
3 A summary of local representation theory for GL(2)

All representations from now on will be on a complex vector space. Some references are Gel-
bart (Automorphic forms on adele groups), Bump (Automorphic forms and representations) and
Goldfeld–Hundley (Automorphic representations and L-functions for the general linear group, Vol.
I).

3.1 The p-adic case

Fix a prime p. We put G = GL2(Qp), Z =

{(
z

z

)}
the center, A the diagonal subgroup,

N =

{(
1 ∗

1

)}
the standard unipotent, B = AN the standard Borel and K = GL2(Zp) the

standard maximal compact.
Recall that a representation (π, V ) of G is called admissible if (i) π is smooth, and (ii) for each

compact open subgroup K ′ of G, the set of K ′-fixed vectors,

V K′
=

{
v ∈ V : π(k)v = v for all k ∈ K ′} ,

is finite dimensional. The local component of an automorphic representation is admissible, so these
are the representations we are interested in classifying.

In fact, any smooth irreducible representation of G = GL2(Qp) is admissible, so the class of
irreducible smooth representations is the same as the class of irreducible admissible representations,
but this was not known at the time of the classification of the latter set and is inherently needed in
the theory we recall below.

3.1.1 Finite-dimensional representations

The finite-dimensional representations are relatively easy: any irreducible smooth finite-dimensional
representation of G is 1-dimensional (Schur’s lemma), and these are all of the form g #→ χ(det g)
where χ is a smooth 1-dimensional representations, i.e., characters, of Q×

p .
The characters of Q×

p can be described as follows. (See, e.g., Paul Sally’s article “An introduction
to p-adic fields, harmonic analysis and the representation theory of SL2.”)

We can write any x ∈ Q×
p uniquely as pnu where n ∈ Z and u ∈ Z×

p is a unit. This gives an
isomorphism Q×

p % Z×Z×
p . The characters of Z are just given by n #→ esn for s ∈ C, which for our

purposes we will rewrite in the form p−ns′ where s′ = −s/ ln p. Hence we can write any character
χ of Q×

p as
χ(x) = p−nsω(u) = |x|sω(u), (x = pnu, u ∈ Z×

p )

for some s ∈ C and ω a character of Z×
p .

Any character ω of Z×
p is unitary (has image in S1). By smoothness (in fact continuity), ω has

some higher unit group Z(n)
p = 1 + pnZp (n > 0) or Z(0)

p = Z×
p = GL1(Zp) in its kernel. Note these

subgroups Z(n)
p for n ≥ 0 are open compact subgroups of GL1(Qp) = Q×

p , i.e., they are analogous
to the family of compact open subgroups Kn of G = GL2(Qp) we defined earlier. The quotient
Z×
p /Z

(n)
p is a finite abelian group, specifically Z×

p /Z
(n)
p % (Z/pnZ)× , which has order pn−1(p− 1) if

n ≥ 1 (and order 1 if n = 0). Hence ω may be viewed as a character of some finite abelian group
(Z/pnZ)×.
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We say χ has conductor c(χ) = n if n is minimal such that Z(n)
p is contained in the kernel of

ω (or equivalently, of χ). If c(χ) = 0, i.e., ω = 1, we say χ is unramified; otherwise χ is ramified.
This means the only unramified characters of Q×

p are | · |sp, which is unitary if and only if s is
purely imaginary.

Further for a given conductor n, there are only finitely many possibilities for ω; to be precise
p− 2 possibilities if n = 1 and pn−2(p− 1)2 if n > 1. Again, χ(x) = |x|spω(u) is unitary if and only
if Re(s) = 1.

3.1.2 Principal series representations

Let ω1 and ω2 be two normalized unitary characters of GL1(Qp) = Q×
p and s1, s2 ∈ C. Then one

can consider the characters χ1 and χ2 of Q×
p given by

χi(x) = ωi(x)|x|sip .

Consequently, χ = (χ1,χ2) extends to a character of the Borel B by

χ

[(
a

b

)(
1 x

1

)]
= χ1(a)χ2(b).

We define the normalized parabolic induction of χ to be

V (χ1,χ2) =

{
f : G → C smooth | f

[(
a

b

)(
1 x

1

)
g

]
= χ1(a)χ2(b)

∣∣∣
a

b

∣∣∣
1
2
f(g)

}
.

Note Goldfeld and Hundley work with the non-normalized induction

Vnn(χ1,χ2) =

{
f : G → C smooth | f

[(
a

b

)(
1 x

1

)
g

]
= χ1(a)χ2(b)f(g)

}
.

It is clear one can go between the two via

V (χ1,χ2) = Vnn(χ1| · |1/2,χ2| · |−1/2).

The normalization factor of |a/b|1/2 makes relations among and conditions on these representations,
as we will note below. Therefore, we will work with the normalized induction from now on, which
is standard.

We call V (χ1,χ2) the principal series representation of G induced from (χ1,χ2). Here the
action of G on V (χ1,χ2) is given by right translation, i.e.,

g · f(x) = f(xg), for g, x ∈ G, f ∈ V (χ1,χ2).

For example, one has

Lemma 3.1.1. The contragredient of V (χ1,χ2), denoted V̌ (χ1,χ2) or Ṽ (χ1,χ2) is equivalent to
V (χ−1

1 ,χ−1
2 ).

Recall the following
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Theorem 3.1.2. The principal series V (χ1,χ2) is admissible. It is irreducible unless χ1χ
−1
2 = |·|±1

p .
If χ1χ

−1
2 = | · |p, then V (χ1,χ2) contains an irreducible admissible subspace of codimension 1,

called a special representation.
If χ1χ

−1
2 = | · |−1

p , then V (χ1,χ2) contains an invariant 1-dimensional subspace whose quotient
is irreducible. This quotient is also called a special representation.

(If one works with non-normalized induction for the principal series, the above conditions on
χ1χ

−1
2 become χ1χ

−1
2 = | · |2p and χ1χ

−1
2 = 1.)

Definition 3.1.3. If V (χ1,χ2) is irreducible, we write π(χ1,χ2) = V (χ1,χ2). If V (χ1,χ2), we
denote by π(χ1,χ2) the corresponding special representation.

Note we can write a special representation in the form π(χ| · |1/2p ,χ| · |−1/2
p ) for an arbitrary

character χ of Q×
p . When χ = 1, we call this the Steinberg representation St. Then one can

identify π(χ| · |1/2p ,χ| · |−1/2
p ) with a twisted Steinberg representation St⊗ χ.

In general, for any representation (π, V ) of G and a character χ : Q×
p → C×, one can form the

twist (π ⊗ χ, V ) where the action is given by

(π ⊗ χ)(g)v = χ(det g)π(g)v.

Hence one has that all special representations are obtained as twists of a single one, the Steinberg.
Similarly, one has the relation π(χ1,χ2)⊗ χ) ∼ π(χ1χ,χ2χ) for twists of principal series, where ∼
denotes equivalence.

Theorem 3.1.4. The irreducible admissible representations π(χ1,χ2) and π(µ1, µ2) (principal series
or special) are equivalent if and only if χ1 and χ2 equal, in some order, µ1 and µ2.

(This is another statement which is made much nicer by working with normalized induction for
the principal series.)

3.1.3 Supercuspidal representations

So now we know three kinds of irreducible admissible representations of G: the 1-dimensionals, the
irreducible principal series, and the special representations. There is one more kind: supercuspidal.

To motivate the definition, let us try to imagine proving that all infinite irreducible admissi-
ble representations are principal series or special. Let (π, V ) be an infinite irreducible admissible
representation of G, and consider the subspace

VN = 〈π(n)v − v|n ∈ N, v ∈ V 〉.

It is not hard to see that VN is invariant under the diagonal subgroup A (in fact, under the Borel).
One can then consider the action of B on the quotient

V N = V/VN ,

called the Jacquet module of V . One can show the Jacquet module is an admissible representation
of A, whose dimension is at most 2.

If (π, V ) is an irreducible principal series π(χ1,χ2), then the Jacquet module is essentially
(χ1,χ2). Conversely, whenever the Jacquet module is 2-dimensional, V is a principal series.

26



If (π, V ) is a special representation π(χ · | · |p,χ), then the Jacquet module is 1-dimensional and
gives back χ. Conversely, whenever the Jacquet module is 1-dimensional, V is a special representa-
tion.

There is a third, sneaky possibility—the Jacquet module is zero-dimensional!

Definition 3.1.5. We say an infinite-dimensional irreducible admissible representation (π, V ) of G
is supercuspidal if the Jacquet module V N is 0-dimensional, i.e., if VN = V .

Exercise 3.1.6. Let (π, V ) be a 1-dimensional representation of G. One can still define the Jacquet
module V N as above. Show V N is 0-dimensional.

The Jacquet module, in some sense, gives us the classification of irreducible admissible rep-
resentations of G (1-dimensional, principal series, special, supercuspidal)—however it may seem
unsatisfactory as the supercuspidal guys are essentially defined to be the things that aren’t one of
the types we already know!

The first question to ask would be, do supercuspidal representations exist? The answer is
yes, and constructions are known but the theory is more complicated than for principal series.
Roughly the idea is that one can induce an irreducible representation of some compact open subgroup
K ′ of G (here one uses “compact induction.”) The simplest case comes from taking irreducible
representations of GL2(Fp) and lifting them to K via the projection

K = GL2(Zp) → GL2(Fp)

induced by the isomorphism Zp/pZp % Fp. These are known as depth 0 supercuspidal representa-
tions.

However, even without knowing the construction of supercuspidal representations (which was
not complete at the time of the classification), supercuspidal representations can be shown to have
several nice properties (indeed, the classification is not used to show this). For instance, one can
put an inner product 〈 · , · 〉 on V . Recall a matrix coefficient of (π, V ) is a function f : G → C
given by

f(g) = 〈π(g)v, v′〉

for v, v′ ∈ V . For supercuspidal π (but not principal series or special representations), the matrix
coefficients f have compact support. Further, they are what Harish-Chandra called supercusp forms,
i.e., ∫

N
f(g1ng2)dn = 0

for all g1, g2 ∈ G. These turn out to be particularly useful facts, allowing one to prove many
things for supercuspidal representations that are not so easy to prove for principal series or special
representations.

One should think of supercuspidal representations as the representations that are actually native
to GL(2), whereas the principal series and special representations (and 1-dimensionals) all come
from representations of GL(1). (Even though supercuspidals can be constructed by induction from
subgroups like K = GL2(Zp), this is still GL(2), just over Zp instead of Qp.)

We remark that this notion still holds when one works with representations of other groups, such
as GLn(Qp): there are “native” representations of GLn(Qp) which are supercuspidal. Roughly, other
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representations can be constructed by inducing a representation ρ = (ρ1, ρ2, . . . , ρk) of a parabolic
P = MN , where the Levi subgroup

M % GLn1(Qp)×GLn2(Qp)× · · ·×GLnk(Qp)

with n1 + n2 + · · · + nk = n and ρi being a supercuspidal representation of GLni(Qp) (here by a
supercuspidal of GL1(Qp) we just mean a character of Q×

p ). (To be precise, one should perhaps allow
ρi to be a discrete series representations—which for GL2(Qp), means supercuspidal or special.)

3.1.4 Classification

Here we summarize the classification. Write π1 ∼ π2 for π1 and π2 being equivalent.

Theorem 3.1.7. Let π be an irreducible admissible representation of G = GL2(Qp). Then π is one
of the following disjoint types, where χ,χ1 and χ2 are arbitrary characters of Q×

p .
(i) irreducible principal series π(χ1,χ2), i.e., χ1χ

−1
2 -= | · |±p ; we have π(χ1,χ2) ∼ π(χ2,χ1) and

no other equivalences;
(ii) a special representation, which we may write in the form π(χ| · |1/2p ,χ| · |−1/2

p ) = St⊗χ, and
St⊗ χ ∼ St⊗ χ′ ⇐⇒ χ = χ′;

(iii) a supercuspidal representation;
(iv) 1-dimensional, of the form χ ◦ det.

Recall the central character ωπ of π is the character of Z % Q×
p satisfying

π(zg) = ω(z)π(g), z ∈ Z, g ∈ G.

Because the 1-dimensional representations will not arise as local components of global automor-
phic representations, we will exclude them in the discussion which follows. One often works with
representations of PGL2(Qp) = G/Z. It is easy to see that the irreducible admissible representa-
tions of PGL2(Qp) are same as representations of G = GL2(Qp) with trivial central character. We
remark that for π = π(χ1,χ2) (irreducible principal series or special), ωπ = χ1χ2.

Exercise 3.1.8. (a) Check that for any representation of G, ωπ⊗χ = χ2ωπ.
(b) Deduce the following corollary.

Corollary 3.1.9. The irreducible admissible representations of PGL2(Qp) are of one of the following
types

(i) irreducible principal series π(χ,χ−1) where χ -= | · |±1/2
p is an arbitrary character of Q×

p ;
(ii) a quadratic twist of Steinberg: St⊗ χ where χ2 = 1;
(iii) a supercuspidal representation of G with trivial central character;
(iv) 1-dimensional, of the form χ ◦ det where χ2 = 1.

There is some further classification one can do. For instance, one can consider which represen-
tations are unitary.

Definition 3.1.10. Let (π, V ) be an admissible representation of G. Then π is unitary (or uni-
tarizable) if there exists a positive-definite invariant Hermitian form on V , i.e., there is a positive-
definite Hermitian form ( , ) on V such that

(π(g)v,π(g)w) = (v, w) for all g ∈ G, v, w ∈ V.
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The above definition also makes sense for representations of Q×
p .

Lemma 3.1.11. A character χ of Q×
p is unitary if and only it is of the form ω| · |irp where r ∈ R

and ω is a finite order character.

Proof. First observe a 1-dimensional representation χ is unitary if and only if its image lies in S1:
for z, w ∈ C, x ∈ Q×

p and ( , ) a Hermitian form on V = C, we have

(χ(x)z,χ(x)w) = χ(x)(z,χ(x)w) = χ(x)χ(x)(z, w) = |χ(x)|2(z, w).

Now by the classification of characters of Q×
p given in Section 3.1.1, we can write χ = ω| · |sp for

some ω of finite order and s ∈ C. Since ω is finite order, it has image in S1. Therefore χ is unitary
if and only if | · |sp has image in S1, which is equivalent to s being purely imaginary.

Theorem 3.1.12. Let π be an irreducible admissible representation of G. Then π is unitary if and
only if π is one of the following types:

(i-a) (continuous series) an irreducible principal series π(χ1,χ2) where χ1,χ2 are both unitary;
(i-b) (complementary series) an irreducible principal series π(χ,χ−1) where χ = | · |σp , 0 < σ < 1;
(ii) a special representation with unitary central character; or
(iii) a supercuspidal representation with unitary central character.

Conjecturally, only types (i-a), (ii) and (iii) should occur as local components of automorphic
representations. We will say more about this when we move to the global theory.

3.1.5 Conductors

To each type of representation (i)–(iii) in the above theorem is associated some data which is used
in connection with the study of modular and automorphic forms.

First we discuss ramification. For n ≥ 0, let

K(n) =

{(
a b
c d

)
∈ K : c ∈ pnZp

}
.

In particular K(0) = K. This is a local (p-adic) analogue of the congruence subgroup Γ0(N), where
n is the largest power of p such that pn|N .

Definition 3.1.13. Let (π, V ) be an infinite-dimensional irreducible admissible representation of
G. Let n ≥ 0 be minimal such that V K(n) -= {0}. We say the conductor of π is c(π) = n. If
c(π) = 0, we say π is unramified; otherwise it is ramified.

The conductor is always finite, and an important fact is that V K(c(π)) is 1-dimensional. A vector
in V K(c(π)) is called a new vector or new form, and is analogous to the notion of new forms in
the sense of modular forms.

Theorem 3.1.14. (i) For an irreducible principal series π = π(χ1,χ2), c(π) = c(χ1) + c(χ2).
(ii) For a special representation St⊗ χ, c(π) = 1 if χ is unramified; otherwise c(π) = 2c(χ).
(iii) If π is supercuspidal, then c(π) ≥ 2.

Corollary 3.1.15. Let π be an infinite-dimensional irreducible admissible representation. Then π
is unramified if and only if π is an unramified principal series, i.e., an irreducible principal series
π(χ1,χ2) with both χ1 and χ2 unramified.
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One reason to understand this is the following: if f ∈ Sk(N) is a new form, then it gives
rise to an irreducible admissible infinite-dimensional local representation πp for each p. To apply
representation theory to modular forms, one wants to understand the representations πp in the sense
of our classification above. For each p, the conductor c(πp) = np where np is the largest power of p
such that pnp |N .

In particular, if N = 1, then πp is an unramified principal series for all p. If N = p1 · · · pk where
all the pj ’s are distinct, then πp is either Steinberg or ramified principal series (with conductor 1)
for any p = pj , and πp is an unramified principal series for all other p.

3.1.6 L- and ε- factors

To the infinite-dimensional irreducible admissible representations π of G = GL2(Qp) one can asso-
ciate certain functions called local L- and ε- factors. When patched together these will give global
L- and ε- factors attached to automorphic representations.

One way to construct the L-factors is as follows. Suppose π has a Kirillov model K. Then for
φ ∈ K, one can define the zeta integral

Z(s,φ) =

∫

Q×
p

φ(y)|y|s−1/2
p d×y.

Then the L-factor L(s,π) should be defined so it is the “gcd” of the local zeta functions Z(s,φ)
as φ ranges over K. More precisely, for each φ, there is a polynomial hφ such that Z(s,φ) =
hφ(p−s)L(s,π). In fact, for some φ, hφ = 1. Put another way, for a well chosen φ, we have
L(s,π) = Z(s,π).

This is carried out for GL1(Qp), i.e., for characters of Q×
p , in Tate’s thesis.

We remark these zeta integrals are analogous to the construction of the completed L-function
Λ(s, f) of a modular form f via the Mellin transform:

Λ(s, f) =

∫ ∞

0
f(iy)|y|sd×y.

The fact that one needs choose an appropriate φ ∈ K to get the L-function from the zeta integral is
analogous to the fact that in the above Mellin transform definition of Λ(s, f), one needs to choose
f to be, say, a normalized Hecke eigen cusp form to define a nice L-function with an Euler product.

Definition 3.1.16. For certain irreducible admissible representations π of G, we define the local
L-factor L(s,π) as follows.

(i) For an irreducible principal series π = π(χ1,χ2), we set

L(s,π) =
1

(1− α1p−s)(1− α2p−s)

where αi = χi(p) if χi unramified and αi = 0 if χi is ramified.
(ii) For a special representation π(χ| · |1/2p ,χ| · |−1/2

p ) = St⊗ χ, we set

L(s,π) =
1

1− αp−s

where α = χ(p)|p|1/2p = p−1/2χ(p) if χ| · |1/2p is unramified, and α = 0 else.
(iii) For π supercuspdial, we set

L(s,π) = 1.
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For simplicity, we only define ε-factors for PGL2(Qp).

Definition 3.1.17. Let ψ be the standard additive character of Qp, and π be an irreducible admis-
sible representation of PGL2(Qp). The local ε-factor ε(s,π,ψ) attached to π is

ε(s,π,ψ) = εpc(π)(1/2−s)

where ε = ±1. Specifically
(i) if π = π(χ,χ−1) is an irreducible principal series, then ε = χ(−1).
(ii-a) if π = St, then ε = −1.
(ii-b) if π = St⊗ χ, χ nontrivial quadratic, then ε = χ(−1).

3.2 The real case

Now let G = GL2(R). Of course, there are no compact open subgroups of G, but a maximal compact
subgroup is the orthogonal group K = O(2). As in the p-adic case, we let B = AN where A is the

diagonal subgroup of G and N =

{(
1 ∗

1

)}
⊂ G.

The representation theory for GL2(R) (which of course was historically studied before that for
GL2(Qp)) largely parallels the representation theory for GL2(Qp), but the details are quite different
due to the very different topologies on these groups. In fact, many problems turn out to be much
easier for real groups, whereas others turn out to be much easier for p-adic groups. Nevertheless,
Harish-Chandra—who developed much general theory over the reals and p-adics in the 1950’s and
1960’s—described a philosophy which he called the “Lefschetz principle:” whatever is true for real
groups is also be true for p-adic groups, and one should be able to treat them equally. I.e., even
though the details are quite different, one should be able to put the theories for G(Qp) and G(R)
inside a single framework.

In any case, it is not one of our goals to discuss the representation theory for GL2(R) in detail.
We simply give a summary of facts.

Let (π, V ) be a (smooth) representation of G on a Hilbert space V . First we should define
admissibility.

In the p-adic case, we defined admissible as the condition that V K′ is finite dimensional for
any compact open subgroup. Here, we don’t have compact open subgroups to work with. Another
way to state the p-adic condition is that the restriction πK′ of π to K ′ only contains the trivial
representation finitely many times. In particular, this means the restriction of π to GL2(Zp) contains
any finite order character χ◦det of GL2(Zp) at most finitely many times (to see this, restrict further
to a compact open subgroup on which χ ◦ det is trivial).

While one can define admissibility for G = GL2(R) in terms of K, it is perhaps simpler to think
of it in terms of the compact subgroup

K0 = SO(2) =

{(
cos θ − sin θ
sin θ cos θ

)
: 0 ≤ θ < π

}
,

which has index 2 in K = O(2). Since SO(2) is compact and abelian, all its irreducible representa-
tions are characters.
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Exercise 3.2.1. Show any continuous character of SO(2) is of the form

χk

[(
cos θ − sin θ
sin θ cos θ

)]
= e2πikθ

for some k ∈ Z.

Further since SO(2) is compact, any representation of SO(2) is semisimple, i.e., decomposes as
a direct sum of irreducible representations.

Definition 3.2.2. We say π is admissible if, for any k ∈ Z, the restriction πK0 of π to K0 contains
χk with finite multiplicity.

We first state what the classification looks like. Then we will briefly and informally discuss each
type of representation.

Theorem 3.2.3. Let π be an irreducible admissible unitary representation of PGL2(R). Then k is
one of the following types

(i) irreducible principal series;
(ii) a weight k discrete series Dk for k ≥ 2;
(iii) a limit of discrete series D∗

1; or
(iv) finite-dimensional.

One defines principal series as in the p-adic case: begin with two characters χ1 and χ2 of R to
give a character of A; extend this to a character of B and induce to G. This is usually irreducible.
When it is not, it gives one of the discrete series representations Dk or the limit D∗

1. Thus the
representations of types (ii) and (iii) are analogous to the special representations in the p-adic case.
(There are no supercuspidal representations in the real case.) The reason we separate out D∗

1 is
that it is not quite as nice as the Dk’s.

To be a little more precise, there are discrete series of the same weight with different central
characters, so one should write something like Dk,ω, where ω is the central character. If we fix a
central character ω, then the parity of k must be compatible with the central character and there
is a unique discrete series Dk,ω of weight k. Specifically, if ω is even (ω(−1) = 1) then k must be
even, and if ω is odd (ω(−1) = −1), then k must be odd.

For simplicity, we describe the discrete series when ω = 1 (so k must be even). Let H denote
the upper half plane. Let Vk be the space of holomorphic square-integrable functions on H (w.r.t.
the hyperbolic measure on H), i.e.,

Vk =

{
f : H → C holomorphic

∣∣∣
∫

H
|f(x+ iy)|2yk dx dy

y2
< ∞

}
.

The discrete series of weight k is the representation (Dk, Vk) given by

(Dk(g)f)(z) =
(det g)k/2

(cz + d)k
f

(
az + b

cz + d

)
where g =

(
a b
c d

)
∈ GL2(R)+.

This statement technically needs g ∈ GL2(R)+ (matrices of positive determinant) to make sense
as H is not preserved by the full action of GL2(R), but one can extend the above definition to
all g ∈ GL2(R) without much difficulty. Observe that when we restrict the discrete series to the
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subgroup GL2(Z), the invariant one dimensional subspaces are the modular forms of weight k. One
can show the restriction Dk|K of the discrete series Dk to K = SO(2) decomposes as

Dk|K %
⊕

|j|≥k
j≡k mod 2

χj .

Finally, we remark that in the real case, irreducible finite-dimensional does not mean 1-dimensional—
the standard representation ρ : GL2(R) → GL2(C) is the simplest example. One also has the
symmetric powers of the standard representation

Symn(ρ) : GL2(R) → GLn+1(C).

However all irreducible finite-dimensional representations are of the form Symn(ρ)⊗(χ◦det), where
χ is a character of R×. (Here Sym1(ρ) = ρ and Sym0(ρ) is trivial.)

One last thing that we should mention is that one often works with something slightly more
general than honest representations of GL2(R). Namely, one often works with what are called
(g,K)-modules, which are compatible pairs of representations of the Lie algebra g of G and of the
maximal compact subgroup K of G. Given a unitary representation of GL2(R), one naturally gets
a pair of representations on g and K, which form a (g,K)-module, though not all (g,K)-modules
are obtained in this way. However the classification for (g,K)-modules looks the same as the
classification for representations of G. Whether one uses (g,K)-modules or actual representations
of G depends upon the model one chooses for automorphic forms. We’ll say a little bit about this
in the next section.
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