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These are notes for three lectures on differential equations for my Calculus II course at
the University of Oklahoma in Fall 2015. Please let me know if you find any errors.

While our main motivation for developing integral calculus is to be able to determine
things like area, volume and lengths of simple geometric objects, some of the major modern
uses of this subject come out of the theory of differential equations, which are important in
many subject such as physics, chemistry, biology, engineering and economics.

A differential equation is simply an equation involving the derivatives of a quantity
y. Often y will be a function of time, usually denoted by t. Some simple examples are

y′ = cy, (1)

y′′ = c, (2)

y′ = ct, (3)

y′′ = c sin y. (4)

Here c is assumed to be a constant.
The first equation says the growth of y at some time t is proportional to the value of

y. This arises, for instance, in a very simplified model of population growth. The second
equation says that y′′ is constant, and can be interpreted as saying an object with position
y at time t has constant acceleration. The third equation, thinking again of y as position,
says that y has velocity proportional to t, and we see the second and third equations are
almost equivalent (they are equivalent if the initial velocity is 0). The last example arises
from modeling the motion of a pendulum, where the acceleration at time t depends on the
position y in an oscillatory manner.

The basic mathematical problem in differential equations is to solve for the function y,
i.e., determine what are the possible functions y that satisfy our equation. For applications,
preliminary to solving a differential equation is finding suitable differential equations to
model our problem and understanding what they represent and their limitations. E.g.,
in first approaches to modeling motion of objects, one might ignore things like friction
or the curvature of space-time. However, first solving these simplified models gives us
some intuition for what’s going on as well as approximate solutions to problem, which are
hopefully reasonable on a suitable timescale (or spacetimescale). Then, if needed, we can
try to refine our models to account for complications imposed by the real world.
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Of course one can also have multiple quantities involved, in particular quantities de-
pending on several variables. This is the situation for most interesting problems, leading
to the situations such as the famous Korteweg–de Vries (KdV) and Navier–Stokes equa-
tions for modelling waves and fluid dynamics, or the Black–Scholes equation for pricings in
economics.1 However, even writing these equations down requires some notions from mul-
tivariable calculus. We won’t try to develop the theory you would learn at the beginning
of a differential equations course, but rather focus on a few simple examples to indicate the
utility of differential equations and give a taste of the subject.

1 Population growth without limits

Fibonnaci,2 in his book Liber Abaci from 1202, posed the following problem, which might
be the first account of a mathematical approach to “modeling” population growth.

Say you start one pair of baby rabbits in month 1. Rabbits take 1 month to
mature, and each pair of mature rabbits produces a pair of baby rabbits in
another month. How many pairs of rabbits do you have the end of 1 year?

Let Fn be the number of pairs of rabbits in month n. We see F1 = 1 (1 pair of baby
rabbits), F2 = 1 (1 pair of mature rabbits), F3 = 1 + 1 = 2 (1 pair of mature rabbits + 1
pair of new baby rabbits), F4 = 2+1 = 3 (2 pairs of mature rabbits, and 1 pair of new baby
rabbit), F5 = 3 + 2 = 5, and so on. By now, I’m sure you’ve recognized these numbers,
named after our only dramatis persona so far, and it’s easy to reason out that we get the
recursively defined sequence

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn (n ≥ 1).

Then we see the answer to Fibonnaci’s problem is F12 = 144, i.e., we have 288 rabbits after
a year.

Note the Fibonnaci numbers display exponential growth: since we always have
Fn+2 ≥ Fn + Fn = 2Fn, we have, for instance

F10 ≥ 2F8 ≥ 2 · 2F6 · 2 · 2 · 2 · F4 = 23 · 3 > 24.

In general, we always get F2n+2 > 2n. Similarly, Fn+2 ≤ Fn+1 + Fn+1 = 2Fn+1, so we get
Fn < 2n, and one can check that

2
n
2
−1 =

1

2
(
√

2)n < Fn < 2n.

In fact, for n > 6, we have (
√

2)n < Fn < 2n, so while Fn itself not an exponential function
an for some a > 1, it is bounded between two exponential functions (for n > 6), which is

1One of the issues that led to the 2008 financial crisis was too many people not understanding the
limitations of Black–Scholes type models and what its implicit assumptions are. Rule #5: Understand your
model.

2The guy who brought the west (hindu-)arabic numerals. Thank him for making us not do calculus in

roman numerals. Can you imagine?
∫ 500

10
(490x510+10x520+510) dx would be

∫ D

X
(XD×xDX×DxDXXDX) dx.

I could not integrate that 5 times fast.
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what we mean by exponential growth. (More colloquially, exponential growth just means
Fn grows really fast—faster than any polynomial in n for n large.)

This was probably not an attempt by Fibonacci to get a numerically accurate answer
for how many rabbits can you get in a year from a single pair of rabbits, but rather a math-
ematical puzzle motivated by the rapid reproductive capabilities of rabbits, and it shows
their potential for exponential growth, and illustrates the surprising (for those unfamiliar)
speed of exponential growth.

If you’re curious, Wikipedia tells me rabbits get to reproductive age in about 3–4 months,
and take about a month to reproduce, typically having 2–12 babies per litter, with a limit
of about 4–7 litters per year. A pair of mature rabbits can produce 30–40 children in a year
(this does not count grandchildren). So while Fibonacci’s model could use some tweaking,
it’s actually not so bad. A calculation indicates that using these numbers it’s reasonable
that 1 pair of rabbits could turn into 200 rabbits within a year, assuming no seasonal or
other restrictions on reproduction (I assumed each pair of mature rabbits produces about
6 babies every 2 months).

For a more serious population model, one should consider rabbits’ lifespan and the
effects of aging on reproduction, as well as external influences like limited resources and
predators, but for short-term modeling in an ample environment, these other factors will
not be significant. More significant will be that rabbits don’t actually reproduce at a
constant rate—there is some randomness involved—but the hope is to have a model that
gives a reasonable rough picture of population dynamics—it would be absurd to expect a
deterministic formula that give exact predictions for such a complicated scenario.3

While we can compute any given Fibonnaci number exactly, an exact expression for Fn
is not entirely obvious. There is a exact formula, discovered in the early 1700’s de Moivre:

Fn =
ϕn − (−ϕ)−n√

5
,

where ϕ = 1+
√
5

2 ≈ 1.618 is the golden ratio. However, even with this formula, it’s still
somewhat complicated to compute Fn, and it’s not clear this formula actually makes it any
easier to compute Fn.

We can get a nicer expression if we take the following continuous model of population
growth. Let y(t) be the number of rabbits at time t. Suppose the number of new rabbits
at time t is proportional to the number of rabbits at time t, i.e.,

y′(t) = cy(t), (5)

for some constant c, called the rate of growth. Note that this is a bit of a simplification
from Fibonacci’s model: we don’t explicitly take into account the time it takes for rabbits
to mature. In Fibonacci’s model, the change in y is the number of mature rabbits. However,
the number of mature rabbits is approximately a fixed proportion c of the total number of
rabbits (at a given time), so the change in y is approximately cy(t) at time t. Precisely,
from the formula for Fn, one can compute

lim
n→∞

Fn−1
Fn

=
1

ϕ
=

√
5− 1

2
= ϕ− 1 ≈ 0.618.

3Of course many people expect such models to give very precise predictions—often the kind of people
who make financial boo-boos or think they won’t get cancer if they eat XLVII blueberries a day.
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Since Fn−1

Fn
is the proportion of mature rabbits among all rabbits at month n, we can

take c = ϕ − 1, and we can check Fn indeed increases at about a rate of ϕ − 1 (i.e.,
Fn+1 ≈ Fn + (ϕ − 1)Fn = ϕFn) for, say, n > 5 (e.g., F6

F5
= 8

5 = 1.6, F7
F6

= 13
8 = 1.625,

F8
F7

= 21
13 = 1.615...).

Now let’s solve (5). We need to find a function y, whose derivative is a constant multiple
of itself. We already know one such function: ect works. Now you might ask: are there
other such functions? Since constants get pulled out of derivatives, we see that Aect works
for any constant A. On the other hand, if we add a constant to get Aect + B, then the
derivative kills B, so (5) is not satisfied if B 6= 0. Similarly, you can check that no nonzero
polynomial will satisfy (5), nor will any other exponential function akt unless a = e and
k = c. You might try a few other things and fail to find other solutions, but how you do know
some other crazy combination of rational functions, trig functions and log or exponential
functions won’t work?

Here the introduction of a new conceptual ideal will show us why nothing else should
work. Given the equation (5), we don’t know anything about the values of y a priori, so we
can’t graph y, but we can draw a graph of its derivative y′ in terms of y and t. Namely, draw
a cartesian plane with the horizontal axis representing t and the vertical axis representing
y. Since y′(t) represents the slope of y, it makes sense to “graph” y′ in the t-y plane by
drawing an arrow at (t, y) with slope y′(t). For c = 1, we get the following picture:

Note there is no dependence of y′ on t in this case, only on y, so each “column of
arrows” is identical, i.e. shifting our picture horizontally doesn’t change the picture. This
kind of picture is called a direction field, because at any value of y and t, it shows you
the direction (slope) the graph of y(t) is going.

4



Consequently, if we know a specific value of y at some point t, say y = 1 at t = 0, we can
draw an approximation to y(t) near t = 0, namely a little line segment at (0, 1) with slope
y′ = cy = c. Let’s say c = 2. Now we follow this line segment for a little bit, say to the
point (0.1, 1.2), and look at the direction field there. At this point, we have y′ = 2y = 2.4,
and we can draw another little line segment from (0.1, 1.2) with slope 2.4. Then we follow
this a little ways, say to (0.2, 1.44) and then we extend our graph with a little line segment
there with slope y′ = 2y = 2.88. Continuing in this manner, will give an approximation to
y(t), and we can make successively better approximations by using shorter and shorter line
segments. If we take the limit of this process, we should get a smooth graph which really
is our function y, which in this case will be y(t) = e2t.

At a crude level, we can say that a solution to (5) is obtained by connecting the arrows
in the direction field. On the other hand, any solution to (5) should have a graph which is
tangent to the direction field at every point. The point is this limiting process should give
a unique graph, i.e., a unique solution y(t) to (5), and this solution only depends upon the
choice of initial value, which in our case was y(0) = 1. Thus I hope I have convinced you of
the following:

Theorem 1. Given the differential equation (5) and any initial value condition y(t0) = y0,
there is a unique solution y(t). If we take our initial value condition to be y(0) = A, then
the solution is just y(t) = Aect.

For similar differential equations of the form y′(t) = F (t, y) for some two-variable func-
tion F , this hand-wavy argument suggests there is a unique solution given any initial con-
dition y(t0) = y0—this is essentially true (look up the Picard–Lindelöf theorem), but to
be correct one needs some conditions on F stronger than just continuity like you might
expect.4 For our particular, differential equation, a proper proof is not hard—it just makes
use of a little trick.

Proof. As remarked above, clearly y(t) = Aect satisfies (5). It is easy to check that given
any initial condition y(t0) = y0, there exist some A satisfying this. The only part that’s not
clear is why the solution is unique.

Suppose y = f(t) is a solution to (5). We want to show f(t) is a constant multiple of
ect, that is, we want to show the auxiliary function g(t) = f(t)e−ct is constant. (Looking at
g(t) and taking its derivative is the trick.) By the product rule, we have

g′(t) = f ′(t)e−ct − cf(t)e−ct = (f ′(t)− cf(t))e−ct = 0,

using (5) at the last step. As we know from Calc I, this means g(t) must be constant.
Hence y(t) = Aect for some A, and it is easy to see the initial value condition determines A
uniquely.

In particular, this theorem says that f(x) = ex is the unique function f(x) such that
f ′ = f and f(0) = 1. Sometimes this is taken as the definition of ex.

4Many people move their hands around trying to persuade others: Obi Wan Kenobi, David Copperfield,
that guy selling “new underwear” in a gas station parking lot. Rule #9: Whenever someone starts waving
their hands in the air, it’s always a con.
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Example 1

From our above discussion, we can look at a continuous analogue of the Fibonnaci
problem by considering the differential equation (5) with c = ϕ− 1 ≈ 0.618, so y(t) =
Aect for some A. Then, with an appropriate initial value condition y(t0) = y0, the
number of pairs of rabbits after a year in Fibonacci’s problem should be approximately
y(12). The simplest thing to do would be to take y(1) = 1—Fibonacci’s first initial
condition. This condition means Aec = 1, i.e., A = e−c ≈ 0.539. But this yields
y(12) = e−ce12c = e11c ≈ 896. The problem is, as we remarked above, our simplified
continuous approximation is only a decent approximation for, say n > 5.

Instead, let’s take for our initial condition y(6) = F6 = 8, so Ae6c = 8, i.e., A ≈
0.196. This yield y(12) ≈ 326. This is still not so close to F12 = 144. To get a better
sense of what’s going on, let’s compare approximate values of y(n) and Fn:

n 1 2 3 4 5 6 7 8 9 10 11 12

Fn 1 1 2 3 5 8 13 21 34 55 89 144
≈ y(n) 0.36 0.67 1.2 2.3 4.3 8 14.8 27.5 51.0 94.7 175.8 326.2

We see that the values of y(n) are pretty close to Fn when n is close to 6, but as n gets
further and further away, y(n) and Fn get further and further apart. So quantitatively,
y(n) is an okay model for Fn for n close to our initial condition, but gets bad quite
quickly. This is because these are both functions of exponential growth and small
differences become quite big when exponentiated. This also illustrates the phenomenon
known as sensitivity to initial conditions—that small changes in initial conditions (i.e.,
the choice of the value of A) may result in huge differences after a moderate amount
of time. So our simplified continuous model (5) is only a good approximation to the
Fibonacci problem on a reasonably small timescale. (This actually isn’t a terrible
drawback, because Fibonacci’s setup is also only reasonable for small timescales.) For
the same reason, weather simulation models provide useful predictions for a couple of
days into the future, but are useless as indicators of what will happen weeks from now.5

While one could argue that the continuous exponential model for population growth
is not as good in some ways as Fibonacci’s discrete model, they are qualitatively not so
different—they both exhibit exponential growth, so their graphs will be about the same
shape. Moreover, the continuous exponential is generally easier to work with and analyze,
so if we want to revise our models to incorporate other factors like death and aging or envi-
ronmental constraints, it’s probably better to try this in the continuous setting of differential
equations. (The discrete analogue of differential equations are called difference equations.)
This is part of a more general principle: continuous processes are often easier to analyze
than discrete ones, so in modelling physical, economic or social phenomena, one looks for
a continuous approximation so one can apply calculus. A somewhat more sophisticated
model incorporating environmental constraints is presented in the exercises.

It’s also natural to consider systems of differential equations, where one has several vari-

5Rule #23: Whenever you hear: “Quantity X is expected to reach amount Y by the year Z,” don’t take
this literally. Unless it’s about the level of zombie outbreaks in 2020. That’s an exact science.
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ables and several differential equations to solve simultaneously. With systems of differential
equations, one can model populations of several different species and how they interact.
For instance, there is the famous predator-prey model of Lotka–Volterra proposed by
Lotka in 1910 (in the context of chemical reactions, and later a plant and animal species)
and independently by Volterra in 1926 (who went straight for predators—kill! kill! kill!):

x′ = ax− by
y′ = cx+ dy.

Here x and y represent populations where the y-population is the predator and the x-
population is the prey. The first equation says x has some natural growth rate a but the
larger y is the slower the growth rate will be, and the second equation say y has some
natural growth rate c, but will grow at a faster rate in the presence of more prey x. These
equations are also used in economics. The general solutions to the predator-prey equations
are not elementary functions your are familiar with, but can still be analyzed.

2 Compound interest

A completely unrelated context providing similar examples of differential equations is mod-
eling compound interest.

Example 2

Suppose you put $10,000 in a 24-month bank CD that has a nominal annual inter-
est rate of 1%. (By nominal interest, I mean the amount of interest on the original
deposit—not accounting interest on interest.) How much money you actually have at
the end of 24 months depends upon how often interest is applied. If the interest is only
compounded (applied) yearly, after year 1, you have $10,100, and after year 2 you have
$10,201. So here compound interest gets you an extra dollar in year 2, because you
earn interest on interest.

On the other hand, if the interest is compounded monthly (which is pretty common),
you will get more money. Compounding monthly with the above nominal interest rate
means you get 1

12% interest each month. Precisely, if f(n) be the amount of money in
your CD account after n months, then

f(n+ 1) = (1 +
1

1200
)f(n).

So we see

f(n) = (1 +
1

1200
)f(n− 1) = (1 +

1

1200
)2f(n− 2) = · · · = (1 +

1

1200
)nf(0)

= (1 +
1

1200
)n × $10, 000.

(Okay, here I’m assuming the bank carries over fractions of cents in your account—
but it might round down, cheating you out of invaluable fractions of pennies.) That
means that after a year, you have f(12) = $10, 100.45 in your account and after 2
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years, f(24) = $10, 201.92 in your account. So compounding interest monthly gives
you almost twice the compound interest over 2 years. Still, it’s not even $2, so who
cares.

The reason this isn’t so impressive is that I wanted to use realistic numbers and
interest rates are very low now. At one point, interest rates were around 5%. With this
nominal rate, compounding annually leaves you with $10,500 after 1 year and $11,025
after 2 years. On the other hand, compounding monthly leaves you with $10,511.61
after 1 year and $11,049.41 after 2 years, almost a $25 difference, which is at least
something. However, the compound interest will be much more significant in the next
example.

Going back to our 1% interest rate, what if if the bank compounded daily, or
every minute, or every second? Then you’ll get even more compound interest (well,
relatively a lot more). Rather than doing these computations, let’s compare with
compounding continuously. For simplicity, let’s measure t in year rather than months
now. Continuously compounding at a nominalized annual rate of 1% means

f ′(t) = 0.01f(t)

which is just the same as (5) above with c = 0.01. Here our initial condition is
f(0) = 10000. Note at t = 0, we get f ′(0) = 100, which is indeed the amount of
nominal interest earned in a year. I.e., the tangent slope at 0 is the annual nominal
interest rate, so the height of the tangent line at t = 1 is the amount of money in
your account after one year counting only nominal interest. From Theorem 1, we see
f(t) = 10000e0.01t so after 1 year we have f(1) ≈ $10,100.50 and after 2 years, f(2) ≈
$10,202.01.

We see that to determine how much money you’ll earn in different accounts means not
just knowing the nominal interest rate, but also how often interest gets compounded. The
amount of interest you’d earn in a year (taking into account compounding) is called the
annual percentage yield, or APY, and is what banks advertise.

Example 3

Let’s say you get a job and are able to start saving for the future. Maybe but you can
afford to invest about $1,000 per year. Since you’re a rational investor, you invest in
an index fund, maybe something like the S&P 500 index. (You might want to diversify
at some point down the road, and maybe you’ll have more money to invest later, but
let’s not worry about that here.) Over the last 10 years, the annual return averaged
about 7%, but around 10% over the last 20 or 30 years. Let’s assume an average annual
return of 10%. Using a continuous model, we can estimate your investment funds after
t years by f(t), where f(t) satisfies the differential equation

f ′(t) = 0.1f(t) + 1000, f(0) = 0. (6)

If we didn’t have the +1000 (the amount you’re actively contributing to your invest-
ments each year), this would just be (5) again and e0.1t would be a solution. Now you

8



might think to start with e0.1t and tweak it. Your first thought might be to try adding
a factor. E.g., if y(t) = e0.1t + g(t), then

y′(t) = 0.1e0.1t + g′(t) = 0.1(e0.1t + g(t)− g(t)) + g′(t) = 0.1y(t) + g′(t)− 0.1g(t).

So we want g(t) to satisfy g′(t) − 0.1g(t) = 1000, which means g satisfies the same
differential equation as f (though not necessarily the same initial value condition). If
you try the same thing with g, then you’ll be stuck in the same situation, so maybe
we need another idea. Well, the above at least tells us that if f is e0.1t plus something,
that something might also contain e0.1t in it.

This suggests it might be better to tweak e0.1t by multiplying it by another factor.
Namely, suppose f(t) = e0.1tg(t) for some g(t). Then, by the product rule,

f ′(t) = 0.1e0.1tg(t) + e0.1tg′(t) = 0.1f(t) + e0.1tg′(t).

This means we need e0.1tg′(t) = 1000, i.e. g′(t) = 1000e−0.1t, i.e.,

g(t) =

∫
1000e−0.1t dt = −10000e−0.1t + C,

so
f(t) = e0.1t(C − 10000e−0.1t) = Ce0.1t − 10000 = 10000(e0.1t − 1),

where we solved for C using the initial value f(0) = 0. In hindsight we can see that the
product rule means f(t) = e0.1tg(t) was a good idea. In this particular case, we also see
that guessing a solution of the form f(t) = Ae0.1t+B (or f(t) = Ae0.1t+g(t)) would’ve
worked, but I wanted to illustrate the use of the product rule as this technique comes
up a lot in differential equations.

This leads to the following estimates

t years cont. model disc. model amount invested

1 $1,051 $1,000 $1,000
5 $6,487 $6,105 $5,000
10 $17,182 $15,937 $10,000
15 $34,816 $31,772 $15,000
20 $63,890 $57,274 $20,000
25 $111,824 $98,347 $25,000
30 $190,855 $164,494 $30,000

The second column is f(t) and the third column comes from a discrete model of com-
pounding at a rate of 10% annually. Note the discrete model fails to take into account
interest on the added $1,000 during the year it is deposited, which is not accurate if
you are gradually adding it over the year (but would be if you deposit the $1,000 as
a lump sum at the end of the year). On the other hand, if you gradually deposit the
$1,000 each year, this is automatically taken into account in the continuous model by
virtue of continuous compounding.

This shows the power of compound interest and the value of investing early. Of course,
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these numbers are just estimates to give you a rough idea of what you might have after
investing assuming markets behave comparably in the next 30 years as they have in the
past 30 years. (I also didn’t account for any investment fund fees, though these are usually
pretty small for index funds, or taxes, but these can be avoided if you use a Roth IRA.)

3 Mechanics

We’ve already seen a very simple kind of differential equation in motion problems, along
the following lines. Suppose an object X, initially at rest, falls to the ground from some
initial height h at time 0. If y(t) is the distance traveled by time t, then f(t) satisfies

y′′ = g, y(0) = 0, y′(0) = 0. (7)

where g is the acceleration due to gravity (about 9.8m/s2 or 32ft/s2). Without the initial
conditions, integrating twice show the solutions are precisely the functions of the form
y(t) = g

2 t
2 + C1t + C2. Knowing only the initial condition y(0) = 0 just says C2 = 0, but

the added initial condition y′(0) = 0 allows us to conclude y(t) = g
2 t

2. Of course (7) is only

a valid model until you hit the ground, i.e., until y(t) = h, i.e., for 0 ≤ t ≤
√

2h
g .

In general, if we have a differential equation involving the n-th derivative but no higher
derivatives, called an n-th order differential equation), we need more than one initial
condition to determine y. (Note all of our previous examples were first-order differential
equations, so we just needed one initial condition.)

For instance, if we just have the simple equation

y(n) = F (t),

then need to integrate n times to get y, and therefore there are n constants involved in y.
For each initial condition we have, we can solve for one of the constants (at least in terms of
the others), and we need n initial conditions to determine y uniquely. There are many ways
to choose the initial conditions, for example in (7) we could have two conditions in terms
of y(t), such y(0) = y(1) = 100 (this implies the object has some initial velocity upward
so and gravity pulls it back to the same position by time t = 1) or a condition on y and
one on y′ at different times, such as y(10) = y′(0) = 0. However we can’t make both initial
conditions in terms of y′, because y′ doesn’t see C2.

Recall from Newtonian mechanics F = ma, where F denotes force, m the mass of an
object, and a its acceleration. So if a force acts on an object, it’s acceleration (due to that
force) will be F

m . Consequently, problems in mechanics often lead to second-order differential
equations, because one has some forces acting and one relates them to acceleration.

Now let’s look at some slightly more sophisticated examples from mechanics.
First we consider the free fall of an object X mentioned above, but now with air resis-

tance.

Example 4

Suppose an object X initially at rest is dropped from height h. Let y(t) be the distance
traveled at time t. It’s acceleration due to gravity is (approximately) the gravitational
constant g. One model for the decelerating force due to air resistance a constant time
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the velocity squared. Hence we can consider the model

y′′ = g − k(y′)2, y(0) = 0, y′(0) = 0. (8)

Here k is a constant that depends on the shape (drag and area), mass and density
of the object, as well as the density of the air. (Of course the density of air changes
with altitude—and in fact the force of gravity does too—but this should be reasonably
accurate for relatively short distance drops.)

To solve this, we can express this (without initial conditions) in terms of a first-
differential equation

u′ =
du

dt
= g − ku2, u = y′. (9)

Up until now, all of our examples of (first-order) equations we’ve seen were linear
differential equations, i.e., of the form f ′ = a(t)f+b(t). This equation is nonlinear
because of the presence of the u2 term. As with usual equations, nonlinear differential
equations are harder to solve than linear ones, and not solvable in general (at least not
in an elementary way, but see the remarks on series at the end). However, we can solve
certain classes of non-linear equations.

This differential equation (9) is an example of a separable equation (one of the
form f ′ = p(t)q(f) for some functions p and q), and we can solve such equations in
the following manner (which I won’t justify now, but trust me, it works [hand wave]).
Treating du and dt as separate objects like we do in integration by parts, we can write

du

g − ku2
= dt.

Integrating both sides gives ∫
du

g − ku2
=

∫
dt = t+ C.

Now we know how to compute the left-hand integral. (Finally, we can make use apply
our integration techniques to differential equations!) Note the denominator is k( gk−u

2),

so we put u =
√

g
kx. Then

∫
du

g − ku2
=

√
g

k

∫
dx

g(1− x2)
=

1√
gk

∫
dx

1− x2

=
1√
gk

∫
1

2

(
1

1− x
+

1

1 + x

)
dx =

1

2
√
gk

ln

∣∣∣∣1 + x

1− x

∣∣∣∣+ C.

Let’s leave things in terms of x = x(t) for now for simplicity, so our differential equation
says

1

2
√
gk

ln

∣∣∣∣1 + x

1− x

∣∣∣∣ = t+ C.
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The initial condition y′(0) = 0 means u(0) = x(0) = 0, which means C = 0. So
multiplying by 2

√
gk and exponentiating gives

e2
√
gkt =

1 + x

1− x
=
−(1− x) + 2

1− x
=

2

1− x
− 1.

(To drop absolute values, one should check 1+x
1−x > 0, but this can be justified post facto

when we find x. There is also a solution with 1+x
1−x < 0 if one drops the initial condition

x(0) = 0, but for our physical model, we should have x < 1 when t is small, which
means we should have 1+x

1−x > 0.) Adding 1 from both sides and taking reciprocals leads
to

x(t) = 1− 2

e2
√
gkt + 1

,

i.e., the velocity u = y′ is given by

u(t) =

√
g

k
x(t) =

√
g

k

(
1− 2

e2
√
gkt + 1

)
.

Indeed this satisfies u(0) = 0, and we note that

lim
t→∞

u(t) =

√
g

k
,

so there is a “maximum” (technically supremum, since it’s never quite attained) veloc-
ity, which is better known as terminal velocity.

As you may recall, we can compute
∫

dt
ect+1 with a substitution. Then we can

calculate the distance traveled as

y(t) =

∫
u(t) dt =

√
g

k

(
t− 2

(
t− ln(e2

√
gkt + 1)

2
√
gk

))
+ C

=
1

k
ln(1 + e2

√
gkt)−

√
g

k
t− ln 2

k
,

using the initial condition y(0) = 0 to solve for C. (Again, this model is only good
until impact, i.e., when 0 ≤ y ≤ h.)

For a general separable equation y′ = p(t)q(y), the analogous technique would be to
rewrite the equation as

dy

q(y)
= p(t) dt, (10)

integrate both sides (where the left is dy and the right is dt):∫
dy

q(y)
=

∫
p(t) dt (11)

and solve for y. This method is known as separation of variables. While our ma-
nipulation of dy and dt was purely formal pushing around of symbols and not something

12



mathematically justified, it is not hard to check this works: Let F (t) be the left hand side
of (11). Then by the chain rule and FTC, differentiating both sides of (11) gives

F ′(t) =
dF

dy

dy

dt
=

1

q(y)
y′ = p(t),

which is equivalent to our original differential equation (provided q(y) 6= 0).
Note we can also apply this to (5). Namely, if dy

dt = y′ = cy, we rewrite this as

dy

y
= c dt.

Then we integrate both sides ∫
dy

y
=

∫
c dt

to get
ln |y| = ct+ C.

Exponentiating yields
|y| = eln y = ect+C = eCect.

Putting A = ±eC , we get back the solution

y = Aect.

Note eC > 0 for any C, whereas A is allowed to be positive or negative, and one can check
these are all solutions. There is one minor technicality—we didn’t recover the case of A = 0,
i.e., y = 0, which is also a solution—this is because we inherently assumed y 6= 0 when we
wrote dy

y .
Our previous examples of differential equations were so simple that we didn’t really

need to know any integration techniques to solve them (the solution in Example 3 was
not obvious, but it did not require any sophisticated integration—note one can also do
Example 3 using separation of variables). However, the above example shows how being
able to compute integrals is important in differential equations.

Here’s another example with gravity—now in outer space!

Example 5

Say you have two bodies X1 and X2 in space with masses m1 and m2, far away from
other bodies which are relatively at rest with respect to each other. Let y = f(t)
be their distance at time t. In Netwon’s classical theory of gravitation, they will be
attracted with force F = Gm1m2

y2
, where G is the universal gravitational constant. So

the acceleration of X1 will be F
m1

= Gm2
y2

and the acceleration of X2 will be F
m2

= Gm1
y2

.
So this leads to the model

y′′ = −
(
F

m1
+

F

m2

)
= −Gm1 +m2

y2
,

or equivalently
y2y′′ = c,

13



where c = −G(m1 +m2). I won’t solve this, but just remark y(t) = C
√
t is a solution

if c = −1
4 .

The above example is a special case of the n-body problem—how gravitation affects
the movement of n bodies in space. The two-body problem is solvable, but the three-
body problem (or the problem for n > 3) has elementary solution in general. To properly
describe the n-body problem (or even the general setup of the two-body problem) requires
multivariable calculus.

Here are a couple of other classical examples of differential equations, one with elemen-
tary solutions and one without.

Example 6

Suppose you hang an object from a spring, stretch it and release. Let y(t) denote the
position at time t. The simple model for motion here is

y′′ = −ky,

where k > 0 is a constant associated to the spring. Clearly sin
√
kt and cos

√
kt are

solutions, and the motion will be oscillatory. In reality, there are damping forces
(resistance of material in the spring, etc) that slow down the oscillation and hinder
perpetual motion. One can take into account damping with a model of the form

y′′ = −ky − cy′,

where c is a damping constant. This has a solution of the form an exponential function
(with negative exponent, which represents the damping) times a certain combination
of a sine and cosine function.

Example 7

One can model the motion of a pendulum (without damping) via the equation

y′′ =
k

sin t

where k is a constant associated to the system. This is another separable equation,
but there are no elementary solutions. Instead solutions will involve the so-called
elliptic integrals (which you may remember came up in the arc length of ellipses and
hyperbolas).

At some point, you realize that most of the differential equations you want to solve for
some modeling problem don’t have elementary solutions. At this point, there are a couple
of things to do.

One is to start becoming comfortable with defined in terms of definite integrals (or
by their differential equation). One famous example, besides elliptic integrals (but closely
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related) are the J-Bessel functions (or Bessel functions of the first kind)

Jn(t) =
1

π

∫ π

0
cos(nx− t sin t) dx

which satisfies the differential equation

t2y′′ + ty′ + (t2 − n2)y = 0.

There are also Y -Bessel functions Yn, or Bessel functions of the second kind, which are
different solutions to the same differential equation, and can be defined by different integrals.
Bessel functions of the first kind go to 0 as t→∞, where as Bessel functions of the second
kind go to∞ as t→∞, so we see different functions satisfying the same differential equation
can have very different behaviours. Bessel functions come up all over the place in physics
and engineering.

Another example of a function defined by an integral is the Gamma function:

Γ(t) =

∫ ∞
0

xt−1e−x dx,

which converges for t > 0. The Gamma function does not come from any simple differential
equation, as far as we know. Still, it’s pretty cool: it interpolates the factorial function as
Γ(n+1) = n! for an integer n ≥ 0 and in general satisfies the functional equation Γ(t+1) =
tΓ(t). So using this you can “differentiate factorials.” Another fun fact: Γ(12) =

√
π. The

Gamma function is important in physics, probability, combinatorics and number theory.
There are also some relations of the Gamma function with elliptic integrals, and at least for
certain ellipses, one can express the arc length in terms of values of the Gamma function.

The point is, at first, you may think defining functions in terms of integrals is some
weird or unnatural thing. But a lot of phenomena you encounter in nature will be new, and
not expressible in terms of any functions you already know, and you have to define them in
terms of an integral or some other process. However, naming these functions makes you feel
like you have some control over them (like knowing someone’s name gives you power over
them), and once you start using them enough, you begin to think of them as some basic
functions on their own, like sine and cosine. Really, if you think about it, to what extent
do you understand sine and cosine? You know their geometric definition, some properties
they satisfy, what their graphs look like and a few special values. But if I ask you what
is sin(1)—what the hell is that? It’s some random irrational number whose only claim to
fame is that it is the value of sine at 1. Nevertheless, you can approximate it. In this
sense, one can understand things like Bessel functions and Gamma functions in a similar,
but more complicated, manner. (Note defining functions in terms of integrals is a geometric
definition—one in terms of areas.)

The other thing people do with differential equations you can’t solve is work on com-
puting numerical solutions (i.e., functions that approximate solutions to the differential
equations). In fact, you probably can solve your differential equation, just not in the sense
you were thinking. In Calc III, you learn about representing functions by power series:
which is sort of analogous to writing a function as an integral—you write it as an infinite
sum (which is a limit, sort of like a Riemann sum), e.g.,

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · · .
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(Check that if you formally take the term-by-term derivative of the infinite sum on the right,
you get the back the same infinite sum, which reflects the fact that d

dxe
x = ex.) You can also

think of this as approximating a function by a polynomial of arbitrarily large degree. Any
“reasonable” function can be represented as a power series.6 Similarly, you can solve any
reasonable differential equation in terms of power series, but then you may not be able to
translate the solution back in terms of functions you know. Nevertheless, you can compute
a bunch of terms (say up to the x20 term), which will be a good approximation of ex if x is
not too large. This provides one way to find a numerical solution to y′ = y for t not too big.
Another method (also only good for t not too large) is to use the more elementary approach
of direction fields that we explained earlier. The main problem in numerical analysis is how
to get good approximations for t large.

Exercises

Exercise 1. Let’s say you amass $1,000 in credit card loans and just pay back the minimum
amount $25 every month, but never use this card again. The annual interest rate (APR,
not APY, meaning nominal interest) the company charges you is 15%, which, since they’re
assholes, they compound daily.

(a) Write down a differential equation with an initial condition for a continuous model
for your amount of credit card debt.

(b) Solve your equation from (a). (You can either guess a solution in a certain form as
in Example 3 or use separation of variables.)

(c) Using this, estimate the amount of time until your loan is paid off.
(d) From (c), estimate the total amount you will have paid on your loan.

Exercise 2. Check the details of Example 4—specifically justify (a) the dropping of abso-
lute values (i.e., check the solution x(t) satisfies 1+x

1−x > 0, or if you prefer, check u satisfies

u′ = g − ku2), and (b) determining y from u, as I omitted the details for that integral.
(Though you should go through all the details on your own to make sure you understand
it completely.)

Exercise 3 (The logistic model). For long-term analysis, a better way to model population
growth than (5) is to impose a maximum capacity K for the population and force the rate
of growth y′ of the population to go to 0 as the population y approaches K. This idea led
Verhulst to the following logistic differential equation in 1838,

y′(t) = cy(t)(1− y(t)

K
). (12)

Note the factor 1− y(t)
K is that it is close to 1 when y is small and close to 0 when y is close

to K. Using the method of separation of variables as in Example 4 (cf. (10), (11)), find a
solution to (12).

6Actually, my definition of reasonable is something having a power series expansion. I know, how per-
verted.

16


	Population growth without limits
	Compound interest
	Mechanics

