow faster than
g(n), hence the notation f(n) ∈ O(g(n)). Typically for us f(n) and g(n) will be increasing functions
that go to infinity, and you can think of f(n) ∈ O(g(n)) as meaning f(n) is asymptotically ≤ (a
constant times) g(n). Getting a basic understanding of asymptotic growth rates is essential to
understand which how efficient various algorithms are.

We remark that the notation f(n) = O(g(n)) is more common, though it is a bit misleading—
f(n) = O(g(n)) does not mean g(n) = O(f(n)). It’s usage is probably due to the fact that it is
more intuitive for asymptotic expressions. For example, if f(n) is the number of primes less than
n, the Prime Number Theorem says

f(n) ∼
� n

2

1

log t
dt

(this is about n/ log n), so we can think of

f(n) =

� n

2

1

log t
dt+ �(n)

where � is some error term less than n/ log n for n large. The Riemann Hypothesis gives a bound
on the error term: �(n) = O(

√
n log n). Using an equals sign in our Big Oh notation allows us to

write our asymptotic for f(n) as

f(n) =

� n

2

1

log t
dt+O(

√
n log n).

(Here there are a couple of technicalities with the definition we gave for our Big Oh notation: �(n)
is not always a positive number, and

√
n log n = 0 for n = 1. We’ll explain how to define Big Oh

notation in a bit more generality below.)
In any case, I will primarily stick to the f(n) ∈ O(g(n)) notation in this course.

23

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Example 1.3.2. Let f : N → R>0 be a bounded function. Then f(n) = O(1).

Proof. By definition, we know there exists a constant M such that 0 < f(n) < M for all n.
Consequently, taking C = M , we see f(n) ≤ C · 1 for all n ∈ N.

Example 1.3.3. Consider a polynomial f(n) = adnd + ad−1nd−1 + · · ·+ a1n+ a0 which is positive
on each n ∈ N (e.g., this is true if each ai > 0). Then f(n) = O(nd).

In particular, we have things like 3n2 +5n− 2 ∈ O(n2), so f(n) ∈ O(g(n)) does not necessarily
mean that f(n) ≤ g(n) for n large—i.e., the constant C in the definition is important. Also,
f(n) = 5n3 is O(n3), O(n4), O(n5), and so on, but not O(1), O(n) or O(n2) (see Exercise 1.3.1).

Proof. Note that for n ∈ N, we have

f(n) ≤ |ad|n2 + |ad−1|nd + · · ·+ |a1|nd + |a0|nd ≤ Cnd

where C = |ad|+ |ad−1|+ · · ·+ |a0|.

Proposition 1.3.4 (Transitivity). Suppose f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)). Then f(n) ∈
O(h(n)).

Proof. By assumption, we know there are constants C1 and C2 such that f(n) ≤ C1g(n) and
g(n) ≤ C2h(n) for all n ∈ N. Hence f(n) ≤ Ch(n) for all n, where C = C1C2.

Again thinking of O(g(n)) as the class of functions which grow no faster than g(n), this means if
g(n) ∈ O(h(n)), then anything in O(g(n)) lies in O(h(n)), i.e., O(g(n)) ⊂ O(h(n)). Consequently,
our example about polynomials shows we have the following nested sequence of asymptotic classes:

O(1) ⊂ O(n) ⊂ O(n2) ⊂ O(n3) ⊂ · · ·

If f(n) ∈ O(nd) for some d, we say that f(n) has (at most) polynomial growth, because it grows
no faster than some polynomial. In fact it’s not hard to see that all of these O(nd) classes are
different, i.e., the inclusions above are strict inclusions. (See Exercise 1.3.1 below.) For example,
O(n3) contains (positive) polynomials f(n) of degree ≤ 3, whereas O(n2) will only contain poly-
nomials of degree ≤ 2. (These classes contain other functions besides polynomials as well, e.g.,
6n2.34567 + n log n+ (−1)n ∈ O(n3).)

Now let’s give alternative criteria for a function f(n) to be O(g(n)), which will give us the right
definition even when f(n) and g(n) are not necessarily positive (and sometimes undefined at some
values).

Proposition 1.3.5. Let f, g : N → R>0. Then the following are equivalent

1. f(n) ∈ O(g(n));

2. There exist constants C,N such that f(n) ≤ Cg(n) for all n > N .

3. The sequence of numbers
�
f(n)
g(n)

�

n
is bounded.

In particular, if limn→∞
f(n)
g(n) exists and is finite, then f(n) ∈ O(g(n)).

24

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Proof. Clearly 1 =⇒ 2, since they are equivalent if we take N = 0. On the other hand suppose
2 holds for some constants C and N . Let C0 = max{f(n)

g(n) : 1 ≤ n ≤ N}. Then by definition we

have f(n) ≤ C0g(n) for 1 ≤ n ≤ N and f(n) ≤ Cg(n) for n > N . Thus, for any n, we have
f(n) ≤ C �g(n), where C � = max{C,C0}. Hence 2 =⇒ 1, and we have the equivalence of the first
two conditions.

Now let us show 1 ⇐⇒ 3. First suppose 1 holds, i.e., there exists C such that f(n) ≤ Cg(n)

for all n. Then, using positivity, we have 0 ≤ f(n)
g(n) ≤ C for all n, which yields 3. Conversely, 3

implies that there is a constant C such that f(n) ≤ Cg(n) for all n.
The last statement follows because, if the limit exists, then 3 must hold.

Definition 1.3.6 (Big Oh, Version 2). Let f(n) and g(n) be partially-defined real-valued functions
on N, but assume they are both well defined for n sufficiently large. Then we say f(n) is (big) O
of g(n), and write f(n) ∈ O(g(n)) or f(n) = O(g(n)), if there exist constants C and N such that
|f(n)| ≤ C|g(n)| for all n > N .

The point of this more general, though slightly more technical, definition is that f(n) ∈ O(g(n))
is an asymptotic condition, which means it should only be a statement about sufficiently large n,
and for small values of n the condition f(n) ≤ Cg(n) is not important, and we don’t even care if
the functions don’t make sense for small n.

More precisely, the “partially-defined” condition means that we allow f(n) and g(n) to be
undefined on some finite subset of N. This is convenient because it allows us to handle functions
like log(n− 1) or log(log(n)), both of which are undefined when n = 1, but defined for all n > 2.

In addition, if g(n) is not required to be positive, then f(n) ≤ Cg(n) for all n > N does not
imply we can choose a possibly larger value for C � to get f(n) ≤ C �g(n) for all n like we did in
Proposition 1.3.5. The issue is if g(n) = 0 for some n. For example, if f(n) = 3 and g(n) = log(n),
then we have f(n) ≤ g(n) for any n > 20. In fact, we can get f(n) ≤ 5g(n) for any n > 1, but we
will never have f(1) ≤ Cg(1) for any C since g(1) = log 1 = 0.

The reason to add the absolute values in the definition was simply to give a more general
statement of big O notation which is particularly useful in bounding errors in asymptotics, which
might be positive or negative, as in the discussion about the Prime Number Theorem above.
(Alternatively, one could just put the absolute values on f and require g(n) ≥ 0 for n sufficiently
large). However, for most of our purposes, we will just consider cases where both f(n) and g(n) are
positive, at least for sufficiently large n and we can typically forget about these absolute values.

One final remark about this definition versus the previous version: even if your functions are
positive everywhere, it is often a bit easier to check that an inequality holds for sufficiently large
n than having to find an explicit C that works for all n. For example, suppose you want to check
f(n) = 4 is O(log(n + 1)) by hand from the definition. It is (slightly) easier to use the second
definition and simply observe that log 3 > 1 so f(n) ≤ 4 log(n+ 1) for n > 1, rather than trying to
estimate log 2 to find a C such that 4 ≤ C log(2) ≤ C log(n+ 1) for all n.

The following will be a convenient tool to show f(n) ∈ O(g(n)) in many cases.

Proposition 1.3.7. Let f(n) and g(n) be partially-defined real-valued functions on N. Assume
g(n) �= 0 for n sufficiently large. Then the following are equivalent

1. f(n) ∈ O(g(n));

2. For some number N , the sequence of numbers
�
f(n)
g(n)

�

n>N
is bounded.

25

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

In particular, if limn→∞
|f(n)|
|g(n)| exists and is finite, then f(n) ∈ O(g(n)).

Note we need the condition that g(n) �= 0 for sufficiently large n just to ensure the ratios
f(n)
g(n) are well defined for all n large enough. E.g., if we take something like f(n) = n sin π

2n and

g(n) = n2 sin π
2n, then f(n) and g(n) are just 0 when n is even n and ±n and ±n2 when n is odd.

It is true that f(n) ∈ O(g(n)) but we can’t say that condition 2 holds because the ratios are never
well-defined for n even.

The proof is essentially the same as the 1 ⇐⇒ 3 part of the proof for Proposition 1.3.5, except
that one includes absolute values and restricts the inequalities to n > N for some N . (See Exercise
1.3.4.)

Example 1.3.8. O(1) � O(log log n) � O(log n) � O(
√
n) � O(

√
n log n) � O(n).

For increasing functions f and g, the statement O(f(n)) � O(g(n)) (i.e., every function h(n) in
O(f(n)) is in O(g(n)) but not conversely) means that, asymptotically, f grows strictly slower than
g does.

Proof. The structure of the proofs for each part is the same. Namely, we can show O(f(n)) �
O(g(n)) as follows. By transitivity (Proposition 1.3.4), if we show f(n) ∈ O(g(n)) then we will
have O(f(n)) ⊂ O(g(n)). Then we show g(n) �∈ O(f(n)) to get O(f(n)) � O(g(n)).

The first part, that O(1) � O(log log n) is obvious because f(n) = 1 is bounded, whereas
g(n) = log log n goes to infinity.

For the second part, that O(log log n) � O(log n), we use Proposition 1.3.7. Namely, by
l’Hospital’s rule, we have

lim
n→∞

log log n

log n
= lim

x→∞

d
dx log log x

d
dx log x

= lim
x→∞

1/(x log x)

1/x
= lim

x→∞

1

log x
= 0,

i.e., log log n ∈ O(log n). Similarly, an application of l’Hospital’s rule on the reciprocal shows

lim
n→∞

log n

log log n
= lim

x→∞

1/x

1/(x log x)
= lim

x→∞
log x = ∞,

so log n �∈ O(log log n). Hence O(log log n) � O(log n), as claimed.
The remaining parts are similar to the second part, and left as Exercise 1.3.5.

Note in the proof of second part, instead of applying l’Hospital’s rule a second time, we could
just observe that if limn→∞

f(n)
g(n) = 0, then limn→∞

|g(n)|
|f(n)| = ∞. This observation gives the following

corollary of Proposition 1.3.7.

Corollary 1.3.9. Let f(n) and g(n) be partially-defined real-valued functions on N. Assume g(n) �=
0 for n sufficiently large. If limn→∞

f(n)
g(n) = 0, then O(f(n)) � O(g(n)), i.e., f(n) ∈ O(g(n)) but

g(n) �∈ O(f(n)).

Example 1.3.10. Let a > 1 and d > 0. Then O(nd) � O(an).

Again, the proof is an exercise. A function f(n) ∈ O(an) for some a > 1 is said to have (at most)
exponential growth. (I include the “at most” because we don’t typically say polynomials have
exponential growth—they have polynomial growth!) This example should just be a translation

26

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

of something you know from calculus—exponential functions grow faster than any polynomial.
In algorithm analysis, typically exponential growth is very bad, polynomial growth is good, and
logarithmic growth (O(log n)) is outstanding.

For our algorithm analysis, there is one more elementary thing to be aware of—the “arithmetic”
of Big Oh.

Proposition 1.3.11. Suppose c > 0 is a constant, f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)). Assume
g1(n) and g2(n) are positive for sufficiently large n. Then

(i) (f1 + f2)(n) ∈ O((g1 + g2)(n)), and
(ii) (f1f2)(n) ∈ O((g1g2)(n)).

Proof. (i) There exist constants such that |f1(n)| ≤ C1|g1(n)| = C1g1(n) for n > N1 and |f2(n)| ≤
C2|g2(n)| = C2g2(n) for n > N2. Consequently

|f1(n) + f2(n)| ≤ |f1(n)|+ |f2(n)| ≤ C1g1(n) + C2g2(n) ≤ max{C1, C2}(g1(n) + g2(n)),

for n > max{N1, N2}, which is the assertion of (i).
(ii) is similar.

The assumption about g1 and g2 being positive is just to rule out something like f1(n) = f2(n) =
n, g1(n) = −g2(n) = n2 where g1 + g2 cancels out the growth of g1 and g2. One could state (i)
without the positivity assumption as (f1 + f2)(n) ∈ O((|g1| + |g2|)(n)). (Positivity is not needed
for (ii).)

1.3.2 Algorithms

The point of the above diversion on big Oh asymptotic classes is that now we have some basic
tools to explain some simple algorithm analysis, which is extremely important in practice when one
wants to work with graphs of even moderate size.

With all this talk of analyzing algorithms, you might already be a little uneasy. Maybe you’re
thinking to yourself, I don’t even know what an algorithm is. That’s okay, because it’s not entirely
well-defined. Don’t worry though, this won’t cause any problems though—just because Plato wasn’t
sure what a table was, I’m sure he could build one or use one perfectly well.

For us, an algorithm is a (finite) sequence of instructions designed to accomplish a specific task.
The instructions themselves might be a little vague, or even a lot vague. For example, consider the
following two algorithms.

Algorithm 1.3.12. Find the “most popular” member of a given social network G = (V,E).

1. Go through each node v ∈ V , and count the number of neighbors deg(v) of v (called the
degree of v).

2. Find the largest deg(v), and output the corresponding v.

This algorithm is fairly specific, but there are still some things open to interpretation. First
of all, there is the notion of “the most popular” member of a social network. How this should
be interepreted might depend upon type the network and whether it is directed or undirected.
However, let’s assume it is undirected and that by most popular I really mean the node of highest

27

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

degree. One issue is that there might be a tie—e.g., for the graph in Figure 2, two nodes (Brady
and Clay) are tied for the highest degree (5). In this case, should one output all nodes of highest
degree, or just one? Probably it’s reasonable to output all nodes of highest degree.

These clarifications make the algorithm rather well-defined, though it’s still not as specific as
it could be. For example: in what order do you go through the nodes in Step 1? how do you keep
dv and v associated, or don’t you? (e.g., make a table?) what is the algorithm to find the largest
dv? (e.g., do you sort first or not?) However, it’s good enough for anyone to be able to carry out
by hand, or for someone with a moderate amount of programming experience to be able to code
up easily.

Now here is a somewhat famous, but much worse, example of an algorithm.

Algorithm 1.3.13. Find an optimal mate.

1. Estimate the number of people N you can date in your lifetime.

2. Date N/e ≈ 0.36N people, give them scores, break up with them (or get dumped—user choice),
and let M be the maximum of these scores.

3. For each subsequent person you date, score them. If their score is below M , break up with
them. If there score is above M , marry them.

This comes from a probability exercise about figuring out how to maximize your chances of
getting the best possible spouse (here you’re not allowed to date multiple people at a time, or marry
someone you’ve already broken up with). The reason I think this is a bad algorithm is perhaps
different from the reason you might think this is a bad algorithm (or perhaps not). Sure, maybe you
can’t accurately estimate N or give your more-than-friends-but-less-than-spouses accurate scores.
And maybe anyone who scores above your cutoff M won’t want to marry you, i.e., you don’t score
above the cutoff value in their algorithm. But in some sense, these are problems of implementation
of the algorithm, and we’re not meant to worry about these issues in this theoretical exercise. (Or
maybe you take ontological issue with the existence of such a thing as an “optimal mate.” But
we’re working in the confines of an admittedly absurd exercise.)

The main problem with the algorithm is that often it doesn’t give the correct solution to the
problem (though sometimes it will). Already 36% of the time, you’ve broken up with your optimal
mate in Step 2, which means in Step 3 you will break up with everyone until the end of (your) time,
so the algorithm doesn’t terminate (until you do). Even when you marry, it doesn’t always give the
optimal mate. However, within the confines of this theoretical exercise, there is no algorithm with
will always produce an optimal mate, i.e., there is no good algorithm for this problem (which I’m
sure you already knew). Really this algorithm is not a solution to the problem “find an optimal
mate”—it is a solution to the problem “out of a specific class of bad algorithms to find an optimal
mate, determine which bad algorithm is the least bad”.

The point is that algorithms can be good or bad (they solve the problem always, sometimes,
or never). They might terminate or not (e.g., they could get stuck in an infinite loop), or be very
quick or very slow. The instructions might be clear or vague. At some point, if the instructions
become too vague, we should probably not call it an algorithm anymore (e.g., “solve this problem”
is not an algorithm for solving any problem), but there is no clear cut line as to what is “too
vague.” This is what I meant when I said I don’t know exactly what an algorithm is, in the same
way Plato wasn’t sure exactly what a table was. The notion of an algorithm is like the notion of a

28

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

mathematical proof—it’s essentially done by consensus. If people are convinced by an argument,
it’s considered a proof.∗ If people can figure out how to carry out the instructions, it’s considered
an algorithm.

Let’s return to Algorithm 1.3.12, with programming in mind. If we’re trying to write code
for this algorithm, there are various ways it could be implemented. (Note: computer code is not
the same as an algorithm—it’s a specific implementation of an algorithm. For example, changing
variable names in code changes the code, but not the algorithm. Or changing a for loop to a while
loop changes the code, but not the algorithm. However, we won’t try to be precise about when two
blocks of code are consider as implementations of the same algorithm, or two different ones. Again
this is done by common sense/consensus.)

An experienced programmer would have no trouble coding up this algorithm, however someone
with little programming experience (which might be you) might vacillate a little with it. So where
possible, particularly as we’re getting started with programming, we’ll try to make our algorithms
a little more explicit. For example, we can write a more detailed algorithm as

Algorithm 1.3.14. (Algorithm 1.3.12 refined.)

1. Set maxd = 0.

2. For each v ∈ V , calculate the degree deg(v). If deg(v) > maxd, set maxd = deg(v).

3. Make a new empty list mostpop.

4. For each v ∈ V , if deg(v) = maxd, append v to mostpop.

5. Output mostpop.

This is a lot closer to computer code, and should be easy for you to code up once you’re
somewhat familiar with Python. (The one point we haven’t explained here is how to calculate
the degree—this is simple, but it depends upon the implementation of the graph. Let’s take this
for granted now and come back to it in a moment.) Hopefully, this is fairly straightforward to
understand: the first two steps are the algorithm to find the maximum degree maxd, and the next
two steps find all the vertices having this maximum degree.

Another way to express an algorithm in a ready-to-code way to do this is with pseudocode. This
is something that looks a lot like computer code, but isn’t quite. Typically one makes it a little
easier to read than actual code, and sometimes avoids writing down all the details of actual code
that will run. Since we’re programming in Python, we’ll use Pythonesque pseudocode. From the
pseudocode, it should generally be a simple matter to write actual Python code (though you may
need to look up some commands or syntax).

Here is sample pseudocode for Algorithm 1.3.12.

Pseudocode
set maxd = 0
for v in V:

d = degree(G,v)
if d > maxd then

∗Even for mathematicians, who usually want everything to be precise, imprecisely-defined notions like what
constitutes a proof are often more useful than exactly defined ones.

29

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

set maxd = d
set mostpop = []
for v in V:

if degree(G,v) == d then
append v to mostpop

output mostpop

This pseudocode is pretty close to actual Python code, and how close you want to make your
pseudocode to actual code is up to you. I wrote it essentially as I would Python code, but tried to
make it flow more like English when you read it aloud.∗ Specifically, the differences are: I added
the word set at the beginning of definitions, I used the word then instead of a colon in the if

statements, the append line is different, and the word output instead of return. (I also didn’t
include a line to define the function.) Of course, I also used a function not yet written called
degree, which computes the degree.

Note this pseudocode is more precise than Algorithm 1.3.14. For example, in our pseudocode,
we are recomputing degree(G,v) in Step 4 of Algorithm 1.3.14. That is, we don’t bother keeping
track of the degree deg(v) for each v when we first compute it—we compute all the degrees once
to determine the maximum degree, and then we compute them all again to see which vertices have
maximum degree. Alternatively, we could have stored all the degrees in a list and just accessed
the previously computed degrees in Step 4. Hence we have (at least) 2 different implementations
of Algorithm 1.3.14. (Just to show you there are many ways to do things: a variant of Algorithm
1.3.14 would be to store all the degrees and vertices in a table (a 2-dimensional array) during Step
2, sort the table by degrees, and then output the vertices at the top of the table.)

Now let me tell you how to find the degree of a vertex. After this, you should be able to code
up Algorithm 1.3.14 (see Exercises 1.3.7 and 1.3.8).

First, let’s see how to do it if the graph is given as an adjacency matrix A (with respect to
V = {0, 1, 2, . . . , n− 1}).

Python 2.7
>>> def deg(A,i):
... d = 0 # initialize the degree d to be 0
... for j in range(len(A)): # for j = 0, 1, 2, ..., n-1
... d = d+A[i][j] # add A[i,j] to d
... return d
...
>>> A = [[0, 1, 1, 1], [1, 0, 1, 0], [1, 1, 0, 0], [1, 0, 0, 0]]
>>> deg(A,0)
3
>>> deg(A,1)
2
>>> sum(A[0])
3
>>> sum(A[1])
2

Here I define a function deg(A,i), which takes in an adjacency matrix which and returns the degree
of the i-th vertex, which is just the sum of the entries in row i. This is how my code computes the

∗You can think of pseudocode as programming poetry. Bonus points for pseudocode in iambic pentameter, limerick,
or haiku.

30

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

degree. (Recall len(A) returns the number of rows in A, i.e. the size of A.) However, Python already
has a built-in function sum, which returns the sum of the entries in a list, so you can alternatively
get the degree of vertex i just by calling sum(A[i]).

Now suppose the graph G is given as an adjacency list. Again we could write a function that
gets the degree of vertex v, but it can be obtained simply by counting the length of the set of
neighbors of v. (We could also use this algorithm in the adjacency matrix implementation, but
counting the number of 1’s in the i-th row is more straightforward.) If G is given as a dictionary,
this can be done as follows.

Python 2.7
>>> G = { "purple" : { "purple", "monkey" }, \
... "monkey" : {"purple", "dishwasher"}, \
... "dishwasher" : { "monkey" } }
>>> len(G["monkey"])
2

Here G[v] returns the set of neighbors of v, and we pass this set of neighbors to the function len,
which returns the length (size) of a set.

1.3.3 Algorithm Running Times

There are two basic constraints in computing: data storage and computing time. In the olden days,
when games came on multiple diskettes and computer screens had 1 color—green—data storage
was a serious concern, and programmers had to work hard so as not using any more memory/disk
space than necessary. Now, memory/storage capacity is relatively cheap, and data storage is not a
serious issue for most computing tasks. It is mostly only a concern for very specialized problems—
e.g., keeping tabs on everything on the internet—though I think most program developers don’t
take data storage issues seriously enough. (Many programs are bloated, and unnecessarily slow
down your computer—on the other hand, it’s easier to write programs that aren’t efficient.)

Nowadays, the main concern about efficiency is typically is the amount of time a program takes
to run. This will be our main focus in algorithm analysis as well, though occasionally if the amount
of space used becomes egregious we’ll discuss it.

How should we gauge the efficiency of a program or algorithm? One way is simply to physically
time how long it takes to run. There are a couple of issues with this. One, the amount of time
depends on the implementation of the algorithm (both how you write your code, and how your
programming language translates your code into machine operations), the task it is performing
(what the input is) and the computer it is running on. Since, in the heyday of Moore’s law,
computer speeds were doubling every 18 months, just measuring physical running times is of limited
use (though still useful). Further, trying all possible inputs is typically impractical.

Instead, we’d like a simple theoretical way to analyze algorithms that will allow us to estimate
how fast or slow a program will be in practice. This approach will also have the considerable benefit
that we don’t actually have to write a working program to analyze the algorithm. The procedure is
very simple: we just count the number of steps require to complete the algorithm, i.e., the number
of lines of code that the program will run.

Let’s start off with a simple, straightforward example: the program to find the degree of a
vertex using adjacency matrices from Section 1.3.2. Let’s recall the code.

31

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Python 2.7
>>> def deg(A,i):
... d = 0 # initialize the degree d to be 0
... for j in range(len(A)): # for j = 0, 1, 2, ..., n-1
... d = d+A[i][j] # add A[i,j] to d
... return d

Here there are two inputs, A and i, so we will let f(A, i) be the number of steps required by this
code given the input (A, i). Let n be the size of A. The first line (after verb+def+), d = 0, is run
one time. The second line, you can take as also being run once. The third line, however, is run n
times. Finally the last line is run once. Hence f(A, i) = n+3. In fact, since f depends only on the
order n of the graph, we can think of this as a function of n, i.e., f(n) = n+ 3.

This is not exactly the number of steps the computer will do—there’s a lot of stuff going on
behind the scenes at the processor level for each line of code. However, it’s a reasonable estimate
thinking that each line of code takes 1 unit of time to run, and it would be a real headache to
analyze what the processor is actually doing. There is one point to be careful about however—in
the second line we call the functions range and len. The function call to len takes one step
(regardless of how big A is, Python stores the length of A for easy access and you just need to
retrieve this value from memory∗). However the function range returns the list [0, 1, 2, ..., n − 1],
which takes n+ 2 steps to create (n steps to put all the items in the list, 1 to make an empty list,
and 1 to return the list). So perhaps it is better to say f(n) = (n+ 3) + 1 + (n+ 2) = 2n+ 6. (In
fact, we could get pickier, but I’m sure none of you want that.)

We can also see here how the implementation makes a difference about the number of steps the
algorithm will take—if one uses Python’s xrange instead of range, or a while loop instead of the
for loop, Python doesn’t actually need to create a list of size n to do the loop, and we would have
something like f(n) = n+ 4 or f(n) = n+ 5.

The point is that, however we do this analysis, and even if we get very picky, the number of
steps the computer is doing behind the scenes, this f(n) is a linear function in n, i.e., f(n) ∈ O(n),
i.e., f(n) has linear growth. In other words, as the order n of the graph grows, the amount of time
this function will take to run grows linearly in n. Thus we say the running time of this algorithm
is O(n). (While technically, we also have f(n) ∈ O(n2), O(n3), O(2n), etc., we don’t say that this
algorithm has running time O(n2) or O(nnn

) because that would be morally reprehensible, even if
legally permissible.)

Let me quickly give one more example before discussing algorithm running times in more gen-
erality. Recall the following algorithm for finding neighbors of a given vertex from an adjacency
matrix.

Python 2.7
>>> def neighbors(A, i):
... n = len(A) # let n be the size (number of rows) of A
... neigh = [] # start with an empty set neigh
... for j in range(n):
... if A[i][j] == 1: # for each index 0 <= j < n
... neigh.append(j) # append j to the list neigh if the i-th
... return neigh # row has a 1 in the j-th position

∗I didn’t check the actual implementation of the length function, but Python surely must do this.

32

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

To determine the running time of this algorithm, again let f(A, i) denote the number of steps the
algorithm takes to run with given input (A, i). The first three lines (after def) and the final line
contribute 1 step each (not being picky with the range function in the for loop). The next line
if A[i][j] == 1: runs n times. The next-to-last line runs somewhere between 0 and n times,
depending on how many neighbors vertex i has. Hence n + 4 ≤ f(A, i) ≤ 2n + 4. Since both our
upper and lower bounds for f(A, i) are O(n), we say this algorithm has running time O(n).

In general, an algorithm is a sequence of instructions that takes in some input data, such as
an integer, a list, a matrix, a graph, or possibly multiple inputs (17 lists, 3 matrices and a graph).
Suppose we have an algorithm, Algorithm A, that takes in input I. Let f(I) denote the number of
steps Algorithm A takes to run given input I. Let α(I) denote the “size” of I. (How we measure
the size of the input depends upon the problem and our point of view, but for us it will typically be
the order n of some graph.) As we saw in the last example, the number of steps f(I) required may
depend upon more than just the size α(I) of I. Consequently, we define three notions of running
times.

Definition 1.3.15. Let (In) denote a sequence of inputs In such that α(In) = n.

• If f(In) ∈ O(g(n)) for some sequence (In), we say Algorithm A has best case running
time O(g(n)).

• If, on average, f(In) ∈ O(g(n)) for sequences (In), we say Algorithm A has average case
running time O(g(n)).

• If f(In) ∈ O(g(n)) for all sequences (In), we say Algorithm A has worst case running
time O(g(n)).

The best case running time tells you what is the fastest your algorithm can run. The average
case tells you how long it usually takes, and the worst case gives you an upper bound for all possible
inputs.

Here is an alternative, slightly more formal, description. Let S be the space of all possible inputs
I. Define a function α : S → N and assume that for each n ∈ N, the preimage Sn := α−1(n) ∈ S
is finite. Here α(I) is what we called the size n(I) of I above. Let

fmin(n) := min
I∈Sn

f(I)

favg(n) :=
1

|Sn|
�

I∈Sn

f(I)

fmax(n) :=max
I∈Sn

f(I).

Then we say, with respect to our choice of size function α, Algorithm A has best case running time
O(fmin(n)), average case running time O(favg(n)) and worst case running time O(fmax(n)).)

Example 1.3.16. Consider a graph (possibly directed, non-simple) with adjacency matrix A. Fix
a vertex i, and say we want to find the vertices which are either neighbors of i, or neighbors of
neighbors of i. (We will define the notion of distance on graphs later, and this is essentially the set
of vertices of distance ≤ 2 from i.) Here is our algorithm.

Algorithm 2-neighbors:

33

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

1. Make an empty set 2-neigh.

2. Find the neighbors of i and add them to 2-neigh.

3. For each neighbor j of i, find the neighbors of j and add them to 2-neigh.

4. Output 2-neigh.

Instruction 1 and Instruction 4 both take 1 step each. As we saw above, finding the neighbors of
i takes O(n) time (best, average or worst case), and adding these elements to 2-neigh should take
at most n steps.∗ Hence, the second instruction always takes O(n) steps. In the third step, we need
to run the neighbors algorithm again for each neighbor we had. Let’s say there were d neighbors
(i.e., d is the degree of i), then this is O(n) + O(n) + · · ·O(n) (d times), or O(dn) steps. Adding
the neighbors of neighbors in Instruction 3, takes no more than dn steps, so Instruction 3 runs in
O(dn) steps.

Putting everything together, we see our algorithm runs in 2+O(n)+O(dn) = O((d+1)n) steps
(which is the same as O(dn) if d �= 0). Now 0 ≤ d ≤ n. If d = 0 (so Instruction 3 never runs at
all), we are led to the minimum number of steps possible, i.e., a best case running time of O(n).
Similarly, the maximum number of steps is clearly when d = n, i.e., the worst case running time is
O(n2 + n) = O(n2). One needs to do a bit more work to rigorously check what is average number
of steps. I won’t go through this, but it is what you might guess—on average d will be n/2, so the
average case running time is also O(n2/2) = O(n2).

In some sense, knowing the average case running time (how long does the algorithm normally
take?) is what you most want to know, but can be more difficult to compute than best case or
worst case. Knowing the best case running time is rarely of practical use. Therefore, we will
usually just concern ourselves with the worst case running time, which provides an upper bound
for the question how long does the algorithm normally take, and in many instances turns out to
be the same as the average case running time. Consequently, when we say the running time of an
algorithm, without further qualification, we mean the worst case running time.

Alternatively, rather than trying to break things up into best case/average case/worse case, we
could’ve just left things at: the running time 2-neighbor is O((d + 1)n). We will sometimes do
this.

If an algorithm runs in O(1) time, we say it has constant running time (it does not seriously
depend upon the size of the input.) If it runs in O(log n) time, we say it has logarithmic running
time. If it runs in O(nd) time for some d ∈ N, we say it has polynomial running time (the special
cases d = 1 and d = 2 are called linear and quadratic running times). If it runs in O(an) time
for some a > 1, we say it has exponential running time. What we can hope for in an algorithm
depends upon what the problem is, and how often we plan to call this algorithm. Generally
speaking, exponential running time is very bad, arbitrary polynomial running time is okay, linear
or maybe quadratic running time is good, and logarithm running time is great. Constant running
time is typically impossible.

One other remark about terminology: based on what we’ve said in this section, you might think
of the number of vertices n as the “size” of the graph—this is the default parameter. However,

∗Now there is a technicality about how long it takes to add an element to a set—it depends upon the implementation
(the issue is that sets should have no repeated elements, so first you have to see if your element is already in the set
S or not, which naively takes O(|S|)). However, it can be (and I believe is in Python) implemented so that adding
an a new element essentially only takes O(1) time, so for simplicity let’s assume this is the case.

34

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

don’t call it that—call it the order of the graph. For a graph G = (V,E), the size of G is defined
by many authors to be |E|, the number of edges, which could be anywhere between 0 and n2.

Let me close with a brief remark on data storage, which does become important when you’ve
got ridiculously huge graphs like the internet.

If you want to use an adjacency matrix, you need to store an n× n matrix, which means you’ll
require O(n2) space—you need to store each coordinate of the matrix. The exact amount of space
needed depends on the actual implementation, and how much space is needed to store the names
of the vertices. However, suppose you want a graph with 1 million nodes. Each matrix entry is 0
or 1, so the most efficiently we can store the matrix in a usable form is store each matrix entry as a
single bit (in the usual implementation, each matrix entry will be 64 bits, but let’s say we do things
more efficiently). Then storing this matrix will take 1012 bits ≈ 100 Gigabytes (GB). If you wanted
10 million nodes, this would require 100 times more space, or about 10 Terabytes (TB). And while
we’re talking about really large graphs here, this isn’t even close to size of a web graph—remember
there are an estimated 1 trillion webpages out there (Google seems to index tens of billions), and
many social network websites have over 100 million users.

Now suppose you want to use an adjacency list. Then you need a dictionary with n entries,
and each entry requires a certain space depending on the number of neighbors. The total number
of neighbors list in the adjacency list is the same as the number of edges of the graph (for directed
graphs, or twice that for undirected graphs). Hence the storage space required is O(n+ |E|). For
most kinds of graphs, |E| > n, so this can be though of as O(|E|). Hence the size |E| of the graph,
as defined above, really measures how much space is required to store the graph. How much space
would we need to stored a graph with 1 million nodes using adjacency lists? Let’s suppose that,
on average, each vertex is connected to 200 other nodes (this is quite reasonable in practice—this
number is very close to the average degree for both Twitter and Facebook graphs). Then the size,
|E|, is 200 million. If we identify each vertex by a 64-bit number (32-bits is still more than enough),
then this would require about 1.6 Gigabytes (GB). This is still quite sizable, but only 1.6% of the
space required for the adjacency list representation. (And we’ve been fairly conservative in our
estimates.) If we have 10 million nodes, where the average vertex degree is still 100, then the size
only multiplies by 10 to require about 16 GB, about 0.16% of the space require for the adjacency
matrix.

Exercises

Exercise 1.3.1. Let 0 < r < s be real numbers. Prove that O(nr) � O(ns), i.e., that f(n) ∈ O(nr)
implies f(n) ∈ O(ns), but there exist f(n) ∈ O(ns) which do are not O(nr).

Exercise 1.3.2. Give an example of positive functions f(n) and g(n) on N such that limn→∞
f(n)
g(n)

does not exist, but f(n) ∈ O(g(n)).

Exercise 1.3.3. Let f(n) and g(n) be positive functions on N. Is it true that either f(n) ∈ O(g(n))
or g(n) ∈ O(f(n))?

Exercise 1.3.4. Prove Proposition 1.3.7.

Exercise 1.3.5. Complete Example 1.3.8 by showing � O(log n) � O(
√
n) � O(

√
n log n) � O(n).

Exercise 1.3.6. Prove the assertion in Example 1.3.10.

35

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Exercise 1.3.7. Write Python code for a function maxdegvert(A) which, given an adjacency
matrix A, returns (as a Python set) the set of vertices of maximum degree.

Exercise 1.3.8. Write Python code for a function AL_maxdegvert(G) which, given a graph G as
an adjacency list, returns (as a Python set) the set of vertices of maximum degree.

Exercise 1.3.9. Determine the (worst case) running times for your functions maxdegvert(A) and
AL_maxdegvert(G) from the previous 2 exercises.

Exercise 1.3.10. Consider the following simple algorithm to find the position of a number i in an
ordered list of size n.

1. Initialize a position counter variable pos = 0

2. For each object x in the list:

3. if x = i, return pos.

4. otherwise, increase pos by 1 and continue.

Assume that the space Sn of allowable inputs of size n is the set of pairs (π, i) where π is a
permutation (an ordering, represented as an ordered list) of {0, 1, 2, . . . , n− 1} and 0 ≤ i ≤ n− 1.
Determine the best case, average case, and worst case running times for this algorithm.

1.4 Graph Isomorphisms

� In this section, graphs may be simple or not, undirected or directed.

If we are just interested in understanding the structure of a graph, the names of the vertices
are unimportant. In other words, we may often want to just consider unlabelled graphs, i.e., graphs
where the vertices are not labelled. We can do this formally with the notion of an isomorphism.

For instance, the two graphs

1

23

A

BC

and

are technically distinct graphs, because the vertices have different names, but we want to regard
them as essentially the same. We will say they are isomorphic. Here is the formal definition.

Definition 1.4.1. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. If there is a bijection φ : V1 → V2

such that (u, v) ∈ E1 if and only if φ((u, v)) := (φ(u), φ(v)) ∈ E2, then we say G1 and G2 are
isomorphic, and we write G1 � G2. In this case, we say the map φ is an isomorphism of G1

with G2 (if G1 = G2, we say φ is an automorphism of G1).

Recall a bijection φ is a map which is one-to-one and onto, i.e., φ maps distinct elements of V1

to distinct elements of V2, and each element of V2 is in the image of φ. There exist bijections from
V1 to V2 if and only if V1 and V2 have the same cardinality.

36

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

This definition, in less formal terms, says the following: an isomorphic φ is a bijection between
the vertex sets V1 and V2, such that, regarded as a map of pairs of vertices, it maps edges of G1 to
edges of G2, and non-edges of G1 to non-edges of G2. (I.e., φ induces a bijection of the edge sets
E1 and E2.) Even more colloquiually: two graphs will be isomorphic, if you can turn one graph
into the other merely by relabelling the vertices.

Example 1.4.2. The two graphs pictured above are isomorphic. Let G1 be the graph on the left, and
G2 the graph on the right. Then we can take for our bijection φ : V1 → V2 the function φ(1) = A,
φ(2) = B and φ(2) = C. Viewed as a map of pairs of vertices, we see φ((1, 2)) = (A,B) ∈ E2,
φ((2, 3)) = (B,C) ∈ E2 and φ((1, 3)) = (A,C) �∈ E2. Hence φ is indeed an isomorphism—φ takes
edges e ∈ E1 to edges of E2, and non-edges to non-edges.

Note, there is another isomorphism we could have taken (in general, there may be many). We
could take φ�(1) = C, φ�(2) = B and φ�(3) = A. One sees again that this is an isomorphism.
The fact that there are two distinct isomorphisms is due to the fact that the map of G1 given by
interchanging 1 and 3, but fixing 2, is an automorphism of G1, i.e., if we switch the labels 1 and 3
on G1, the graph does not change.

Here are some basic properties of the notion of isomorphic.

Proposition 1.4.3. Let G1, G2 and G3 be graphs. Then
(i) G1 � G1

(ii) G1 � G2 ⇐⇒ G2 � G1

(iii) If G1 � G2 and G2 � G3, then G1 � G3.

Proof. The proofs are simple—it just involves checking certain maps are isomorphisms, which we
leave as an exercise. For (i), check the identity map is an isomorphism. For (ii), if φ is an
isomorphism from G1 to G2, check φ−1 is an isomorphism from G2 to G1. For (iii), if φ1 is an
isomorphism from G1 to G2 and φ2 is an isomorphism from G2 to G3, check φ2◦φ1 is an isomorphism
from G1 to G3.

This mean being isomorphic defines an equivalence relation among graphs.

Definition 1.4.4. An unlabelled graph is an equivalence (isomorphism) class of graphs.

This may seem a bit strange definition if you’re not familiar with this sort of idea, but the idea
is quite simple. Graphs have this extra structure—the names of the vertices—that we often don’t
care about. So when we don’t care about this, we can think of identifying all graphs isomorphic to a
given graph G0 (i.e., the same as G0 except for this extra structure) as being the same “unlabelled”
graph G. The technical way to do this is let G be the set of all graphs which are isomorphic to
G0. Then we think of any specific graph Gi ∈ G as being a specific manifestation of the idea of
G. Because being isomorphic is an equivalence relation, no two isomorphism classes intersect, and
each graph corresponds to a unique unlabelled graph.

Occasionally, when we want to emphasize that we are working with honest graphs, not isomor-
phism classes, we may use the term labelled graph.

Since the notions of directed/undirected and simple/non-simple are preserved by equivalence
classes (verify this!), it makes sense to say unlabelled graphs are directed/undirected or simple/non-
simple if the underlying labelled graphs are.

Example 1.4.5. There are 4 simple, undirected graphs up to isomorphism (i.e., 4 unlabelled simple
undirected graphs) on 3 vertices.

37

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

In the above example, the unlabelled graphs are determined simply by the number of edges.
This is no longer true when we move to 4 vertices.

Example 1.4.6. There are two unlabelled undirected graphs on 4 vertices with two edges—either
the both edges have a vertex in common or not.

There are 3 with 3 edges (you can generate them by adding each possible edge to the previous graphs
and throw out duplicates):

A basic question in graph theory is, given two graphs G1 and G2, determine if they are iso-
morphic. This is called the graph isomorphism problem. This is not easy in general (it might
be NP-complete, if you know what that means), however in some cases it is easy to to check that
two graphs are not isomorphic. For instance, if two graphs have different number of vertices, or
different numbers of edges, it is easy to see there can be no isomorphism between them.

In general, data that can be associated to a graph which does not depend on its isomorphism
class will be called an invariant of the graph. Then if two graphs have different invariants, we
know they are not isomorphic. Some examples of invariants are: the order, the size, the maximum
degree of a vertex, the minimum degree of a vertex, the number of isolated (degree 0) nodes, or
more generally the number of vertices of degree d. We’ll see many more examples of invariants
later. An example of something that isn’t an invariant could be something like: “the degree of
vertex 1”—this evidently depends upon the labeling of the vertices.

Supposing we have two graphs G1 = (V1, E1) and G2 = (V2, E2) with the same number of
vertices n, then the number of bijections from V1 → V2 is n! (there are n choices for where to map
the first element of V1, (n−1) for the second, (n−2) for the third, and so on.) Consequently, using

38

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

the naive algorithm to see if G1 � G2 (check all possible bijections to see if they are isomorphisms)
takes O(n2n!) time (the extra n2 is to check if each bijection is an isomorphism or not). By Stirling’s
approximation, n! ∼

√
2πn(ne)

n, so this algorithm has worse than exponential growth.

The best known algorithm has worst case running time O(2
√
n logn), which is subexponential—

slower than exponential growth but faster than any polynomial growth, i.e., still quite bad. It
is not known if there is a polynomial time algorithm which will determine if any two graphs are
isomorphic or not (however there are algorithms that work quickly for most pairs of graphs, but
have exponential worst case running time). This is a major unsolved problem in computational
complexity theory, however we will not focus on this in our class.

Exercise 1.4.1. Prove Proposition 1.4.3.

Exercise 1.4.2. Draw all unlabelled simple undirected graphs on 4 vertices. How many are there?

Exercise 1.4.3. Draw all unlabelled simple directed graphs on 3 vertices. How many are there?

Exercise 1.4.4. Let n > 4. How many unlabelled simple undirected graphs are there with n vertices
and 1 edge? What about 2 edges? (You don’t need to give formal proofs for your answers, but briefly
explain your reasons.)

Exercise 1.4.5. How many unlabelled simple undirected graphs are there with 5 vertices and 3
edges? Draw them.

1.5 Paths, Connectedness and Distance

� In this section, graphs may be directed and/or non-simple.

Now that we have various preliminaries out of the way, we can get to discussing some basic
issues in networks. We’ll start with communication and transportation networks in mind. For
such networks, the fundamental issue is how things flow on the network—how do information or
passengers or cargo flow? Can they can from point A to point B? If so, how long does it take? In
networks, we allow things to travel from one vertex to another vertex along edges. The routes that
things can travel along are called paths or walks.

Definition 1.5.1. Let G = (V,E) be a graph. We say a (non-empty) sequence of vertices γ =
(v1, v2, . . . , vr, vr+1) in V is a path or walk if (vi, vi+1) ∈ E for 1 ≤ i ≤ r. The length of the
path is len(γ) := r. We say v1 is the start vertex and vr+1 is the end vertex of γ. If vi �= vj
for 1 ≤ i �= j ≤ r + 1, we say the path is simple.

If vr+1 = v1, we say γ is closed. If γ = (v1, . . . , vr, v1) is a closed path with vi �= vj for
1 ≤ i �= j ≤ r, we say γ is a (simple) cycle or circuit.

Alternatively, we can specify a path by a sequence of edges, rather than a sequence of vertices.
Namely, a sequence of adjacent edges (e1, e2, . . . , er) defines a path of length r. Here adjacent means
that e2 starts where e1 ends, e3 starts where e2 ends, and so on. Thus the length of a path is the
number of edges in the path, not the number of vertices. Just as we will allow vertices to repeat
in our paths, edges may also repeat. On the other hand, since vertices may not repeat in simple
paths or cycles (except for the first and last vertex of a cycle), edges cannot repeat in simple paths
or cycles.

39

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

We will allow for paths of length 0, i.e., of the form (v) for any vertex v ∈ V . This does not
require G having a loop at v, i.e., (v, v) ∈ E. If G does have a loop at v, this means there is a closed
path (or cycle) of length 1, denoted (v, v)—which in this case coincides with our edge notation,
which starts and ends at v.

Note: this terminology is not entirely standard. Many authors assume all paths are simple.
We will not. On the other hand, we will assume all cycles are simple (not all authors do this, or
some may only admit cycles of length ≥ 3), and use the term closed path when we want to discuss
non-simple cycles.

The terms walk and circuit, however, are fairly standard.

Example 1.5.2. Let n > 2. A cycle graph of order n is a graph of the form G = (V,E) where
V = {v1, v2, . . . , vn} and E = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}}. (Recall {vi, vj} means
an undirected edge, as opposed to (vi, vj).) Here is a cycle graph of order 4.

1 2

34

There are infinitely many paths from 1 to 4: (1,4), (1,2,1,4), (1,2,3,4), (1,2,3,4,1,2,3,4),
However, there are only two simple paths from 1 to 4: (1,4) and (1,2,3,4).

For arbitrary order n, there are 2n cycles on G, all of length n—for each vertex v, there are
2 that start and end at v—e.g., (1,2,3,4,1), (1,4,3,2,1). However, there are infinitely many closed
paths—you can keep going around the cycle as many times as you want.

All cycle graphs of order n are isomorphic, so we sometimes say the cycle graph of order n,
and denote it Cn.

If G is any graph and γ is a cycle of length n, then the vertices and edges of γ define a cycle
graph of order n. Hence cycles in any graph may be regarded as cycle graphs.

One can also consider directed cycle graphs, e.g.,

1 2

34

In this case there are exactly n cycles (all of length n) since one can only travel in one direction.

Example 1.5.3. A linear graph (or path graph) of order n, is a graph of the form G = (V,E)
where V = {v1, v2, . . . , vn} and E = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}}. Here is a line
graph on 4 vertices.

1 2 3 4

Again, all linear graphs on n vertices are isomorphic, and a simple path of length n yields a linear
graph of order n.

40

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

On a linear graph, there is a unique simple path between any given pair of vertices. Of course,
if we do not require simple, an infinite number of paths are possible. This has no cycles of length
≥ 3. (Note: any undirected edge defines a cycle of length 2—e.g., we have the cycle (1, 2, 1).)

We can also consider directed linear graphs, e.g.,

1 2 3 4

Here, there is a path from 1 to 4, but not from 4 to 1. This has no cycles.

Example 1.5.4. A complete graph of order n is a simple undirected graph on n vertices that
has all possible n(n− 1)/2 edges. I’ve shown you one on 5 vertices before:

1

2

3 4

5

Again, all complete graphs on n vertices are isomorphic, and we usually speak of the complete graph
on n vertices, and denote it by Kn (you know, for komplete).

In this case, there are loads of paths and cycles. For example, here are the some simple paths
from 1 to 5: (1,5), (1,2,5), (1,3,5), (1,4,5), (1,2,3,5), (1,3,2,5), . . . (If we want to enumerate
them all, it’s easiest to be systematic—I started counting by length.) For any two vertices, there
are simple paths between them of lengths 1, 2, 3 and 4. There are cycles starting at any vertex of
lengths 2, 3, 4 and 5.

The directed complete graph is the same as the undirected complete graph, by our convention of
regarding directed graphs with symmetric edge sets as undirected graphs.

Example 1.5.5 (Königsberg bridge problem). Recall the graph from the Königsberg bridge problem.

•

•

•

•

41

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Here each of the black vertices represent landmasses, the edges represent bridges, and the grey
vertices are just auxillary vertices used to turn the hypergraph (i.e., the multiedges) into a graph
(i.e., ordinary edges). The problem was to find a path that traverses each edge exactly once (note
the problem has not changed by our addition of auxillary vertices).

Euler’s solution was the following. If there is such a path, then for each vertex in the path,
except possible the start and end vertices, one needs to arrive at this vertex the same number of
times one leaves this vertex. Hence, the degree of such vertices must be even. However, all black
vertices on this graph have odd degree. So such a path is impossible. (Nowadays such paths are
called Eulerian paths, and one can show they exist if and only if the number of vertices of odd
degree is either 0 or 2.)

Connectedness

Now we can introduce the notion of connectedness which, at least for undirected graphs, will
(essentially tautologically) tell us if things can get from point A to point B on a graph.

Definition 1.5.6. Let G = (V,E) be an undirected graph, and v0 ∈ V . The connected com-
ponent of v0 is the set of all v ∈ V such that there exists a path from v0 to v. The connected
components of G are the subsets of V which arise as connected components of some v0 ∈ V .

Proposition 1.5.7. The connected components of an undirected graph G = (V,E) partition V into
disjoint subsets.

Proof. This follows because being in the same connected component is an equivalence relation; see
Exercise 1.5.3.

Example 1.5.8. Consider the graph

1 3

2 4

5 7

6 8

9 11

10 12

The connected component of 1 is the same as the connected component of 2, or 3, or 4, or 5.
Similarly for 7 and 8, or 9, 10, and 11. Then the connected components of G are {1, 2, 3, 4, 5},
{6}, {7, 8}, {9, 10, 11}, and {12}. Hence the connected componets of G partition the vertices into
5 disjoint sets.

For directed graphs G, we obviously cannot do the same thing. Consider for example

1 2 3

Then, if we were to use the above definition, the connected component of 1 would be {1, 2}, the
connected component of 2 would be {2} and the connected component of 3 would be {2, 3}. So
this doesn’t give a partition of our digraph. There are a couple of possible ways to try to define
connected components for digraphs. Here is perhaps the most naive way.

42

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Definition 1.5.9. Let G = (V,E) be a directed graph, and let G� = (V,E�) be the associated
undirected graph, i.e., let E� = {(u, v), (v, u) : (u, v) ∈ E}. The connected components of G are
the connected components of G�.

By definition, the connected components again partition the vertices of a digraph into disjoint
subsets. For example, the connected components of the digraph

1 3

2 4

5 7

6 8

9 11

10 12

are the same as those for the graph in Example 1.5.8, as the associated undirected graph is the
same.

One virtue of this definition of connected components is that it allows us to break up arbitrary
graphs into smaller, and hopefuly bite-size, pieces.

Definition 1.5.10. Let G = (V,E) and G� = (V �, E�) be graphs. If G is undirected, we assume G�

is also undirected. We say G� = (V �, E�) is a subgraph of G if V ⊂ V � and E ⊂ E�.

Often we will consider connected components as subgraphs of G = (V,E). Note that a subgraph
is not determined by just selecting the vertices—you also need to decide which edges to include.
However, by convention, if we specify a subgraph only by a subset V0 of vertices, we mean the
graph G0 = (V0, E0) where E0 = {(u, v) ∈ E : u, v,∈ V0}, i.e., we include all possible edges using
only the vertices in V0. For example, the subgraph associated to the connected component of 1 in
Example 1.5.8 is

1 3

2 4

5

Definition 1.5.11. Let G be a graph. We say G is connected if G has exactly one connected
component.

Then any connected component of any graph defines a connected subgraph. The number of
connected components as well as their orders/sizes (number of vertices or number of edges), and
the property of being connected, are all invariants of graphs. Furthermore, if we know all the
connected components of G, we “union” them back together to get the original graph G.

For many problems, one reduces to the study of connected graphs. For undirected graphs G,
we can get from vertex u to vertex v if and only if they are in the same connected component.
In particular, we can get from any vertex u to any other vertex v if and only if G is connected.
Consequently, being connected is one basic property we typically want in things like communication
and transportation networks. From a practical point of view—this means we want algorithms to
determine if a graph is connected, or to determine the connected components. We will briefly
discuss algorithms later.

43

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

For directed graphs G (which most communication and transportation networks are not), the
notion of connected components is not sufficient—if u and v are not in the same connected com-
ponent, then v is not reachable from u, but if they are in the same connected component, v may
or may not be reachable from u.

Now let’s take a look at an alternative notion of connectedness for digraphs.

Definition 1.5.12. Let G = (V,E) be a directed or undirected graph, and v0 ∈ V . The strongly
connected component of v0 is the set of all v ∈ V such that there exists both a path from v0 to v
and a path from v to v0. The strongly connected components of G are the subsets of V which
arise as strongly connected components of some v0 ∈ V .

We say G is strongly connected if it has exactly one strongly connected component.

Note that if G is undirected, strongly connected components are the same as connected com-
ponents since having a path from v0 to v is equivalent to having a path from v to v0.

As with connected components, the strongly connected componentes partition the vertices into
disjoint subsets (Exercise 1.5.5), and these components are maximal such that one can get from
any vertex to any other vertex in same strongly connected component. In particular, G is strongly
connected if and only if one can get from vertex u to vertex v for any two vertices u, v in G.

However, knowing the strongly connected components (even together with the connected com-
ponents) is not enough to completely answer the question can one get from u to v. Namely, tt still
may be possible to get from u to v though u and v are in different strongly connected components.
For instance, in the digraph

1 3

2 4

5 7

6 8

9 11

10 12

the strongly connected components are {1, 2, 3}, {9, 10, 11} and then the singleton sets {4}, {5},
{7}, {8} and {12}. Just looking at the strongly connected components does not tell us if there is
a path from 4 to 5 or a path from 7 to 8, though we can rule out the possibility of a path from 4
to 8 by looking at connected components. In general, there is no way to partition the vertices of a
directed graph G in such a way that one can definitively and easily say if there is a path from one
given vertex u to another given vertex v. Rather, one can compute the set of all vertices reachable
from u (cf. our original definition for connected component for undirected graphs) and check if v
is in this set or not.

We remark many authors don’t consider our notion of connected components for digraphs—
they only consider strongly connected components, and may occasionally just refer to them as the
connected components or components of the digraph. (We may sometimes say components of G
for connected components of G.) However, I defined the above notion of connected components
because is useful for problems where we may want to break up digraphs into smaller digraphs.
Note that one typically cannot do this with strongly connected components because one cannot
piece together a digraph G from just its strongly connected components (viewed as subgraphs).
For instance, the strongly connected component graphs of

44

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

1

23

4

56

are

1

23

4

56

and

Just knowing the two strongly connected component graphs does not tell us how to paste them
together to get our original graph, since there are many ways these two strongly connected compo-
nents could be “weakly connected.”

Distance

Now, assuming that we can get from point A to point B in the graph, our next question is how do
we determine how long it takes? We use the model that it takes 1 time unit to traverse each edge.
Later we will account for different time (or money) costs per edge by using weighted graphs.

Definition 1.5.13. Let G = (V,E) be a graph. For u, v ∈ V , let Γ(u, v) denote the set of paths
from u to v. We define the distance d(u, v) between u and v to be

d(u, v) :=

�
∞ there is no path from u to v;

min{len(γ) : γ ∈ Γ(u, v)} else.

In other words, the distance between two vertices is the least number of steps (edges) it takes to
get from one to the other (if we are working with directed graphs, which vertex is first is important
here). In particular, the vertices which are distance 1 from u are the neighbors of u. For any
vertex u, d(u, u) = 0 since we have allowed paths from u to u of length 0 in our definition of path.

Example 1.5.14. Let’s consider d(1, 4) from our above (undirected) examples. In the cycle graph
C4, 1 and 4 are adjacent, so d(1, 4) = 1. In the line graph, d(1, 4) = 3. In the complete graph K5,
all vertices are adjacent, so d(1, 4) = 1.

Proposition 1.5.15. Let G = (V,E) and u, v ∈ V . Suppose 0 �= d(u, v) < ∞. Then there is exists
a path γ from u to v such that len(γ) = d(u, v). Furthermore, any such γ must be a simple path.

Proof. The assumptions mean Γ(u, v) is non-empty. Since the set {len(γ) : γ ∈ Γ(u, v)} ⊂
{0, 1, 2, . . .}, it has a least element, i.e., the minimum is well-defined, and so there exists some
γ such that len(γ) = d(u, v). Consider any such γ = (u = v1, v2, . . . , vr = v). If γ is not simple,
then some vi = vj for i �= j. (By assumption u �= v, so (i, j) �= (1, r).) Say i < j. Then we can
consider the strictly shorter sequence γ� = (u = v1, v2, . . . , vi, vj+1, vj+2, . . . , vr = v). Since vi, vj ,
we must have (vi, vj+1) ∈ E, whence γ� is also a path from u to v. However, it is shorter than γ,
contradicting the minimal length of γ.

45

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

The following proposition shows that graph distances behave at least somewhat like Euclidean
ones.

Proposition 1.5.16 (Triangle Inequality). Let G = (V,E). If u, v, w ∈ V , then

d(u, v) + d(v, w) ≥ d(u,w).

Proof. Suppose this is not true for some u, v, w. Then d(u, v) + d(v, w) < d(u,w). It suffices to
assume all these distances are finite (why?). Hence there is a path from u to v of length d(u, v),
and a path from v to w of length d(v, w). “Adding” these paths together (following one, then the
other) gives us a path from u to w of length d(u, v) + d(v, w) < d(u,w), contradicting that d(u,w)
is the minimum length of paths from u to w.

If you’ve studied topology, this makes any undirected graph G into a metric space—i.e., the
distance function satisfies all the usual properties (d(u, v) ≥ 0 with equality if and only if u = v,
d(u, v) = d(v, u) and the triangle inequality). This is not true for directed graphs, since d(u, v) �=
d(v, u) in general (e.g., consider the directed linear graph on 4 vertices above—d(1, 4) = 3 but
d(4, 1) = ∞).

If we have some sort of communication or transportation network, we want some measure (or
measures) of efficiency (i.e., how fast things can travel between two nodes). Here is the most basic
one.

Definition 1.5.17. Let G = (V,E) be a graph (directed or not). The diameter of G, denoted
diam(G), is the maximum distance d(u, v) for u, v ∈ V .

The diameter is finite if and only if G is connected and undirected, or G is strongly connected
and directed.

Example 1.5.18. For the cyclic graph Cn of order n, we have diam(Cn) = �n2 �.
∗ (Draw a few

examples.) The diameter of the directed cyclic graph of order n is n− 1.
The diameter of a linear graph of order n is n − 1. The diameter of a directed linear graph is

∞.
The diameter of the complete graph Kn is diam(Kn) = 1.

The diameter provides an upper bound on the time it takes to get between two points in the
graph. Thus smaller diameters indicate higher efficiencies for graphs. You can also think of diameter
of being a measure of “how connected” a graph is—the smaller the diameter, the closer together
the nodes are, so things are better connected in some sense. For (strongly) connected (di)graphs,
the diameter of n − 1 for directed cyclic or undirected linear graphs is the worst case possible, as
this proposition shows.

Proposition 1.5.19. Let G = (V,E) be a connected undirected or strongly connected directed graph
of order n. Then diam(G) ≤ n− 1.

Proof. Let u, v ∈ V . Then d(u, v) < ∞ and there is a path γ of length d(u, v) from u to v. By
Proposition 1.5.15, γ must be simple. This means γ has no repeated vertices, i.e., it has at most n
vertices, i.e., it has at most n− 1 edges.

∗�x� denotes the floor, or greatest integer, function—round x down to the nearest integer, while �x� denotes the
ceiling function—round x up to the nearest integer.

46

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Another measure of how well connected a graph is to look at the average distance between
vertices. This will give us a (often times better) estimate on how long it will take to get from a
random vertex to another random vertex. This is like looking at the average case running time of
an algorithm instead of the worst case running time. Which measure is more appropriate depends
upon the particular problem, but as the diameter is an easier quantity to get a handle on, we will
focus primarily on that.

However, let us at least give a precise definition. For a directed or undirected graph G = (V,E),
define the average distance on G to be

davg(G) :=
1

n(n− 1)

�

u∈V

�

v∈V, v �=u

d(u, v).

Note n(n − 1) is the total number of ordered pairs (u, v) of distinct vertices, and we average the
distance over those. This is not much harder to compute than the diameter when working with
specific graphs on the computer, but is considerably harder to analyze theoretically. (For instance,
try calculating the average distance for a cyclic graph Cn or linear graph of order n in terms of n.
It is not horrible, but not nearly as easy calculating the diameter.)

Algorithms

Let’s start off with the question of designing an algorithm to find the connected component of a
given v0 of an undirected graph G of order n. The idea is straightforward, though I’ll write a
reasonable amount of detail which will make it easier to code.

Algorithm 1.5.20. Find the connected component of v0.

1. Add v0 to a new set visited (this keeps track of which vertices we’ve already visited, and will
be the connected component of v0 when we’re done).

2. Add each neighbor of v0 to visited. Let newverts be this set of neighbors just added.

3. For each vertex in newverts, find their neighbors. For each neighbor not in visited, add
this vertex to visited. Then let newverts be the set of these vertices just added.

4. Repeat last step until newverts is empty (i.e., until you’re no longer adding more vertices).

5. Ouput visited.

In other words, we start at v0, find its neighbors, find its neighbors’ neighbors, find the neighbors’
neighbors’ neighbors, and so on. This process is known as a breath-first search—we search in layers
for all the vertices in the component of v0 (as opposed to a depth-first search, where one searches
in succesive lines out from v0). At each step in this process, we only travel out from vertices we
haven’t previously visited. This avoids an infinite loop, and makes our algorithm fairly efficient.

Let’s think about how this search is expanding out in a little more detail. (This is what the
set newverts is at each stage.) From v0, we go to it’s neighbors, i.e., vertices distance 1 from v0.
Then we find the neighbors of the distance 1 vertices that we haven’t already seen. These will be
of distance ≤ 2 from v0. Well, the only things we’ve seen are the things of distance 0 and 1 from
v0. Hence our new set of vertices is precisely the vertices distance 2 from v0. Continuing in this
process, after d iterations, the set newverts is precisely the set of vertices of distance d from v0.

47

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Note: I could’ve absorbed Step 2 into Step 3 of this algorithm by just letting newverts = {v_0}

in Step 1. I would do this when coding—I just separated out Step 2 for the purposes of exposition.
Now, let’s analyze this algorithm. At some point in the algorithm, for each vertex in the

connected component of v0, I need to find the neighbors of v0 and go through each neighbor, check
if it was already visited and either add it to the connected component or not. Let’s say there are
m vertices in the connected component of v0. Each such vertex has at most m − 1 neighbors (we
can ignore loops), hence this algorithm has a running time of O(m2). Since m ≤ n, we can also
say this algorithm runs in O(n2) time. In fact, if one uses adjacency lists, this algorithm can be
implemented in O(n+ |E|) time.

With this algorithm in hand, it is easy to find all connected components of G = (V,E). Pick a
random v0 ∈ V . Find its connected component V0. Now take a random v1 ∈ V − V0, and find its
connected component V1. Continue this process until all vertices have been exhausted.

Similarly, one can determine if G is connected as follows. Pick a random v0 ∈ V . Find its
connected component V0. Then G is connected if and only if |V0| = n.

Algorithms to find strongly connected components of a digraph G are a bit more involved, and
we will not get into them, but just mention this can also be done in O(n2) time.

Now that we’ve addressed algorithms pertaining to connectedness, let’s move on to distance.
Fix two vertices u, v of a graph G (directed or undirected). How can we compute the distance
d(u, v)? What have we been doing by hand? We’ve (at least I have, and I assume this is what
you’ve been doing too) essentially been finding all simple paths from u to v, of which there are
finitely many and see what path or paths are shortest possible. This is easy to by hand for small
graphs, but to do for large graphs, or to automate on the computer, it requires some work to
generate all simple paths from u to v.

However, if we remember our algorithm for finding the connected component of u, we organized
all vertices in the connected component of u by their distance from u. If we just kept track of
that information in our algorithm, we’ll have the distance not just from u to v, but from u to any
other vertex in the graph (if the other vertex is not in the connected component of u, we know the
distance is infinite).

Here is Python code to do just that, using adjacency matrices and our previous function
neighbors. The function is called spheres for the following reason. Given a graph G = (V,E)
and a vertex u ∈ V , the sphere of radius r centered at u is the set

Su(r) = {v ∈ V : d(u, v) = r}.

It is called a sphere because this is the same definition as for spheres in the Euclidean space familiar
to you.

Python 2.7
def spheres(A, i):

sph = [{ i }]
visited = { i }
newvert = { i }
while len(newvert) > 0:

new = set()
for j in newvert:

neigh = neighbors(A,j)
for k in neigh:

48

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

if k not in visited:
new.add(k)

newvert = new
if len(newvert) > 0:

sph.append(newvert)
visited = visited.union(new)

return sph

This function returns the list [Su(0), Su(1), Su(2), . . . , Su(m)] where m is the maximum distance
from u of any vertex in the component of u. Here each Su(r) is returned as a Python set. Con-
sequently, if you enter sph = spheres(A, i), then you can access Su(r) simply by sph[r]. This
function works for directed and undirected graphs. It really is essentially an implementation of
Algorithm 1.5.20 where we simply keep track of which vertices are distance r from u, so the same
analysis applies and it runs in O(n2) time.

With this function, we can compute d(u, v) as follows.

Algorithm 1.5.21. Compute d(u, v).

1. Compute the spheres Su(r) centered at u.

2. For each possible value of r, check to see if v ∈ Su(r). If so, output r.

3. Otherwise, output ∞ (which in the computer we often code as −1).

Here the first step take O(n2) times, the second can be done in O(n) time (the number of
vertices in the union of the spheres is at most n), and the last step takes O(1) time. Hence this
algorithm for computing the distance takes O(n2) +O(n) +O(1) = O(n2) time.

We remark one could make this more efficient by not computing all spheres Su(r) first, but
compute them inductively and check at each step if v ∈ Su(r).

Lastly, we present an algorithm for computing the diameter. One could simply try to use the
definition and compute d(u, v) for all u, v, and take the maximum distance. However, we can do it
more efficiently than that.

Algorithm 1.5.22. Compute diam(G), where G = (V,E).

1. For each u ∈ V , do the following:

2. Compute the spheres Su(r) centered at u.

3. Let B(u) =
�

r Su(r). If |B(u)| < n, some vertex is not reachable from u, so return ∞.

4. Otherwise, let du be the maximum r for which Su(r) is nonempty. (We can get this by
len(spheres(A,i)).) This is the maximum distance any vertex can be from u.

5. Output max{du : u ∈ V }, which must be the diameter.

See Exercise 1.5.13 for the analysis. Note that if we were just working with undirected graphs,
one could avoid doing Step 3 for each u, and just do it for one u at the beginning to ensure G is
connected.

49

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Exercises

Exercise 1.5.1. Consider the komplete graph K4 on {1, 2, 3, 4}.
(i) Enumerate all simple paths from 1 to 4. How many are there?
(ii) How many cycles of lengths 2, 3 and 4 are there on K4?

Exercise 1.5.2. (i) Consider a cycle graph C5 on {1, 2, 3, 4, 5}. For each vertex j, compute d(1, j).
(ii) Do the same for the directed cycle graph on {1, 2, 3, 4, 5}.

Exercise 1.5.3. Let G = (V,E) be an undirected graph. Show that being in the same connected
component is an equivalence relation, i.e., show:

(i) for any v0 ∈ V , v0 is in the connected component of v0;
(ii) if v1 is in the connected component of v0, then v0 is in the connected component of v1; and
(iii) if v2 is in the connected component of v1 and v1 is in the connected component of v0, then

v2 is in the connected component of v0.

Exercise 1.5.4. Let G = (V,E) be a graph. Show that v0 ∈ V is an isolated node (i.e., degree 0)
if and only if its connected component has size 1.

Exercise 1.5.5. Let G = (V,E) be a digraph. Show the strongly connected components partition
V into disjoint subsets by showing that being in the same strongly connected component is an
equivalence relation.

Exercise 1.5.6. Let G be a connected undirected graph of order n. Show G has at least n−1 edges.

Exercise 1.5.7. Let n ≥ 2. Consider the cycle graph C2n = (V,E0), and form the graph G = (V,E)
on the same vertex set V = {1, 2, . . . , 2n} (with the usual choice of cycle, i.e., the edges are {1, 2},
{2, 3}, . . ., {2n−1, 2n} and {2n, 1}) with E = E0∪{n, 2n}. In other words, we add the “diagonal”
edge to Cn from n to 2n. In G, what is d(1, n+ 1)? Determine diam(G).

Exercise 1.5.8. Let Cm = (V1, E1) and Cn = (V2, E2) be cycle graphs. Consider the graph G =
(V,E) obtained by taking the union (or “direct sum”) of Cm and Cn and connecting them with a
single edge. Precisely, fix v1 ∈ V1 and v2 ∈ V2. Then V = V1 ∪ V2 and E = E1 ∪ E2 ∪ {{v1, v2}}.
Determine diam(G).

Exercise 1.5.9. Determine, in terms of n, the running time of the algorithm described in the text
(after Algorithm 1.5.20) to find all connected components of G.

Exercise 1.5.10. Using the spheres function, write functions component(A,i), components(A)
and is_connected(A) to find the connected component of vertex i, all components of G, and
determine if G is connected, where A is the adjacency matrix for a directed or undirected graph G.
(Caution: remember to convert A to the adjacency matrix for the associated undirected graph.)

Exercise 1.5.11. Using the spheres function, write a function distance(A,i,j) that computes
the distance from vertex i to vertex j given a directed or undirected graph adjacency matrix A.

Exercise 1.5.12. Write a function diameter(A) to compute the diameter of a graph given its
adjacency matrix A using the above algorithm.

Exercise 1.5.13. Analyze the running times for the following two algorithms to compute the di-
ameter: (i) the naive algorithm of computing all possible distances and taking the maximum, and
(ii) Algorithm 1.5.22.

50

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

1.6 Network design, trees, k-connectedness and regularity

� Here graphs are undirected unless otherwise stated.

Now let’s consider the problem of designing a network. When designing something in real life,
there are pros and cons, costs and benefits, that we need to balance out. In network design, there is
typically a cost associated to each edge of the nework (for construction, maintenance, or both—e.g.,
think of a highway network). Hence one wants to minimize the number of edges in the network
while maintaining certain standards of performance.

Let’s first consider just the following simple constraint: the network should be connected. This
is of course a minimum necessity for communication and transportation networks. How few edges
do we need to make a connected network on n vertices? Recall Exercise 1.5.6 says we need at least
n − 1 edges. Furthermore we can always make a network connected with n − 1 edges by using a
linear or path graph. What else can we do?

Well, for n = 2, there is only 1 graph with 1 edge, and it is connected. For n = 3, again there
are only 2 possibilities with 2 edges. For n = 4, we have 2 possibilities (up to isomorphism):

For n = 5, we have 3 possibilities:

The above graphs are all examples of an important family of graphs, namely trees.

Definition 1.6.1. Let G be a (simple undirected) graph. We say G is a tree if it is connected and
has no cycles of length > 2.

Proposition 1.6.2. Let G = (V,E) a connected graph of order n. Then G is a tree if and only if
|E| = n− 1.

Proof. Both directions will be proved by proving the contrapositive.
(⇐) First we claim that if G has a cycle of length r > 2, it must have more than n edges.

By relabelling vertices, we may assume V = {v1, . . . , vn}, where there is a cycle of length r on
{v1, . . . , vr}. The existence of the cycle means there are at least r edges involving only v1, . . . , vr.
Since G is connected, one of the remaining vertices, say vr+1 must have an edge to one of v1, . . . , vr.
Thus there are at least r + 1 edges involving only v1, . . . , vr+1. Continuing this argument shows
there are at least n edges involving v1, . . . , vn, |E| ≥ n as claimed.

Hence if G is connected with n− 1 edges, it has no cycles of length > 2, i.e., is a tree.
(⇒) Now suppose |E| ≥ n ≥ 3. We want to show G has a cycle of length > 2.
A leaf is a vertex with degree 1. It is clear no cycle of length > 2 will involve a leaf. Thus we

may prune all the leaves, i.e., delete the leaves and the corresponding edges from the graph G to

51

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

get a subgraph G�. If there were l leaves, now G� is a graph on n − l vertices with at least n − l
edges. It is impossible for all vertices of a connected graph on ≥ 3 vertices to be leaves (if this is
not clear, think about the argument in (⇐)), so G� indeed has some vertices. Furthermore, since
there are no graphs on m = 1 or 2 vertices with m edges, G� must have at least 3 vertices.

Now prune G�. Continue this process of pruning leaves until there are no more. (This process
must terminate as the number of vertices becomes strictly smaller at each step, with a lower bound
of 3.) This leaves (no pun intended) us with a graph G0 with m ≥ 3 vertices and at least m edges.
Since G0 has no leaves, each vertex of G0 has degree ≥ 2. This means G0 has a cycle of length > 2
by Exercise 1.6.3, as desired.

This means that if G is a tree, it has at most n − 1 edges (we just showed the contrapositive
for n ≥ 3, but this statement is trivial when n = 1 or n = 2), but it has to have at least n− 1 since
it is connected, i.e., |E| = n− 1.

Remark: the above proof is typical of classical graph theory, and we’d be doing a lot more
arguments like this in a standard graph theory course than we will in this one.

In other words, the trees are precisely connected graphs with the minimum possible number of
vertices, i.e., the best candidates for our overly-simplified network design problem. Now we can
ask, is there any way in which some of the trees might form a better network than others?

Well, another nice property we would like our network to have, besides being connected, is
efficiency, i.e., one should be able to get between two points in the network relatively quickly, so
we want small diameter (or average distance). If we look back at our trees for n = 4 and n = 5,
it is clear the ones on the right are more efficient, and the ones on the left (i.e., the linear graphs)
are least efficient. We can generalize the trees on the right to n vertices as follows.

Example 1.6.3. Let n ≥ 3. The star graph of order n is the undirected graph G = (V,E) with
V = {1, 2, . . . , n} and E = {{1, 2}, {1, 3}, . . . {1, n}}. That is, vertex 1 is connected to all other
vertices, and there are no other edges. We can picture 1 as being the hub at the center of the
network. Here is the star graph on 9 vertices is

1

2

3

4

5

6

7

8

9

This graph is connected with n− 1 edges and has diameter 2. In particular, it is a tree.

Since the only graph with diameter 1 is the complete graph (why?), the star graph minimizes
diameter among all undirected graphs with less than n(n−1) edges, and this uses the fewest number
of edges possible for any connected graph on n vertices.

52

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

This leads us to the following, perhaps surprising, observation. Naively, you might expect
the more edges there are in your graph, the smaller your diameter should be—perhaps if you
gradually allow more edges, you can get smaller and smaller diameters. Instead, there’s a very
sharp trichotomy here. If you have < n − 1 edges, you must be disconnected so the diameter is
infinite. If you have between n − 1 edges and n2 − n − 1 edges (anything short of Kn), you can
achieve diameter 2. If you have the maximum possible n2 − n edges, then you must be Kn and
have diameter 1. (However, you can get smaller and smaller average distances by adding more
edges—see Exercise 1.6.4.)

Rather, what seems to be more important for getting a small diameter is that the edges are
well chosen, e.g., making a star graph as opposed to a linear graph. This should indicate that some
care should be take in the design to make a good network. On the other hand, we’ll encounter a
differing philosophy later which says that “random graphs” tend to make good networks. Roughly
the idea is that, sure if you pick a tree at random you’re unlikely to end up with the star graph,
but you’re equally unlikely to end up with the linear graph, and chances are that your random tree
will have diameter closer to 2 than to n− 1. This is explored in Exercises 1.6.6 and Exercises 1.6.7.

Okay, so we seem to have given a reasonable answer to the problem of designing an efficient
network on n nodes. Is there anything we’ve overlooked? Well, in a perfect world, not really.
There’s the aspect that for a physical network, different links will need to be different lengths, and
may have different costs associated with them (both for building/maintaining and for travelling
along), but we’ll revisit this issue later, albeit fairly briefly.

There are two main issues with using a star graph for a network. First, in the real world, things
fail all the time. A cable (edge) could get severed, a server (node) might be down for maintenance
or have hardware issues, roads (edges) or airports (nodes) might be due to the weather. If the
hub of a star graph fails, then the whole network goes down. Or if a single edge goes down, the
corresponding outer vertex becomes stranded. A network that can reasonably handle such failures
is said to be robust.

The second main issue has to do with traffic, or network flow. If we use a star graph as a
network, all traffic must pass through the central hub. Then during busy times, it may be that
traffic gridlocks at the hub rendering the network essentially non-functional for a period of time.
If we want to study traffic issues precisely, then one can define formal notions of the capacity of a
network (how much/how fast information/traffic can pass through) and the network flow. However,
if our network is robust, this will mean that there are several different ways to get from one point
to another, and therefore traffic can be rerouted when necessary to cut down on gridlock. Hence
we will focus on robustness now.

Here are a couple of basic measures of robustness.

Definition 1.6.4. Let G = (V,E) be a graph (possibly directed and non-simple) of order n > k
with n > 1 We say G is k-connected, or k-vertex-connected, if the removal of any subset of
< k vertices (and involved edges) yields a connected subgraph. The vertex connectivity κ(G) of
G is the maximal non-negative integer such that G is κ(G)-connected. Alternatively, κ(G) is the
minimal number of vertices one needs to remove to make G disconnected or have order 1.

A vertex cut is a set of vertices V0 of V such that the subgraph V −V0 is disconnected. Hence
the minimal size of a vertex cut (when one exists) is κ(G).

Note κ(G) tells us that if < κ(G) nodes of our network fail, the remainder of our network will
still be functional (connected). Note that G is 1-connected if and only if G is connected (and

53

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

n > 1), and κ(G) = 0 means G is disconnected. However, G being 0-connected does not mean G
is disconnected—any k-connected graph is automatically (k− 1)-connected from the definition (for
k > 0).

For a directed graph G, being k-connected means the same as the associated undirected graph
being k-connected.

Definition 1.6.5. Let G = (V,E) be a graph (possibly directed and non-simple) of order n ≥ 2.
We say G is k-edge-connected if the removal of any subset of < k edges (but no vertices) yields
a connected subgraph. The edge connectivity λ(G) is the maximal non-negative integer such that
removing any subset of < λ(G) edges (but no vertices) leaves G connected. Alternatively, λ(G) is
the minimal number of edges one needs to remove to make G disconnected.

A cut, or an edge cut is a subset of edges E0 such that the graph (V,E −E0) is disconnected.
The minimal size of a cut equals λ(G).

Note λ(G) means that if < λ(G) edges of our network fail, our network will still be functional
(connected). Again G is 1-edge-connected if and only if G is connected (and n > 1), and λ(G) = 0
means G is disconnected. Also, k-edge-connected implies (k− 1)-edge-connected (assuming k > 0).

For a directed graph G, being k-edge-connected is not the same as the associated undirected
graph G� being k-edge-connected, as 1 edge in G� might correspond to 1 or 2 edges in G. However,
an edge cut of size k in G corresponds to an edge cut in G� of size ≤ k, so we can say λ(G�) ≤ λ(G).

We avoided defining vertex and edge connectivity for a graph of order 1 (which is connected)
to avoid putting more technicalities in the definitions.

We remark that (if n ≥ 2) edge cuts always exist (you can cut off all edges from a given vertex
to isolate it), but vertex cuts do not. For instance, take the linear graph of order 2—we can only
remove 1 vertex and still be left with a subgraph (I’m not allowing “empty graphs” on 0 vertices),
and either vertex you remove leaves you with a (connected) graph on 1 vertex. This is why the
alternative definition of κ(G) includes the condition that removing κ(G) vertices leaves you with a
single vertex.

Example 1.6.6. The linear graph Ln of order n ≥ 2 has κ(Ln) = λ(Ln) = 1. To see this, note
Ln is connected so κ(Ln), λ(Ln) ≥ 1. If n = 2, we can only remove 1 vertex as discussed above,
so κ(L2) = 1. If n > 2, we can remove any vertex “in the middle” and this will disconnect the
graph, so κ(Ln) = 1. Similarly, for any n ≥ 2, if we remove any edge, we disconnect the graph, so
λ(Ln) = 2.

Example 1.6.7. More generally, let T be any tree of order n ≥ 2. Then again κ(T) = λ(T) = 1.
To see this, note T must have at least one leaf (otherwise, it has minimum degree 2 and therefore
a cycle of length > 2 by Exercise 1.6.3). We can cut the edge from the leaf to disconnect T , so
λ(T) = 1. Again, for n = 2 it is trivial to see κ(T) = 1, so assume n ≥ 3 now. Then removing a
neighbor of a leaf cuts of the leaf from the rest of the tree, so we have a vertex cut of size 1, i.e.,
κ(T) = 1.

Example 1.6.8. Consider the cycle graph Cn, n ≥ 3. We can isolate any vertex by removing
the two adjacent vertices or edges, however removing any single vertex or edge leaves us with a
connected subgraph (a linear graph of order n− 1). Hence κ(Cn) = λ(Cn) = 2.

Example 1.6.9. The complete graph Kn, n ≥ 2, has κ(Kn) = λ(Kn) = n − 1. To see this,
observe removing any set of k < n vertices leaves us with a complete subgraphs Kn−k, i.e., κ(Kn) =

54

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

n− 1. On the other hand, suppose there is an edge cut that leave two vertices u and v in different
components. How many ways can we get from u to v in Kn? There are many, but here are n− 1
possibilities: we can go straight from u to v, or for any of the other n − 2 vertices w, we can go
from u to w, then w to v. Note these paths are independent in the sense that they have no edges
in common. Hence to disconnect u from v, we need to get rid of at least 1 edge from each of these
paths, i.e., the minimum size of a cut is at least n− 1. In fact it is exacly n− 1 since we can just
remove all n− 1 edges from u. Thus λ(Kn) = n− 1.

Remark: A fundamental theorem about connectivity is Menger’s Theorem. It states that
the number of edges needed to disconnect u and v is the maximum number of independent paths
from u to v. There is also a vertex connectivity version. This theorem is a special case of the
famous Max Flow-Min Cut Theorem, which is a generalization to the setting where one considers
each edge having a certain capacity for traffic.

Up till now, we haven’t seen any examples with κ(G) �= λ(G), so you may be wondering if they
exist. Well, they do. How might we construct one? First observe the following.

Proposition 1.6.10. Let G = (V,E) be a connected graph (possibly directed non-simple) of order
n ≥ 2. Suppose C is an edge cut of minimal size. Then the cut graph G� = (V,E − C) has two
connected components, i.e., C partitions V into two disjoint subsets.

Proof. Exercise.

Proposition 1.6.11. Let G = (V,E) be a graph (possibly directed non-simple) of order n ≥ 2.
Then κ(G) ≤ λ(G) ≤ n− 1 if G is undirected and κ(G) ≤ λ(G) ≤ 2n− 2 if G is directed.

Proof. Consider a minimum edge cut C = {e1, e2, . . . ek}. This cannot contain any loops, otherwise
we would remove the loops and get a smaller edge cut. Thus k ≤ n − 1 if G is undirected and
k ≤ 2n− 1 if G is directed.

Now let’s show κ(G) ≤ λ(G) = k. We may assume now G is undirected, otherwise we can
replace it with the associated undirected graph G�, which satisfies λ(G�) ≤ λ(G).

The idea is the following: for each edge in the edge cut, remove a vertex at one end to get a
vertex cut. However, one has to be a little careful because doing this arbitrarily may not give us a
vertex cut (indeed, they don’t exist for Kn).

By definition, κ(G) ≤ n − 1, our proposition is true whenever λ(G) ≥ n − 1. Hence we may
assume λ(G) ≤ n − 2. (This rules out Kn.) The previous proposition says that C partitions V
into two disjoint subsets V1 and V2. We claim that there exist u ∈ V1 and v ∈ V2 such that (u, v)
is not an edge in C. Otherwise, there must be an edge from each vertex in V1 to each vertex in
V2, which would give us |V1| × |V2| edges. Consequently, for C to disconnect V1 from V2, we would
need k = |V1| × |V2|. It is easy to see |V1| × |V2| is minimized when either |V1| or |V2| is 1, and the
other is n− 1, so k = λ(G) ≥ n− 1, which we are assuming is not the case. Therefore, the claim is
true.

Now each edge ei ∈ C, pick a vertex vi at one end of ei such that u ∈ V1 and v ∈ V2 do not
lie in V0 = {v1, v2, . . . , vk}. Here the vi’s need not be distinct, so this set may have less than k
elements. Removing V0 removes all the edges in C also, so V0 forms a vertex cut of size ≤ k (it
must disconnect u from v). Hence κ(G) ≤ k = λ(G).

The above argument suggests that, in order to construct a graph with κ(G) < λ(G), we need a
graph where there is a minimal edge cut that involves repeated vertices. Here is an example.

55

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Example 1.6.12. Consider the following graph G.

1

2 3 5

4

Then κ(G) = 1 ({3} is a vertex cut), but there is no edge cut of size 1. However, there are edge
cuts of size 2, e.g., {{1, 2}, {1, 3}}, so λ(G) = 2.

In fact, we can construct an infinite family of examples.

Example 1.6.13. Take two cycle graphs Cm and Cn, and make a new graph G by connecting one
vertex v0 of Cm to two different vertices of Cn. For example, if m = n = 3 (the smallest size of
cycle graphs), we can do this

1

23

4

56

Then removing any single edge from Cm, or from Cn, or one of the 2 connecting edges will not
disconnect the graph since Cm and Cn are 2-edge-connected. Hence our new graph is also 2-edge-
connected. However, removing the vertex v0 of Cm (2 in the above picture) which connects to Cn

will disconnect Cn from Cm minus v0. Thus this graph satisfies κ(G) = 1 and λ(G) = 2.

Let’s return to the question of network design. First consider the problem of designing a robust
network at minimal cost (let’s not worry about efficiency yet). Say we want a network that will
still be functional (connected) if some number of nodes or edge fail. Then we can set a threshold
number k, depending on our expectations of this network, such that if any set of < k nodes or
edges fail, our network is still connected. That is, we want a k-connected network. Now we can
ask what is the minimum number of edges we need.

Proposition 1.6.14. Let G = (V,E) be an (undirected) graph on n nodes. If G is k-connected (or
k-edge-connected), then each vertex of G has degree at least k. In particular, |E| ≥ nk

2 .

For k-connected directed graphs, we will have |E| ≥ nk.

Proof. Clearly the first statement implies the second, so we just need to prove the first. Fix any
vertex v0 ∈ V , and let d be the degree of v0. Then if we remove the d edges coming out of v0, we
disconnect the graph. Hence we have an edge cut of size d. Thus κ(G) ≤ λ(G) ≤ d, i.e., d ≥ k.

Now we can ask if one can actually construct a k-connected graph on n vertices with nk
2 edges.

Well, clearly this is impossible if nk is odd, so really the best one can ask for is a k-connected graph
with �nk2 � edges. When k = 2, we want a 2-connected graph with n edges. Here we see the cycle
graph Cn is 2-connected with n edges, so this is possible for k = 2. For general k, such graphs were
constructed by Frank Harary, and now known as Harary graphs, and denoted Hn,k.

56

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Example 1.6.15. We will construct H2n,3, i.e., a 3-connected graph on 2n vertices with the min-
imum possible number of edges, 3n. Start with a cycle graph C2n on V = {1, 2, . . . , 2n}. Now
connect each vertex to its diametrically opposite pair (this is why we assume an even number of
vertices, but the construction is similar for an odd number of vertices). For example, for n = 10
we have:

3

2

110

9

8

7

6 5

4

It is an exercise to check κ(H2n,3) = λ(H2n,3) = 3.

We won’t bother going through the general construction of Harary graphs, though see the
exercises for k = 4. The reason is the following: they don’t have very small diameter, and therefore
aren’t appropriate for making efficient networks. For example, when k = 2, Hn,2 = Cn has diameter
�n2 �. Similarly, the diameter of H2n,3 grows linearly in n (see Exercise 1.6.10).

If we allow ourselves to increase the cost (i.e., the number of edges), we can bring ourselves
down to diameter 2, by combining the star graph with a cycle graph (or if you prefer, adding a
vertex to the center of H2n,3).

Example 1.6.16. Let n ≥ 4. The wheel graph of order n is the undirected graph G = (V,E)
with vertex set V = {1, 2, . . . , n} obtained by taking a cycle graph on {2, 3, . . . , n} and connecting
the vertex 1 to each of the vertices 2, 3, . . ., n. Here is a picture of the wheel graph of order 9.

1

2

9

8

7

6

5

4

3

The vertex 1 acts as the hub for the network.
It is easy to see the wheel graph has diameter 2 and is 3-connected (and 3-edge-connected), with

2n− 2 edges (compared to a minimum possible �32n� edges for 3-connected graphs).

57

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Now how good would a wheel graph be for an actual network? Well, it depends on what exactly
we want, but let’s suppose 3-connectivity is enough for us. While it is somewhat robust, and
efficient, and not too costly (the number of edges grows linearly in n, as opposed to quadratically),
it is highly reliant on the hub (the central vertex 1) for most short paths. For many networks,
hubs (nodes that are connected to a relatively large number of other nodes) are quite desirable.
For organization/administrative purposes, it’s often convenient to have a few central nodes (think
of a flight path network). However, the wheel graph has only one hub, so it will experience all
of the traffic and if there is a problem with the hub, the network, while still connected becomes
very inefficient (a cycle graph with diameter �n2 �). Imagine if 90% of all US flights went through
Chicago. Now imagine this during a winter snowstorm.

In practice, networks may have a number of hubs, of varying sizes. You may not be able to
get everywhere in 2 steps, but maybe you can get to most places in 2 or 3 steps, and in several
ways, so traffic can be rerouted. This provides some sort of compromise between our three desired
qualities: efficiency, robustness and cost effectiveness.

At the other end of the spectrum, we could have highly decentralized networks, meaning an
absence of hubs. It turns out these make excellent networks in practice also, provided there aren’t
administrative reasons for wanting a centralized network.

Definition 1.6.17. Let G be a graph (simple or not, but undirected). We say G is k-regular if
each vertex of G has degree k. We say G is regular if it is k-regular for some k.

Note Cn, Kn and H2n,3 are regular graphs, where as linear graphs, star graphs and wheel graphs
are not. We know by Proposition 1.6.14 that a k-regular graph is at most k-connected, and the
Harary graphs show we can achieve k-connected k-regular graphs when nk is even. Now we can
ask, how efficient can k-regular graphs be?

Proposition 1.6.18. Let G be a k-regular graph on n nodes with k ≥ 2. Then diam(G) >
logk(n(k − 1))− 1.

Proof. Assume G = (V,E) is connected and fix a vertex v0 ∈ V . Now run through the algorithm to
find the connected component of v0. In other words, we find the neighbors of v0, then its neighbors’
neighbors, and so on. At the first step, we find k neighbors, i.e., k elements distance 1 from v0.
At the next step, for each neighbor, we have at most k neighbors of this neighbor, so there are at
most 1 + k + k2 vertices of distance ≤ 2. Similarly, there are at most kd−1

k−1 = 1 + k + k2 + · · ·+ kd

vertices of distance ≤ d from v0. Our algorithm cannot terminate before this number is ≥ n, i.e.,
there exists some vertex v of distance d from v0 with kd−1

k−1 ≥ n, which implies there are two nodes
in G which are distance d > logk(n(k − 1))− 1 apart.

This is not the best possible lower bound for the diameter of a k-regular graph, but it is not
too far off. The point is the diameter has to grow at least logarithmically in n. It turns out that if
we look at a random k-regular graph, it will with very high probability be k-connected (say nk is
even, otherwise k-regular graphs don’t exist) and have diameter that is essentially logarithmic in
n, which is much much better than the linear growth of diameter for graphs like Cn or H2n,3. Time
permitting, we will explain this in greater detail when we begin our discussion of random graphs
in earnest.

In closing this section, you might notice that we don’t have a single measure of how good a
network is, we have several—diameter/average distance, vertex/edge connectivity, and size. We
also don’t have any direct measure of how “robustly efficient” a network is—meaning, if not too

58

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

many nodes go down, will the network still be efficient? This of course is very important in practice.
It’s reasonable to guess that if a graph is k-connected but not too many nodes or edges go down in
comparison to k (e.g., k/4 or

√
k), that the graph will still be fairly efficient. This is not necessarily

always true (e.g., if you have a few central hubs, and they all go down), but it’s often true. When
we get to spectral graph theory, we will see that looking at eigenvalues provides a way to measure
how good the “network flow” is. This will give us a convenient quantity which provides a nice
balance of the qualities of efficiency, robustness and robust efficiency.

Exercises

Exercise 1.6.1. Draw all possible unlabelled trees of order 6.

Exercise 1.6.2. Draw all possible unlabelled trees of order 7.

Exercise 1.6.3. Let G0 be a (simple undirected) graph with minimum degree ≥ 2, i.e., each vertex
has degree ≥ 2. Show G0 has a cycle of length > 2. (Hint: start at any vertex try to trace out a
simple path, and show it must eventually lead to a repeated vertex.)

Exercise 1.6.4. Let Gn,e denote the set of (simple undirected) connected graphs of order n with e
edges. Let fn(e) denote the minimum possible average distance for a graph G ∈ Gn,e. Show that
fn(e + 1) < fn for n − 1 ≤ e < n(n − 1). In other words, unlike diameter, you can always get
smaller average distances by adding in more edges.

Exercise 1.6.5. Let G be a connected graph of order n with n edges. What is the maximum possible
value for diam(G)? Explain why, and explain how to construct graphs with this diameter.

Exercise 1.6.6. For n = 4, 5, 6, 7, do the following. Compute the number of (unlabelled) trees of
a given diameter 2 ≤ d ≤ n − 1, and determine the probability that a given tree of order n has
diameter d. Assume each tree of a given order is equally likely (this is not the case in practice if you
try to randomly generate trees by a reasonable method, e.g., it is not very likely you will generate a
linear graph).

Exercise 1.6.7. Write a Python function randtree(n), that randomly generates a tree on n nodes
as follows. Start with vertex 2. Now add vertex 2 and connect it to vertex 1. Then add vertex 3,
randomly select one of vertices 1 and 2, and connect 3 to that vertex. Continue in this process until
you have n nodes, and return the adjacency matrix. Then, using this function:

(i) By generating 100 random trees of order 4, estimate the probability of getting each type
of unlabelled tree of order 4. Do the same for order 5. (Hint: for n = 4, 5, you can determine
the isomorphism type of the tree by looking, e.g., at the diameter, maximum degree, or number of
leaves.)

(ii) For each n = 5, 10, 20, 50, 100, generate 100 random trees of order n, and estimate the
expected diameter of a random tree of order n.

Exercise 1.6.8. Let G be a simple undirected graph on n nodes. Show if G �= Kn, then G has a
vertex cut.

Exercise 1.6.9. Prove Proposition 1.6.10.

Exercise 1.6.10. Show that H2n,3 from Example 1.6.15 has vertex and edge connectivities of 3.
Determine the diameter.

Exercise 1.6.11. For n = 5, 6, 7 vertices, construct a graph with 2n edges which is 4-connected.
Can you generalize this to arbitrary n?

59

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

1.7 Weighted Graphs and Travelling Salesmen

� Here graph means undirected graph.

Definition 1.7.1. A weighted graph G = (V,E,w) is a graph (V,E) together with a weight
function w : E → R>0.

In other words, a weighted graph is a graph to which we assign each (undirected) edge a
weight, which is a positive real number. (One can also consider nonpositive weights, but for our
applications, we want positive weights.) The weight of an edge is typically thought of as the cost
of using this edge (which might be a physical distance, or a financial cost, or a time cost, or some
combination of these relevant for the problem at hand). We draw this graphically by drawing our
graph as usual, and then writing the weights on or next to each edge. Much of what we have done
so far can be done in the context of weighted graphs.

First, we can still represent graphs with matrices. If the vertex set is V = {1, 2, . . . , n}, put
wij = w(i, j) if (i, j) ∈ E and wij = 0 else. Then we can represent the weighted graph G = (V,E,w)
with the weighted adjacency matrix A = (wij)ij .

Example 1.7.2. Here is a weighted graph which depicts some approximate road distances among
four cities: New York, Oklahoma City, San Francisco and Los Angeles.

NY

OKCLA

SF

14
80

1340

39
0 2930

1660

The weight between two cities is an approximate road distance (in miles). We did not include an
edge between LA and NY because going through OKC is approximately the shortest way to get from
LA to NY. The weighted adjacency matrix with respect to the vertex ordering {NY, OKC, SF, LA}
is

A =





0 1480 2930 0
1480 0 1660 1340
2930 1660 0 390
0 1340 390 0



 .

Paths are defined the same way for weighted graphs as for unweighted graphs, except now one
might define the length of the path to be sum of the weights of the edges. To avoid confusion of
terminology, we won’t use the word length for weighted paths (so you won’t just think the number
of edges), but we’ll use the word cost. That is, if γ is a path in G represented by a sequence of
edges (e1, e2, . . . , ek), then the cost of γ is

�k
i=1w(ei). For instance, in our example above the cost

of the path from LA to NY given by (LA, OKC, NY) is 1340 + 1480 = 2820.
Note that if G = (V,E,w) is a weighted graph where we assign each edge weight 1, the cost

is the same as our definition of length for the unweighted graph (V,E). Indeed, we can view the
theory of graphs as a special case of the theory of weighted graphs where all edges have weight

60

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

1. (One can define weighted directed graphs similarly, however we will only discuss the weighted
undirected case here.)

Then one defines distance in the same way: d(u, v) is the minimum possible cost of a path from
u to v, or sets d(u, v) = ∞ if no such paths exist. Again, we have the triangle inequality so distance
defines a metric on weighted graphs (i.e., it satisfies the primary properties you expect from a
notion of distance). Diameter again is the maximum distance between two vertices. The notions
of (vertex or edge) connectedness are the same for weighted graphs as for unweighted graphs, as
the weights on the edges play no role in vertex or edge cuts.

A path of minimal cost between u and v will be simple by the same argument given for un-
weighted graphs. One thing to be careful of is that the cheapest (i.e., lowest cost) path (or paths)
from u to v may not use the fewest number of edges. For instance, consider the weighted graph

1

23

1

1

10

Here the shortest path from 1 to 3 goes through 2, rather than taking the direct edge from 1 to 3.
For this reason, the algorithm for computing distances that we discussed for unweighted graphs

needs to be modified to work for weighted graphs. The basic idea is the same as the spheres

function. Starting at some vertex u, we will do a breadth-first search to find the closest vertices,
then the next closest, and so on. In the process, we will construct what is known as an minimum
spanning tree. This is a subgraph of the connected component of u, which is a tree that contains
only the edges needed to reach any vertex in the component of v with a shortest possible path.

We will just explain the algorithm by way of an example. Consider the following weighted
graph.

1

43

2

5 6

5

2 1 3 1 2

1 1 2

Here’s how we can grow out a minimum spanning tree (MST) starting from vertex 1. Initially, the
MST just contains 1. First we look at the neighbors of 1: there is 2, 3, and 4. Of these 4 is the
closest (distance 1). Therefore, the shortest path from 1 to 4 must be the direct edge from 1 to 4
(any path from 1 to 4 must start from going to either 2, 3 or 4—if we go to 2 first, the path must
have cost greater than 5, and if we go to 3 first, the path must have cost greater than 2). Thus we
will add the edge from 1 to 4 to our MST, so it looks like this.

1

4

1

61

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Now we look at the closest neighbors of 4—besides 1, there are two: 3 and 5. This gives us two
paths to consider from 1 to 3, either (1, 3) or (1, 4, 3), both of which have cost 2. We can choose
either of these to be in our MST since they have the same cost. We also get one path from 1 to 5,
namely (1, 4, 5) which has cost 2. Again, looking at the neighbors of 1 tells us no other path to 5
can be shorter to this one, so we will add the edge (4, 5) to our tree. Hence at this stage, we have
either the MST

1

43 5

1

1 1

or the MST

1

43 5

2 1
1

depending on which of the shortest paths we used to get from 1 to 3. For this example, let’s choose
the latter.

Now we can explore the new neighbors of 3 and 5. The neighbors of 3 don’t get us anywhere
new, so just consider the new neighbors of 5: 2 and 6. The closest one is 2, and the corresponding
path cost (1, 4, 5, 2) is cost 3. Now we compare this with the other paths we’ve already found to
2: (1, 2) and (1, 4, 2). They have costs 5 and 4, so (1, 4, 5, 2) is the shortest. Thus we will add the
edge (5, 2) to our MST:

1

43

2

5

2 1 1

1

Now we look at the new neighbors of 2: there is just 6. We’ve now found 2 paths to 6: (1, 4, 5, 2, 6)
and (1, 4, 5, 6). The latter is shorter, so we add the edge (5, 6) to our MST, giving:

1

43

2

5 6

2 1 1

1 2

Since 6 has no new neighbors, and now we’ve included all vertices we’ve encountered, so this
completes our minimal spanning tree. In a tree, there is a unique path between any pair of vertices
(Exercise 1.7.1) so we can unambiguously read off the distance from 1 to any other vertex by
looking at the path in the MST. Namely, we see d(1, 4) = 1, d(1, 3) = d(1, 5) = 2, d(1, 2) = 3 and
d(1, 6) = 4.

62

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

The reason this algorithm works, and works efficiently, is the following: if we have a path from
u to v of minimal cost that passes through w, the part of the path going from u to w must also
be of minimal cost. For example, when we were considering paths from 1 to 6, we didn’t need to
consider paths like (1, 2, 6) or (1, 3, 4, 5, 6) because at that point in our algorithm we already knew
that (1, 2) is not the most efficient way to get to 2 and (1, 3, 4) is not the most efficient way to get
to 4. This algorithm runs in O(n2 log n) time, or to be more precise, O(|E| log n) time.

Of course, an MST will not tell you all paths of least possible cost—there are 2 from 1 to 2,
but only 1 can be in the MST. Finding all paths of least possible cost is a different problem, but
can be done with a simple variant of this algorithm.

With this algorithm to compute an MST for a vertex u, one can compute distance as mentioned
above or the diameter. Again the algorithm to compute diameter is similar. If the graph is
disconnected, it is infinity. Otherwise, do the following. Given an MST for u, one can find the
vertex (or vertices) furthest from u, and record this maximum possible distance du. Now do this
for every u and take the maximum.

Consequently, even for weighted graphs, it is not too difficult to find an optimal way to get
from Point A to Point B. However, what if we want to the optimal way to visit multiple places?
This might seem like a problem that should not be too much harder than finding an optimal route
between two locations, but it is not so simple because trees no longer suffice to address this problem.

Definition 1.7.3. Let G be a weighted or unweighted graph on n nodes. A Hamiltonian cycle
(or Hamiltonian circuit) is a cycle on G containing all n nodes.

If n > 1, this is equivalent to being a cycle of cost n. Such cycles sometimes exist and sometimes
do not, and deciding whether they do or not is a computationally hard problem. Technically, it
is what is known as an NP-hard problem—in particular, it is believed this problem is not solvable
in polynomial time. There are at most n! possible cycles of cost n in a given graph (Exercise
1.7.2), and constructing a given cycle takes O(n) time, so we can at solve this problem (and
construct a Hamiltonian cycle when they exist) inO(n·n!) time. Recall Stirling’s approximation says
n! ∼

√
2πn(n/e)n, which is superexponential. In the 1960’s, an O(n22n) algorithm was discovered

by Bellman and Held–Karp (independently). This is exponential as O(n22n) ⊂ O(3n).
Given a weighted graph G, the travelling salesman problem (TSP) is to find a Hamiltonian

circuit of minimum possible cost. More colloquially, suppose there are n cities you need to visit for
business, but the order in which you go is not important. How can you plan a route to all the cities,
and go back home, that is as short (or cheap) as possible? Hence the name travelling salesman
problem. The TSP is a fundamental problem in optimization, and has applications to areas such
as logistics problems, microchip design and DNA sequencing. (In DNA sequencing, the nodes are
DNA fragments, and the distance measures similarity between two fragments.)

If you think about it a little, you might notice there’s a slight difference between my definition
of the TSP in terms of Hamiltonian circuits and my colloquiual description. Namely, a Hamiltonian
circuit visits each node except the start node exactly once, whereas the least cost tour of n cities
may involve taking a path through a city you’ve already visited. However, we can account for this
with Hamiltonian cycles as follows. Let G be the weighted graph representing n cities, with an edge
representing a direct physical route between 2 cities. (There may be more than one direct physical
route, but for this problem it suffices to include only the one of minimal cost, which will be the
weight of the edge.) Now it may be that there are two cities u and v with no edge between them
(i.e., no direct physical route—e.g., no road or direct flight between the two), or it may happen
that the direct route from u to v is not the most economical. In this case, we make an edge (or

63

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

replace the existing one) between u and v whose weight is the cost of the most economical path
from u to v. This transforms G into a complete weighted graph G� (a weighted graph with edges
between all pairs of distinct vertices, i.e., Kn with weights on the edges) where the weight of any
edge (u, v) is precisely d(u, v). Solving the TSP on G� really is equivalent to finding the least cost
physical tour of the n cities in G, though one needs to keep track of what physical route in G is
represented by each edge in G�. The construction of G� from G can be done in polynomial time, as
distances can be computed in polynomial time.

Assume now G is a complete weighted graph. For complete graphs, it is easy to generate a
Hamiltonian cycle—we can visit all nodes in any order we like! Consequently, we get n! Hamiltonian
cycles (cf. Exercise 1.7.2). Once we specify a starting vertex, there are (n− 1)! Hamiltonian cycles.
Computing the costs of each of these cycles takes O(n) time, so it is possible to solve the TSP in
O(n · (n− 1)!) = O(n!) time. Again one can do better—O(n22n) run time is possible, but the TSP
is also an NP-hard problem, and we expect that it cannot be solved in polynomial time—in fact,
exponential time may be the best possible∗.

Even though these two problems—the TSP and finding Hamiltonian circuits—are closely related
and solvable in the same amount of time (essentially the same algorithm solves them both, and you
can provably reduce† solving one problem to solving the other), here is one feature of TSP that
is harder than the Hamiltonian cycle problem. Given a possible solution to the TSP, i.e., some
Hamiltonian cycle, it is still hard to determine if this proposed solution has minimal cost. On the
other hand, given a possible solution to the Hamiltonian cycle problem, it is easy to determine if
it is a Hamiltonian cycle or not.

Since the TSP is hard, but of practical importance, what can we do? We have a few options:
we can try to solve the TSP for special classes of graphs, we can try to find probabilistic algorithms
to solve the TSP in faster time (this means, they will work some percentage of the time, but they
won’t give the correct solution, or at least not quickly, in some cases), or we can try to find faster
heuristic algorithms which give approximate solutions to the TSP (i.e., find Hamiltonian cycles of
relatively low cost, but not necessarily the minimum possible). Of these approaches, the latter is
typically the most practical, and we’ll discuss this briefly now.

The simplest algorithm you might imagine is, starting from your home vertex, travel to the
neighbor of minimum distance away (or pick one if there are several). From there, again travel
to the closest neighbor (or pick one if there are several) that you haven’t already visited. Repeat
this until you have visited all nodes, and take the unique path home. Remember, we are working
with complete graphs, so this algorithm will always give some Hamiltonian cycle. This is called the
greedy algorithm, because at each step it chooses the cheapest available. However, this may not be
cheapest in the long run as the following example shows.

Consider this graph:

∗There a subexponential/superpolynomial range of functions growing faster than polynomials but slower than
exponential functions, so not being solvable in polynomial time does not mean exponential running time is the best
possible. On the other hand, there are some things that take longer than exponential time (superexponential) to
solve! The TSP can be solved in exponential time, but the naive O(n!) algorithm is superexponential—it is essentially
of the same order as O(nn).

†Meaning a polynomial-time reduction.

64

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

1 2

34

1

3 1

2

1

2

Let’s try to find a minimal cost Hamiltonian cycle starting and ending at vertex 1. What happens
if we use the greedy algorithm. At first, there are two cheapest options available—we can go to 2 or
3. Let’s say we go to 2. Then there is a unique cheapest option available—going to 3. From 3, we
have to go to 4, and back to 1. Thus we have taken the path (1, 2, 3, 4, 1), with cost 1+1+2+3 = 7.
If we had alternatively selected the path from 1 to 3 at the first step, this would force us into the
cycle (1, 3, 2, 4, 1), which in this example also has cost 7. Neither of these is as cheap as possible,
as both require traveling along the most expensive edge (4, 1) in the graph. The best we can do for
this graph is the cycle (1, 2, 4, 3, 1) or the cycle (1, 3, 4, 2, 1), both of which have cost 6.

Many times the greedy algorithm gives an approximate solution to the TSP that is not too
far from optimal, but sometimes is can be much worse. However, it is certainly fast. It runs in
O(n2) time. In 1976, Christofides discovered an polynomial-time algorithm based on a minimal
spanning tree which find a Hamiltonian cycle that costs no more than 1.5 times the cost of an
optimal solution. Roughly the idea is to make a minimal spanning tree, travel along a path in the
tree until it ends, then jump to another path. However, this jumping paths is done in an intelligent
way. In the above example, we can take for a minimal spanning tree from 1 the following:

1 2

34

1

1

2

We can start out by either picking the path (1, 2) or (1, 3, 4) in the MST. Then we should jump to
the end of the other one, and travel back to 1. By chance, either of these choices give a Hamiltonian
cycle of minimal cost, either (1, 2, 4, 3, 1) or (1, 3, 4, 2, 1). Of course for larger graphs, one needs to
be more careful about how to jump from one path to another as there are many choices to make,
and we won’t typically get an optimal cycle, but at least one that’s not too far off.

After 3 decades of essentially no progress along the lines of Christofides’ algorithm, there have
been exciting developments in this direction over the past several years, and now one can find a
Hamiltonian cycle that is no more than 1.4 times the cost of an optimal one in polynomial time
(Sebö–Vygen, 2012).

This is not to say that research on the TSP was stagnant from the late 70’s to the mid 2000’s.
There has been, and still is, much work on alternative kinds of fast heuristic algorithms to ap-
proximate solutions to the TSP. However, it is very difficult to accurately assess how close the

65

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

approximate solution is to the optimal solution—and of course, it should be difficult to assess,
since we don’t have a good way to get a handle on the optimal solutions for comparison.

One simple alternative approach is the Monte Carlo method. We just start from our initial
vertex, and at each stage, travel to a new vertex chosen at random, and repeat until we have to go
home. We do this many times and keep track of the best solution so far. In other words, the Monte
Carlo approach just tries a fairly large number of random paths, and selects the best among those.
This will work well if we are in a situation where most Hamiltonian cycles are relatively cheap, and
we just need to avoid certain bad paths. However, it won’t work well if there are only a few good
paths to find.

There are also a lot more interesting approaches, such as genetic algorithms (algorithms that
evolve themselves based on past performance), simulated annealing, Tabu search and ant colony
optimization (based on artificial intelligence models of ant colony behavior). In fact, the TSP is
often used as a benchmark to compare different kinds of general optimization philosophies. The
TSP has also crept into cognitive psychology—psychologist have studied how good humans are
at solving the TSP (we’re pretty good, though I’m not sure if we’re as good as ants), and what
algorithms most closely model how Earthlings “naturally” (approximately) solve the TSP.

Exercises

Exercise 1.7.1. Let T be a tree, and u and v be nodes in T . Show there is a unique simple path
from u to v.

Exercise 1.7.2. Let G be a (simple) graph of order n > 1. Show that G has at most n! cycles of
length n, with exactly n! occurring in the case that G is complete.

Exercise 1.7.3. Let G be a complete weighted graph of order n > 1. Suppose you have enumerated
all n! Hamiltonian cycles and computed their costs and stored them in a table. Show that you can
find the smallest possible cost in O(n!) time. Is it possible to do better than this (just using this
table)? (Note: even for the naive algorithm to solve TSP, one would not store all Hamiltonian
cycles and their costs in a table as this would require superexponential space—instead, we can just
keep track of the best so far.)

Exercise 1.7.4. Let G be the weighted complete graph on V = {1, 2, 3, 4}, where the weight of an
edge (i, j) is given by min(i, j). Solve the TSP by hand for G, with initial vertex 1. (Give a minimal
cost Hamiltonian cycle, and the cost.) Do the same for initial vertices 2, 3, and 4.

Exercise 1.7.5. Let G be the weighted complete graph on V = {1, 2, 3, 4, 5}, where the weight of
an edge (i, j) is given by min(i, j). Solve the TSP by hand for G, with initial vertex 1. (Give a
minimal cost Hamiltonian cycle, and the cost.)

1.8 Further topics

Since graphs arise in many ways in many situations, there are a plethora of angles from which one
can come to the study of graph theory. We’ve barely touched the surface of classical graph theory,
and now it’s time to move on. (By classical graph theory, I mean something like: the aspects in
graph theory that whose study began before humans started sending things to the moon, or the
parts of graph theory whose study involves mostly just combinatorics, or what I knew something

66

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

about when I was an undergrad. The important thing is I mean certain parts of graph theory that
people thought about before they had to worry about really large graphs or being bothered by
sociologists and economists.) In fact, a 1-semester course just on classical graph theory still isn’t
enough to cover all the “basics.”

I’d like to give you a little overview of the classical graph theory that we’re skipping in this class,
but it a vast, sprawling field, sort of like a a big, complicated graph, and difficult to summarize
succinctly. At a very general level, a lot of graph theory is studying invariants of graphs and
seeing what they tell you—e.g., if you have two graph invariants (e.g., number of edges and vertex
connectivity), does one of them imply anything about the other? Often people study these questions
restricted to certain types of graphs, e.g., trees or regular graphs, where one often gets nicer answers.
Another general type of question is: what conditions imply certain properties of the graph (e.g.,
when can we guarantee the existence of a Hamiltonian cycle?).

One large subarea is extremal graph theory, where one tries to determine the optimal bounds
on one invariant in terms of others. We’ve touched on this above—if the vertex connectivity of an
undirected graph on n nodes is k, then it must have at least �nk2 � edges, and this bound is optimal

because one can construct Harary graphs Hn,k with vertex connectivity k and exactly �nk2 � edges.
Another typical question is: what is the minimum number of edges required for a graph on n nodes
to have clique of order m, i.e., a subgraph isomorphic to Km. (We’ll say a little about cliques later.)
Or: given a k-regular graph on n nodes, what is the minimum possible diameter (we gave a lower
bound, but it is not optimal).

There is a large overlap of graph theory with the field of enumerative combinatorics. Here the
typical question is to count the number of graphs (or subgraphs, or path, or cuts, etc) with certain
properties. For example, count all undirected graphs (or trees, or k-regular graphs) on n vertices
up to isomorphism. Sometimes one is interested in a question not originally phrased in terms of
graphs, and then one interprets it in terms of certain kinds of graphs, and tries to count these kinds
of graphs (or prove something about them).

Another subarea is algebraic graph theory, which uses linear algebra and group theory (groups
are a fundamental object in algebra—a group is essentially the symmetries of some object). to
study graphs. E.g., what do the eigenvalues of the adjacency matrix tell us, or what do the group
of automorphisms of a graph tell us? Conversely, graphs are often used as tools to study groups.
We’ll look at eigenvalues in the third part of the course.

Graphs are also closely related to finite geometries—these are finite sets of points and lines
which satisfy a set of axioms like Euclid’s axioms for plane geometry. This is part of algebraic
combinatorics and has applications to cryptography and the theory of error-correcting codes, which
are important in engineering and communications.

There are many other aspects and areas of graph theory that we won’t get to in this course,
but let me just tell you about what is perhaps the most famous result in classical graph theory: the
four-color theorem. Draw any map on a piece of paper. That is, draw a set of continuous curves
on your paper that divide the space up into a finite number of contiguous regions. This is what
we’ll call a planar map. We can turn this map into a graph by making each region a vertex and
connecting two vertices with an edge when the corresponding regions share a common border (not
just a point). This is essentially what we did for the Königsberg bridge problem, except we used
edges to denote bridges, not borders there.

A graph is called planar, if we can draw it in the plane R2 with no two edges overlapping. It
is clear by construction that if you start with a planar map, the associated graph is also planar.

67

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

Definition 1.8.1. Let S be a set of size k, which we think of as denoting k different colors. A
k-coloring of a graph G = (V,E) is a map α : V → S such that if (u, v) ∈ E, then α(u) �= α(v).
The minimal k such that G has a k-coloring is called the chromatic number χ(G) of G.

In English, a k-coloring of a graph G is just a way to color the vertices of G with k distinct
colors in such a way that no two adjacent vertices are the same color. If G has order n, then we can
clearly color G with n different colors. The chromatic number χ(G) is just the smallest number of
colors we need to color the vertices of G with the above rule.

Theorem 1.8.2 (Four-color theorem). Let G be a planar graph. Then χ(G) ≤ 4.

In other words, any planar graph can be colored with at most 4 different colors. Thus we can
color the regions of any map in the plane using at most 4 colors so that no two bordering regions
have the same color.

This is a nice, simple-to-understand result, of course, but the reason it’s so famous is because of
it’s history. Despite it’s simplicity, it resisted proof for over 100 years, the proof was controversial
at the time, and we still don’t have a good way to understand why it is true.

The four-color theorem was originally stated in 1852, but with an incorrect proof. Many “proof”
and “counterexamples” were since proposed, but were later discovered to also be incorrect. On the
other hand, in 1890, Heawood provided a simple (correct) proof that any planar graph can be
colored with at most 5 colors. Finally, in 1976, Appel and Haken announced a proof of the four-
color theorem that is now believed to be correct. Based on Heawood’s result, it suffices to show
no planar map requires 5 colors. The basic idea of the proof is to assume there is a planar graph
G that requires 5 colors, and use a reduction argument to yield a smaller graph that requires 5
colors. Appel and Haken, through much work, reduced the problem to considering an explicit set
of 1482 cases which were checked by a computer to all be 4-colorable. At the time, the computer
calculations themselves were a great achievement, which took over 1000 hours of computing time.

Proofs are deemed correct or flawed or incomplete by consensus. Typically, especially for
problems of significant interest, the proofs are carefully checked by other experts by hand. However,
this was the first serious example of a computer-proved theorem and doubts remained about it’s
validity—both general doubts about computer proofs because it could not feasibly be verified by
hand and specific doubts about the actual code. People are always skeptical of new things, but
it really is very hard to verify correctness of complicated computer output. First, there is the
issue of guaranteeing that the machine is doing exactly what you tell it (no hardware/environment
issues), then verifying the correctness of the code itself, which can easily have a minor, hard-to-
find bug. (For example, there is a problem in combinatorics/coding theory known as Berkekamp’s
Switching Game, proposed by Berlekamp in 1960. This was “solved” by computer in 1989. I had
two undergraduates work on a generalization of this in the summer of 2002 and, the night before
the end of the summer program, they unexpectedly discovered, again by computer, that the original
solution was wrong!)

In response to some of these doubts, Appel and Haken published a very detailed monograph
of the proof of the four color theorem in 1989, including computer calculations, which was over
700 pages. This is now generally accepted, and since then other researchers have done separate
computer proofs of the four-color theorem to double-check its correctness, but there is no known
complete proof by hand.

The other issue with this computer proof is that it is not very enlightening—traditional proofs
(at least good ones) typically do not just verify the truth of a statement, but also give us intuitive

68

Graph Theory/Social Networks Chapter 1 Kimball Martin (Spring 2014)

understanding of why it is true. Reducing a problem to 1500 cases, which are checked individually,
fails to give a good reason why it is true. This is not to take away from Appel and Haken great
accomplishment—there was a very hard result, and there may be no real simple or enlightening
proof of the four-color theorem.

There are innumerably many texts on graph theory and combinatorics that you can see for
more information on the topics discussed on this chapter. Eventually, I may add a list of specific
references here or in the introduction or at the end, but most of what we have talked about can be
found on almost any introductory text on graph theory, though many books will stick to the case
of undirected and possibly simple and/or unweighted graphs. (Part of the problem is, there are so
many books, it’s hard to choose what to put on a reference list.) One exception is the TSP, for
which you should turn to a book on algorithmic graph theory, or a general book on algorithms or
combinatorial optimization, for more details.

Exercises

Exercise 1.8.1. Show K4 is planar, but K5 is not.

Exercise 1.8.2. Determine the chromatic number of the cycle graph Cn.

Exercise 1.8.3. Determine the chromatic number of the complete graph Kn.

Exercise 1.8.4. Determine the chromatic number of the star graph of order n.

Exercise 1.8.5. Determine the chromatic number of the wheel graph of order n.

69

