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Preface

This notes are the sequel to my Modular Forms notes from Spring 2011.
Recall the basic setup. The upper half plane H = {z ∈ C : Im(z) > 0} with the hyperbolic

metric has as its orientation-preserving isometry group PSL2(R), acting by linear fractional trans-
formations. Let Γ be a congruence subgroup of PSL2(R), such as PSL2(Z). Then a modular form
f of weight k for Γ is a holomorphic function f : H→ C which satisfies the transformation law

f

[(
a b
c d

)
z

]
= (cz + d)kf(z),

(
a b
c d

)
∈ Γ, z ∈ H.

(It must also satisfy a holomorphy condition at the cusps.)
Since PSL2(R) acts transitively on H and the stabilizer of the point i ∈ H is

SO(2) =
{(

cos θ − sin θ
sin θ cos θ

)}
,

we may identify H with the quotient PSL2(R)/SO(2) via the map PSL2(R)→ H given by

g 7→ g · i.

Therefore, we can think of f on PSL2(R) which is right-invariant by SO(2) and has a left-transformation
property by Γ.

Consequently, the function φf : PSL2(R)→ C given by

φ

(
a b
c d

)
= (cz + d)−kf

(
a b
c d

)
is left-invariant under Γ, i.e., φf is a function of Γ\PSL2(R). We call φf a (classical) automorphic
form. Now φf is not right-invariant by SO(2), but one can check that it has a right-transformation
property by SO(2). So the passage from modular forms to classical modular forms trades right-
SO(2)-invariance with left-Γ-invariance, as well as the (left) Γ transformation law for a (right) SO(2)
transformation law.

For simplicity, say Γ = PSL2(Z). Then one can reformulate things adelically because

Z(A)GL2(Q)\GL2(A)/K ' Γ\PSL2(R).
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Here Z denotes the center of GL(2), the adèles A are a certain subring of R ×
∏
p Qp, and K is a

certain nice subgroup of GL2(A). (One could work with PSL2(A) or PGL2(A) instead, but it will
be most convenient to work with GL2(A).)

This means we can lift φf to a function of GL2(A), where it is now called an adelic automorphic
form. In fact, φf ∈ L2(Z(A)GL2(Q)\GL2(A)). Now for any group G and subgroup Γ, G acts on
L2(Γ\G) by right translation, i.e.,

R(g)φ(x) = φ(xg), x, g ∈ G.

Here R is called the right regular representation of G on L2(Γ\G).
Consequently, φf generates a representation π of GL2(A) on a subspace V of L2(Z(A)GL2(Q)\GL2(A)).

Namely
V = 〈R(g)φf 〉

π(g)φ = R(g)φ ∈ V, g ∈ G, φ ∈ V.

In other words, π is the restriction of the right regular representation R to the space V spanned by
the translates of φf .

While all of this may seem excessively complicated, there are two big advantages of this ap-
proach. First, it allows one to unify the notions of (elliptic) modular forms, Hilbert modular forms,
Siegel modular forms, and various other generalizations, by viewing them as automorphic form or
representations on G(A) for an appropriate group G.

Secondly, the representation π has a decomposition π = ⊗pπp⊗π∞ where each πp is an irreducible
admissible representation of GL2(Qp) and π∞ is a representation of GL2(R). Consequently, this
allows us to study modular forms via the representation theory of GL2.

This subject has two parts: the local theory (e.g., the study of representations of GL2(Qp)) and
the global theory (the study of automorphic forms and representations on GL2(A)). While it is the
global theory that has the direct applications to number theory, it is the local theory that carries
the arithmetic information. Namely, the Fourier coefficients ap for a modular form f are encoded
in the local components πp of the corresponding global automorphic representation π.

See my note “A brief over of modular and automorphic forms” for a somewhat broader and more
detailed introduction than the above.

One of the main goals of the course is to understand, at least roughly, how the passage from
modular forms to automorphic representations looks—in particular, given f , know what the local
components πp are. Consequently, most of the course will be devoted to understanding the repre-
sentations of GL2(Qp). Even so, we will not be able to prove everything, but will have to take some
results for granted.

In the last part of the course, we will sketch the global theory and discuss applications of
automorphic representations.

Let me emphasize that this is a very rich field, where many branches of mathematics come
together. On the one hand, this is what makes it so interesting, but on the other, it means it requires
a large amount of background material to understand. Fortunately, there are many problems you
can work on with knowledge of only a small portion of this field. Therefore, approach this subject
with much patience and good humour. Understand a little bit at a time. I hope that at the end,
you will have some rough idea of the subject, and be able to start reading some of the literature on
your own.
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I am grateful to the students for asking questions and pointing out errors in these notes, in
particular Kumar Balasubramanian, James Broda, Nikolai Buskin, Catherine Hall, and Salam Turki.
Marc Palm also kindly pointed out a couple of errors in Chapter 3.
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1 Background Material

First we will review some basic information about p-adic fields. This is a modified version of the
corresponding section from my Number Theory II notes. Second we will review some basics of
representation theory, with a focus on representations of finite groups.

There are many places to read about both of these topics. For example, Svetlana Katok’s book p-
adic Analysis Compared with Real for the p-adic numbers. For representation theory of finite groups,
the classic is Serre’s Linear Representations of Finite Groups. Other recommendations are the first
part of Fulton and Harris’s Representation Theory, and James and Liebeck’s Representations and
Characters of Groups. Fulton and Harris also includes the representation theory of GL2(Fp), which
is an illuminating analogue to what we will study.

1.1 p-adic fields

If R is an integral domain, a map | · | : R→ R which satisfies

(i) |x| ≥ 0 with equality if and only if x = 0,
(ii) |xy| = |x||y|, and
(iii) |x+ y| ≤ |x|+ |y|

is called an absolute value on R. Two absolute values | · |1 and | · |2 are equivalent on R if | · |2 = | · |c1
for some c > 0. If we have an absolute value | · | on R, by (ii), we know |1 · 1| = |1| = 1. Similarly,
we know | − 1|2 = |1| = 1, and therefore | − x| = |x| for all x ∈ R.

Now a absolute value | · | on R makes R into a metric space with distance d(x, y) = |x−y|. (The
fact |−x| = |x| guarantees |y−x| = |x−y| so the metric is symmetric, and (iii) gives the triangle in-
equality.) Recall that any metric space is naturally embued with a topology. Namely, a basis of open
(resp. closed) neighborhoods around any point x ∈ R is given by the set of open (resp. closed) balls
Br(x) = {y ∈ R : d(x, y) = |x− y| < r} (resp. Br(x) = {y ∈ R : d(x, y) = |x− y| ≤ r}) centered at
x with radius r ∈ R.

Ostrowski’s Theorem says, that up to equivalence, every absolute value on Q is of one of the
following types:

| · |0, the trivial absolute value, which is 1 on any non-zero element
| · |∞, the usual absolute value on R
| · |p, the p-adic absolute value, defined below, for any prime p.

Here the p-adic absolute value defined on Q is given by

|x| = p−n

where x = pn ab with p - a, b. (Note any x ∈ Q can be uniquely written as x = pn ab where p - a, b
and a

b is reduced.)
In particular, if x ∈ Z is relatively prime to p, we have |x| = 1. More generally, if x ∈ Z,

|x| = p−n where n is the number of times p divides x.
Note any integer x ∈ Z satisfies |x|p ≤ 1, and |x|p will be close to 0 if x is divisible by a high

power of p. So two integers x, y ∈ Z will be close with respect to the p-adic metric if pn|x− y for a
large n, i.e., if x ≡ y mod pn for large n.
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Example 1.1.1. Suppose p = 2. Then

|1|2 = 1, |2|2 =
1
2
, |3|2 = 1, |4|2 =

1
4
, |5|2 = 1, |6|2 =

1
2
, . . .

|3
4
|2 = 4, |12

17
|2 =

1
4
, |57

36
|2 = 4.

With respect to | · |2, the closed ball B1/2(0) of radius 1
2 about 0 is simply all rationals (in reduced

form) with even numerator. Similarly B1/4(0) of radius 1
4 about 0 is simply all all rationals (in

reduced form) whose numerator is congruent to 0 mod 4.

Exercise 1.1.2. Prove | · |p is an absolute value on Q.

Recall, for a space R with an absolute value | · |, one can define Cauchy sequences (xn) in R—
namely, for any ε > 0, |xm− xn| < ε for all m,n large. One forms the completion of R with respect
to | · | by taking equivalence classes of Cauchy sequences. Everyone knows that the completion of
Q with respect to | · |∞ is R.

Definition 1.1.3. The field Qp of p-adic numbers is defined to be the completion of Q with respect
to | · |p.

The usual way to write down an explicit p-adic number is the following. Consider a sequence in
Q given by

x0 = a−dp
−d + a1−dp

1−d + · · ·+ a0

x1 = a−dp
−d + a1−dp

1−d + · · ·+ a0 + a1p

x2 = a−dp
−d + a1−dp

1−d + · · ·+ a0 + a1p+ a2p
2

...

where d ∈ Z is fixed and each 0 ≤ ai < p. Then |xn+1 − xn|p = |an+1p
n+1|p = 1

pn+1 (unless
xn+1 = xn, in which case it is of course 0). Hence x = (xn) is a Cauchy sequence, and we can write
it more succinctly as a formal Laurent series

x = a−dp
−d + a1−dp

1−d + · · ·+ a0 + a1p+ a2p
2 + · · · . (1.1)

Assuming a−d 6= 0, we see that |x|p = pd.
That any p-adic number can be written in the above form, follows from this simple exercise.

Exercise 1.1.4. Suppose (xn) is a Cauchy sequence in (Q, | · |p). Show that |xn−x|p → 0 for some
x ∈ Qp of the form (1.1).

Hence, the Qp’s are an arithmetic analogue of R, just being completions of the absolute values
on Q (Q is already complete with respect to the trivial absolute value—Q is totally disconnected
with respect to | · |0). This approach to constructing Qp gives both an absolute value and a topology
on Qp, which are the most important things to understand about Qp.

Precisely, write any x ∈ Qp as

x = amp
m + am+1p

m+1 + · · · , am 6= 0
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for some m ∈ Z. Then we define the p-adic (exponential) valuation(or ordinal) of x to be

ordp(x) = m.

Then
|x|p = p−m = p−ordp(x).

Definition 1.1.5. The ring of integers of Qp, or the p-adic integers, are

Zp = {x ∈ Qp : ordp(x) ≥ 0} = {x ∈ Qp : |x|p ≤ 1} .

Proposition 1.1.6. Zp is a closed (topologically) subring of Qp.

Proof. That Zp is closed is immediate from the definition since x 7→ |x|p is continuous. Observing
that

Zp =

∑
n≥0

anp
n

 ,

it is easy to see Zp is a ring.

Corollary 1.1.7. The group of units Z×p of Zp is

Z×p = {x ∈ Qp : ordp(x) = 0} = {x ∈ Qp : |x|p = 1} .

Proof. Suppose x ∈ Zp is invertible, i.e., x−1 ∈ Zp. Then

|x|p|x−1|p = |1|p = 1.

However x, x−1 ∈ Zp implies |x|p, |x−1|p ≤ 1. Thus |x|p = |x−1|p = 1. Hence Z×p ⊆ {x ∈ Qp : |x|p = 1}.
Similarly, if |x|p = 1, we see |x−1|p = 1 so x ∈ Z×p .

Exercise 1.1.8. Let p = 5. Determine ordp(x) and |x|p for x = 4, 5, 10, 217
150 ,

60
79 . Describe the (open)

ball of radius 1
10 centered around 0 in Qp.

Exercise 1.1.9. Let x ∈ Q be nonzero. Show

|x|∞ ·
∏
p

|x|p = 1.

This result will be important for us later.

Despite the fact that R and Qp are analogous in the sense that they are both completions of nontrivial
absolute values on Q, there are a couple of fundamental ways in which the p-adic absolute value
and induced topology are different from the usual absolute value and topology on R.

Definition 1.1.10. Let | · | be an absolute value on a field F . If |x+ y| ≤ max {|x|, |y|}, we say | · |
is nonarchimedean. Otherwise | · | is archimedean.

The nonarchimedean triangle inequality, |x+ y| ≤ max {|x|, |y|}, is called the strong triangle
inequality.

Proposition 1.1.11. | · |∞ is archimedean but | · |p is nonarchimedean for each p.
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Proof. Everyone knows | · |∞ or Q or R is archimedean—this is what we are use to and the proof is
just |1 + 1|∞ = 2 > 1 = max {|1|∞, |1|∞}.

Now let’s show | · |p is nonarchimedean on Q. Since Q is dense in Qp (Qp is the completion of
Q), this will imply | · |p is nonarchimedean on Qp also. Let x, y ∈ Q. Write x = pma

b , y = pn cd ,
where a, b, c, d are relatively prime to p, and m,n ∈ Z. Without loss of generality, assume m ≤ n.
Then we can write

x+ y = pm
(a
b

+ pn−m
c

d

)
= pm

ad+ pn−mbc

bd
.

Since n ≥ m, the numerator on the right is an integer. The denominator are relatively prime to p
since b, d are, though the numerator is possibly divisible by p (though only if n = m and p|(ad+bc)).
This means that we can write x+ y = pm+k e

f where e, f ∈ Z are prime to p and k ≥ 0. Thus

|x+ y|p = p−m−k ≤ p−m = max
{
p−m, p−n

}
= max {|xp|, |yp|}

Notice that our proof shows that we actually have equality |x + y|p = max {|x|p, |y|p} (since
k = 0 above) except possibly in the case |x|p = |y|p.

Exercise 1.1.12. Find two integers x, y ∈ Z such that
(i) |x|3 = |y|3 = 1

3 but |x+ y|3 = 1
9 .

(ii) |x|3 = |y|3 = |x+ y|3 = 1
3 .

Proposition 1.1.13. Every ball Br(x) in Qp is both open and closed. Thus the singleton sets in
Qp are closed.

Using the fact that the balls are closed, one can show that Qp is totally disconnected, i.e., its
connected components are the singleton sets. However the singleton sets are not open, as that would
imply Qp has the discrete topology, i.e., every set would be both open and closed.

Proof. Each ball is open by definition. The following two exercises show Br(x) is also closed.
Then for any x ∈ Qp, the intersection of the closed sets

⋂
r>0Br(x) = {x}, which must be

closed.

Exercise 1.1.14. Show Br(x) = x+Br(0) = {x+ y : y ∈ Br(0)}.

Exercise 1.1.15. Show that Br(0) is closed for any r ∈ R.

Your proof of the second exercise should make use of the fact that | · |p is a discrete absolute
value, i.e., the valuation ordp : Qp → R actually has image Z, which is a discrete subset of R. In
other words, the image of | · |p = p−ordp(·), namely pZ, is discrete in R except for the limit point at
0. On the other hand, the image of the ordinary absolute value | · |∞ on R is a continuous subset of
R, namely R≥0.

Another strange, but nice thing, about analysis on Qp is that a series
∑
xn converges if and

only if xn → 0 in Qp.
While these are some very fundamental differences between R and Qp, you shouldn’t feel that

Qp is too unnatural—just different from what you’re familiar with. To see that Qp isn’t too strange,
observe the following:
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Proposition 1.1.16. Qp and R are both Hausdorff and locally compact, but not compact.

Proof. The results for R should be familiar, so we will just show them for Qp.
Recall a space is Hausdorff if any two points can be separated by open sets. Qp is Hausdorff

since it is a metric space: namely if x 6= y ∈ Qp, let d = d(x, y) = |x+ y|p. Then for r ≤ d
2 , Br(x)

and Br(y) are open neighborhoods of x and y which are disjoint.
Recall a Hausdorff space is locally compact if every point has a compact neighborhood. Around

any x ∈ Qp, we can take the closed ball Br(x) of radius r. This is a closed and (totally) bounded
set in a complete metric space, and therefore compact. (In fact one could also take the open ball
Br(x), since we know it is closed from the previous exercise.)

Perhaps more instructively, one can show Br(x) is sequentially compact in Qp, which is equiva-
lent to compactness being a metric space. We may take a specific r if we want, say r = 1. Further
since B1(x) = x+B1(0) by the exercise above, it suffices to show B1(0) = {x ∈ Qp : |x|p ≤ 1} = Zp
is sequentially compact. If

x1 = a10 + a11p+ a12p
2 + · · ·

x2 = a20 + a21p+ a22p
2 + · · ·

x3 = a30 + a31p+ a32p
2 + · · ·

...

is a Cauchy sequence, then for any ε > 0, there is an N ∈ N such that |xm − xn|p < ε for all
m,n > N . Take ε = p−r for r > 0. Then |xm − xn|p < ε = p−r means xm ≡ xn mod pr+1, i.e.,
the coefficients of 1, p, p2, . . . , pr must be the same for all xm, xn with m,n > N . Let a0, a1, . . . , ar
denote these coefficients. We can do this for larger and larger r (note that a0, . . . , ar−1 will never
change) to get a sequence (an), and then it is clear that the above sequence converges to

x = a0 + a1p+ a2p
2 + · · · ∈ Zp.

This provides a second proof of local compactness.
To see Qp is not compact, observe the sequence x1 = p−1, x2 = p−2, x3 = p−3, . . . has no

convergent subsequence. Geometrically, |xn| = pn, so this is a sequence of points getting further
and further from 0, and the distance to 0 goes to infinity.

We remark that Q, with either usual subspace topology coming from R or the one coming from
Qp, is a space which is not locally compact. The reason is any open neighborhood about a point is
not complete—the limit points are contained in the completion of Q (w.r.t. to whichever absolute
value we are considering), but not in Q. (The trivial absolute value |·|0 induces the discrete topology
on Q, meaning single points are open sets, so it is trivially locally compact.)

The general definition of a local field is a locally compact field with a non-discrete topology,
hence we see that Qp and R are local fields, whereas Q (with the usual topology) is not. Any local
field of characteristic 0 will be a finite extension of Qp or R. These will be the completions of number
fields (a finite extension of Q), which are in contrast called global fields.

To try to minimize the background required, we will mostly work with Qp, though the theory
we develop extends without difficulty to any finite extension.
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1.2 Representation theory

Definition 1.2.1. Let G be a group and V be a vector space over a field F . A representation π
of G on V is a homomorphism

π : G→ GL(V ),

where GL(V ) denotes the group of automorphisms of V . The representation is denoted by (π, V ),
π, or sometimes just V . Here V is called the representation space of V .

If dimV = n <∞, we say π is an n-dimensional representation over F . Otherwise, we say
π is infinite dimensional. If π is a 1-dimesional representation, we also refer to π as a (linear)
character.

Example 1.2.2. Let G and V be arbitrary. The map π : G→ GL(V ) given by π(g) = id is always
a representation, called the trivial representation of G on V .

If we simply say the trivial representation of G, without other context, it is taken for granted we
mean the 1-dimensional trivial representation π : G→ GL1(F ).

Example 1.2.3. Let G = Cn, the cyclic group of order n, and take F = C. Write G = 〈x|xn = 1〉.
Then the map

π1 : G→ GL(C) = GL1(C) = C× given by π1(xj) = e2πij/n

is a representation (in fact, linear character) of G. Note that since π1 is a homomorphism, it is
determined by its values on a set of generators, so one can define π1 simply by π1(x) = e2πi/n.

The homomorphism

π2 : G→ GL(C2) = GL2(C) defined by π2(x) =
(
e2πik1/n

e2πk2/n

)
is a 2-dimensional representation of G for any fixed k1, k2 ∈ Z. One can analogously define an
n-dimensional representation of Cn.

While π2 in the example above gives an action of Cn on a 2-dimensional space V = C2, the
action is entirely determined by what it does to the two orthogonal subspaces Ce1 and Ce2, where
{e1, e2} is the standard basis for V . Thus we should be able to decompose π2 into two 1-dimensional
representations.

Definition 1.2.4. Let (π, V ) be a representation of a group G. We say W is a (G-)invariant
subspace of V if {π(g)w : g ∈ G,w ∈W} ⊆W . A subrepresentation of a representation (π, V )
of a group G is an invariant subspace W of V together with the homomorphism

πW : G→ GL(W ) given by πW (g)w = π(g)w.

For a subrepresentation W , the quotient of (π, V ) by (πW ,W ) is the representation

πW : G→ GL(V/W ) given by πW (g)(v +W ) = π(g)v +W.

If V = W1 ⊕ · · · ⊕Wk with each Wi invariant, we say π is a direct sum of πW1 , . . . πWk
and

write
π = πW1 ⊕ · · · ⊕ πWk

.
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Since the maps πW and πW are naturally defined given W , we typically just refer to the sub-
representation and quotient representation as W and V/W .

Exercise 1.2.5. (i) Check the quotient is a well-defined representation.
(ii) For π2 from the previous example, determine the subrepresentations and their quotients. Is

π2 a direct sum?

For any representation (π, V ), the subspaces {0} and V are always invariant.

Definition 1.2.6. We say (π, V ) is irreducible if there are no invariant subspaces other than {0}
and V .

Example 1.2.7. Any 1-dimensional representation is irreducible. In particular, the trivial one is.

Proposition 1.2.8. Let G be a finite group and (π, V ) be a representation of G. If π is irreducible,
then π is finite dimensional.

This is of course not true for general groups, though if G is compact, e.g., Gal = SO(2), then
the irreducible continuous representations are finite dimesional.

Proof. Let v0 ∈ V be nonzero. Then the linear span W of 〈π(g)v0 : g ∈ G〉 is a invariant subspace.
To see this take any w ∈W . Then we can write w =

∑
ciπ(gi)v0, where this sum is finite. For any

g ∈ G, we see
π(g)w =

∑
ciπ(ggi)v0 ∈W.

Since π(1)v0 = v0, we see W 6= {0}. Hence by irreducibility, W = V , but it is clear W is finite
dimensional.

The basic problem in representation theory is to classify all irreducible representations of G. In
working with groups with more structure, such as topological groups or algebraic (matrix) groups,
one typically restricts this question to a certain class of representations, such as continuous or smooth
representations, that are more natural for the groups at hand. We will wait to discuss this until the
next chapter.

All representations of finite groups over C decompose into a direct sum of irreducible representa-
tions, so in this case, knowing the irreducible representations of a group tells us all representations
of a group. While this is not true in general, this classification is still crucial to understanding the
representation theory of the group.

There are meaningless ways to get new representations out of old ones, such as replacing F or
V by something which is isomorphic. A slightly less trivial, but still essentially meaningless, way
to get a new representation out of an old one is by conjugation. For example, if π2 is as in the

previous example, we can replace π2 by πγ2 (g) = γ−1π2(g)γ for any γ ∈ GL2(C). If γ =
(

1
1

)
,

then πγ2 simply interchanges k1 and k2. More generally, conjugation can be viewed as a special case
of composing the representation with either an automorphism of V or an automorphism of G.

Thus this classification of irreducible representations should only be up to a certain notion of
equivalence.

10



Definition 1.2.9. Let (π1, V1) and (π2, V2) be representations of G. A linear transformation A :
V1 → V2 is an intertwining map if

π2(g)A = Aπ1(g), g ∈ G.

The set of all such intertwining maps is denoted HomG(π1, π2) = HomG(V1, V2). We also write
EndG(π) = HomG(π, π) and EndG(V ) = HomG(V, V ). We omit the subscripts G when understood.

We say π1 and π2 are equivalent if HomG(π1, π2) contains an invertible transformation A :
V1 → V2. In this case we write π1

∼= π2.

Note we always have 0 ∈ Hom(π1, π2).

Example 1.2.10. Let G = Cn = 〈x〉,

π1 : G→ GL1(C) given by π1(x) = e2πi/n

π2 : G→ GL1(C) given by π2(x) = e−2πi/n

π3 : G→ GL2(C) given by π3(x) =
(
e2πi/n

e−2πi/n

)
π4 : G→ GL2(C) given by π4(x) =

(
e−2πi/n

e2πi/n

)
.

Let us assume n > 2 so e2πi/n 6= e−2πi/n.
Then

End(π1) = Hom(π1, π1) = {A ∈M1×1(C) : π1(g)A = Aπ1(g)} = C
Note if A ∈ Hom(π1, π2) this means A ∈ C such that

π2(x)A = Aπ1(x) for v ∈ C =⇒ e−2πi/nA = Ae2πi/n =⇒ A = 0,

i.e., Hom(π1, π2) = {0}.

Now let’s determine Hom(π1, π3). Suppose A =
(
a1

a2

)
: C→ C2. Then A ∈ Hom(π1, π3) means,

for all j ∈ Z,

π3(xj)A = Aπ1(xj) ⇐⇒
(
e2πij/n

e−2πij/n

)(
a1

a2

)
=
(
a1

a2

)
e2πij/n ⇐⇒ a2 = 0.

Hence we see that Hom(π1, π3) =
{(

a
0

)
: a ∈ C

}
' C.

Finally, we determine Hom(π3, π4). Suppose A =
(
a b
c d

)
: C2 → C2. Then A ∈ Hom(π3, π4)

means, for all j ∈ Z,

π4(xj)A = Aπ3(xj) ⇐⇒
(
e−2πij/n

e2πij/n

)(
a b
c d

)
=
(
a b
c d

)(
e2πij/n

e−2πij/n

)
.

It is easy to see this means

Hom(π3, π4) =
{(

0 b
c 0

)
: b, c ∈ C

}
' C⊕ C.

Since this contains invertible elements in M2(C), we see π3 and π4 are equivalent.
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Exercise 1.2.11. Keep the notation of the previous example.
(i) Determine End(π3) and Hom(π3, π2).
(ii) Consider the representation

π5 : G→ GL2(C) given by π4(x) =
(
e2πi/n

e2πi/n

)
.

Determine End(π5) and Hom(π5, π3).

As you might guess from the above example, the space Hom(π1, π2) tell us when π1 is (up to
equivalence) a subrepresentation of π2, or more generally, how many subrepresentations π1 and π2

have in common. For now, let us just state what happens for finite groups.

Proposition 1.2.12. Let G be a finite group and (π1, V1), (π2, V2) be finite-dimensional represen-
tations over C.

(i) (Schur’s lemma) Suppose π1 and π2 are irreducible. Then Hom(π1, π2) = {0} unless
π1
∼= π2, in which case Hom(π2, π2) ' C.
(ii) Suppose π1 is irreducible. Then Hom(π1, π2) ' Cn where n is the number of times π1 appears

(up to equivalence) in the direct sum decomposition (which is unique up to equivalence) of π2.
(iii) Suppose π1

∼= ρ1 ⊕ · · · ⊕ ρl and π2
∼= τ1 ⊕ · · · ⊕ τk with each ρi, τj irreducible. Then

Hom(π1, π2) ' Cn where n is the number of pairs (i, j) such that ρi ∼= τj.
(iv) π1 is irreducible if and only if Hom(π1, π1) ' C.

We will show Schur’s lemma, in greater generality, later in this course. Parts (ii) and (iii) are
simple generalizations of (i), and (iv) a consequence of (iii).

Before we move on to the next topic, here are a couple other examples of finite-dimensional
representations.

Example 1.2.13. Let G = GLn(F ) or SLn(F ), where F is a field. The map π : G → GLn(F )
given by π(g) = g is an irreducible n-dimensional representation of G, called the standard repre-
sentation of G.

The map π̌ : G → GLn(F ) given by π(g) = tg−1 is also an n-dimensional representation of G,
called the contragredient representation associated to π. (One can make this definition for any
G, π).

A nontrivial 1-dimensional representation of G is given by the map g 7→ det(g).

Example 1.2.14. Let π be the standard representation of G = GL2(F ), and let e1, e2 be the standard
basis for V = F 2. Let Sym2(V ) be the 3-dimensional vector space generated by the symmetric algebra
e1⊗ e1, e1⊗ e2 = e2⊗ e1, e2⊗ e2. The symmetric square representation Sym2(π) : G→ GL3(F ) =
GL(Sym2(v)) is given by

Sym2(π)(g)(ei ⊗ ej) = g · ei ⊗ g · ej .

More explicitly, using the above ordered basis for Sym2(V ), we have

Sym2(π)
(
a b
c d

)
=

 a2 ab b2

2ac ad+ bc 2bd
c2 cd d2

 .

This is irreducible (except in the degenerate case when F = F2 and G ' S3).
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1.2.1 Induction and restriction

Let H be a subgroup of G such that H 6= G. For simplicity, we assume G is finite in this section.
Induction and restriction allow us to transfer representations from H to G and vice versa.

Restriction is trivial.

Definition 1.2.15. Let π be a representation of G. The restriction πH of π to H is simply the
representation defined by

πH(h) = π(h).

Example 1.2.16. Let π : G → GLn(F ). Since π(1) = In, the restriction π{1} of π to the trivial
subgroup decomposes as a direct sum n-copies of the trivial representation. (The only irreducible
representation of {1} is the trivial one.)

Conversely, given a representation (ρ,W ) of H, one might ask to construct a representation π of
G such that πH = ρ. This would mean that one could extend the homomorphism ρ : H → GL(W )
to a homomorphism π : G → GL(W ), which is not always possible. However, what we can always
do is extend ρ to a homomorphism π : G→ GL(V ) where V is some superspace ofW . In particular,
one can formally take V =

⊕
g∈G/H gW , where gW = {gw : w ∈W} ' W . Then one defines the

action π(g) on V by
π(g)g′w = g′′ρ(h)w ∈ g′′W, wheregg′ = g′′h.

Exercise 1.2.17. Check that π is a well defined representation of G, called the representation
induced from ρ.

In particular, if we restrict π to H and g′ = 1, then we see

π(h)w = ρ(h)w

so the restriction πH contains ρ as a subrepresentation. However, by definition πH acts on a larger
space V , so πH 6= ρ, i.e., the quotient of πH by ρ is nontrivial. In this sense, we see induction is a
converse construction to restriction.

There is another way to define induction, which is more suitable for our point of view.

Definition 1.2.18. Let (ρ,W ) be a representation of H. The induction of ρ from H to G is the
representation (IndGH(ρ), V ) where

V = {f : G→W |f(hg) = ρ(h)f(g)}

and
IndGH(ρ)(g)f(x) = f(xg).

In general, one might want to restrict to functions f : G→W of a certain type (e.g., continuous
or smooth), but these restrictions are vacuous for finite groups.

Example 1.2.19. Consider C3 as a subgroup of the symmetric (or dihedral if you prefer) group S3

of order 6. Write S3 = 〈σ, τ |σ2 = τ3 = 1, στσ = τ−1〉 so C3 = 〈τ〉. Let (ρ,W ) be the 1-dimensional
representation of C3 over C given by W = C and

ρ(τ j) = ζj , ζ = e2πi/3.
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Set
V = {f : S3 →W |f(hg) = ρ(h)f(g)} .

There are two cosets in C3\S3, represented by 1 and σ. Hence f ∈ V means

f(τ j) = ρ(τ j)f(1) = ζjf(1)

and
f(τ jσ) = ζjf(σ).

Conversely, these conditions imply f ∈ V , whence f ∈ V is determined by f(1) and f(τ). In
particular, dimV = 2.

We can use this to write π = IndS3
C3

(ρ) in matrix form. Namely, let f1, f2 ∈ V be defined by
f1(1) = f2(σ) = 1, f1(σ) = f2(1) = 0. Then

π(σ)f1(1) = f1(σ) = 0, π(σ)f1(σ) = f1(σ2) = f1(1) = 1,

which implies
π(σ)f1 = 0 · f1 + 1 · f2.

A similar computation shows
π(σ)f2 = 1 · f1 + 0 · f2.

Consequently, with respect to the ordered basis f1, f2,

π(σ) =
(

0 1
1 0

)
.

Next note
π(τ)f1(1) = f1(τ) = ζ, π(τ)f1(σ) = f1(στ) = f1(τ2σ) = 0,

so
π(τ)f1 = ζ · f1 + 0 · f2.

Similarly we see
π(τ)f2 = 0 · f1 + ζ2 · f2.

Thus we can write

π(τ) =
(
ζ 0
0 ζ2

)
.

Since σ, τ generate S3, this determines π on any element of S3. Observing π is faithful, i.e.,
injective, we see π gives a matrix realization for S3 in GL2(C).

Exercise 1.2.20. With π the induced representation of S3 in the previous example, compute Hom(π, π)
and conclude π is irreducible.

Exercise 1.2.21. Show dim IndGH(ρ) = |G/H| · dim ρ.

Exercise 1.2.22. Compute IndS3
C3

(1) where 1 denotes the (1-dimensional) trivial representation of
C3.

Exercise 1.2.23. Let ρ be a non-trivial representation of the Klein group V4. Compute IndA4
V4

(ρ).
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1.2.2 Character theory

One of the main tools to study representations, particularly of finite groups, is to look at their char-
acters. Again, we will restrict to the case of finite groups in this section, and all our representations
will be finite dimensional.

Definition 1.2.24. Let (π, V ) be a representation of G over F . The character χπ of π is the
function χπ : G→ F defined by

χπ(g) = trπ(g) =
∑
ei

(π(g)ei, ei),

where ( , ) is an inner product on V and ei an orthonormal basis.

We remark that χπ does not depend upon on the choice of inner product or basis. In fact, it
only depends upon the equivalence class of π, making it a useful invariant.

Since the trace is conjugacy invariant, any character χπ of G is a class function on G, i.e., χπ(g)
only depends upon the conjugacy class of g in G.

Example 1.2.25. If G = GLn(F ) or SLn(F ) and π is the standard representation on Fn, then
χπ(g) = tr(g).

Example 1.2.26. If π is a 1-dimensional representation of G, then χπ(g) = π(g). This explains
why a 1-dimensional representation is also called a character.

Example 1.2.27. Suppose π is a n-dimensional representation. Then π(1) is the identity of
GLn(F ), so χπ(1) = n = dimπ. We also call χπ(1) the degree degχπ of χπ.

For the rest of the section, we assume F = C.

Theorem 1.2.28. Let χ1, . . . , χr be the irreducible characters of G, i.e., the (finite number of)
characters of irreducible representations of G. Then

(i) (First orthogonality relation) For any i, j,∑
g∈G

χi(g)χj(g−1) = δij |G|.

(ii) (Second orthogonality relation) For any g, h ∈ G,

r∑
i=1

χi(g)χi(h−1) =

{
|CG(g)| if g is conjugate to h
0 else.

(iii) χ1, . . . , χr for a basis for the space of class functions on G. In particular, r is the number
of conjugacy classes of G.

(iv)
r∑
i=1

(degχi)2 = |G|.

These results can be found in any standard text on representation theory for finite groups.
All of these results are very useful, but (iii) and (iv) are particularly useful for determining the

irreducible representations of G.
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Example 1.2.29. Suppose G is abelian of order n. Then each element of G is its own conjugacy
classes, thus there are n irreducible representations by (iii). By (iv), the sum of their dimensions
squared must be n, hence they are all 1-dimensional.

In particular, for G = Cn = 〈x〉, consider the 1-dimensional representation given by π1(x) =
ζ = e2πi/n. Then the representations πj = πji for j = 0, 1, . . . , n− 1 are all inequivalent, and hence
are all irreducible representations of G.

Exercise 1.2.30. Let G be any finite abelian group. Construct all irreducible representations of G.

Example 1.2.31. Let’s determine all irreducible representations of S3 over C, and then compute
their characters. Let π be as in Example 1.2.19.

We already know 2 irreducible representations of S3, namely the trivial one χ0 and the 2-
dimensional induced representation π from Example 1.2.19. By Theorem 1.2.28(iii), there is only 1
more irreducible representation of S3, and by part (iv) of the same theorem, it must be 1-dimensional.
Let us call it ψ.

Since a 1-dimensional representation of S3 must have abelian image (it lies in GL1(C)), it must
have nontrivial kernel. This kernel is a normal subgroup of S3, of which the nontrivial ones are C3

and S3. If the kernel is S3, then the representation must be trivial, so ψ must have kernel C3, i.e.,
it descends to a representation of the quotient S3/C3 ' C2. The only irreducible (which in this case
is equivalent to 1-dimensional) representations of C2 are the trivial one and the embedding of C2 as
{±1} in C× ' GL1(C).

Explicitly, we may write ψ as

ψ(τ j) = 1, ψ(στ j) = −1

for any j = 0, 1, 2.
Thus χ0, ψ, π are all irreducible representations of S3. To compute the character of π, it suffices

to determine its value on each of the conjugacy classes of S3, of which there are 3. We may take
for conjugacy class representatives 1, σ, τ .

It is often convenient to present the irreducible characters of S3 as a character table, which
is a table with the rows indexed by the characters and the columns indexed by the conjugacy classes.
For S3, we see it looks like

1 σ τ

χ0 1 1 1
ψ 1 −1 1
χπ 2 0 −1

Exercise 1.2.32. Determine all irreducible representations of A4 and compute the character table.
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2 Smooth Representations

In this section we will introduce some basic notions and results on representations of certain topo-
logical groups, including GLn(Qp). The reason for this is because (1) to study representations of
GL2(Qp), we will need to look at representations of and restrictions to certain subgroups, and (2)
not much is gained by restricting to GL2(Qp) at this stage.

Much of this chapter is based on Fiona Murnaghan’s notes “Representations of reductive p-
adic groups.” The notes by Prasad and Raghuram entitled “Representation theory of GL(n) over
non-archimedean local fields” contain similar material.

2.1 Some topological groups

Definition 2.1.1. A topological group G is a group endowed with a topology such that the map
G×G→ G given by (x, y) 7→ xy−1 is continuous.

Here, of course, G×G is given the product topology. An alternative way to define topological
group is to require that the maps (x, y) 7→ xy and x 7→ x−1 are continuous.

Proposition 2.1.2. Let n ∈ N. Let F = Qp or R, or more generally, a ring which is a metric
space. The the additive group of n× n matrices Mn(F ) over F is a topological group.

Here, viewing Mn(F ) ' Fn
2 , we give Mn(F ) the product topology. Note that this is also a

metric space.

Proof. Let U be an open set in Mn(F ), and let V = {(A,B) ∈Mn(F )×Mn(F ) : A−B ∈ U}. We
want to show V is open. Let (A,B) ∈ V . It suffices to show there there are open neighborhoods V1

of A and V2 of B such that V1 × V2 ⊆ V .
Since U is open, there exist ε such that the ball Bε(A − B) ⊆ U . Taking V1 = Bε/2(A) and

V2 = Bε/2(B) gives the claim.

Proposition 2.1.3. Let F = Qp or R. Then GLn(F ) = {A ∈Mn(F ) : det(A) 6= 0} is a topological
group.

Here we give GLn(F ) the subspace topology of Mn(F ).

Proof. First note that the coordinate maps A = (aij) 7→ ai0,j0 are continuous. Since multiplication
and addition are continuous maps from F × F → F , a composition of these maps shows any
polynomial in the coefficients of A is a continuous map.

Write B = (bij) and AB−1 = C = (cij). Each cij is a (well-defined) rational function of the
aij ’s and bij ’s, and therefore (A,B) 7→ cij for any ij is a continuous map GLn(F )×GLn(F )→ F .
Consequently (A,B) 7→ AB−1 is a continuous map GLn(F ) × GLn(F ) → Mn(F ), whose image
lies in the open set GLn(F ). Therefore the corresponding map GLn(F ) × GLn(F ) → GLn(F ) is
continuous.

Proposition 2.1.4. Let G be a topological group and H a subgroup. Then H is also a topological
group.

Proof. Let U is a open set in G. Let V be the (open) preimage in G×G under the map f(x, y) =
xy−1. Then V ∩H ×H is the preimage of U ∩H under the restriction of f to fH : H ×H → H.
Consequently fH is continuous.

17



Example 2.1.5. Let F = Qp or R. Since det : Mn(F ) → F is given by a polynomial in the
coordinates of Mn(F ), it is a continuous map. Consequently SLn(F ) = {A ∈ GLn(F ) : det(A) = 1}
is an closed subgroup of GLn(F ).

Example 2.1.6. Let F = Qp or R and G = GLn(F ). Let P denote the set of upper triangular
matrices in G (the standard Borel subgroup), A the group of diagonal matrices in G and N the set
of upper triangular matrices in G with 1’s on the diagonal (so P = AN). Then P , A, N are closed
subgroups of G, since they are defined by equations on the matrix coefficients.

More generally, one can consider subgroups of GLn(F ) defined by polynomial equations in the
coefficients. Such groups are the prototypical examples of what are called algebraic groups. The
most famous of these are the classical groups. These groups come in 4 types: linear, orthogonal,
symplectic and unitary.

The linear groups are GLn(F ) and SLn(F ), along with their projective versions: PGLn(F ) =
GLn(F )/Z(GLn(F )) and PSLn(F ) = SLn(F )/Z(SLn(F )). Here Z(G) denotes the center of G.
Note PSLn(F ) ' PGLn(F ) if F is algebraically closed, but not in general.

We will not say precisely what orthogonal, symplectic and unitary mean in general, but es-
sentially they are subgroups of linear groups which preserve symmetric bilinear, skew-symmetric
bilinear, and Hermitian forms, respectively. In any dimension, there are various (non-isomorphic)
examples of each kind of group according to the classification of the appropriate types of forms on
Fn. Here are a couple examples.

Example 2.1.7. The special orthogonal group

SOn(F ) =
{
g ∈ SLn(F ) : tgg = In

}
.

The symplectic group

Sp2n(F ) =
{
g ∈ SL2n(F ) : tgJg = J

}
,

where J =
(

0 In
−In 0

)
. Some authors denote Sp2n by Spn.

In Oklahoma, there is another algebraic group you should know, though it does not fall under
the heading of “classical groups.”

Example 2.1.8. The symplectic similitude group

GSp4(F ) =
{
g ∈ GL4(F ) : tg

(
0 I2
−I2 0

)
g = λ(g)

(
0 I2
−I2 0

)
for some λ(g) ∈ F

}
.

This of course contains both Sp4(F ) and the group F× embedded diagonally in GL4(F ), but in
general more than this.

The most natural generalization of classical (elliptic) modular forms to higher dimensions is the
notion of Siegel modular forms, which correspond to automorphic forms or representations on the
symplectic groups Sp2n and GSp2n.

In low rank (when n is small) there are some coincidences among these algebraic groups, called
accidental isomorphisms. We just mention a couple. The group Sp2(F ) = SL2(F ) for any field
F . Over C, we have PSL2(C) ' PGL2(C) ' SO3(C) and PGSp4(C) := GSp4(C)/Z(GSp4(C)) '
SO5(C). Over other fields, these latter isomorphisms aren’t exactly true, but these groups are still
closely related, a fact which is often exploited in number theory and automorphic representations.

18



Example 2.1.9. Let F = Qp or R, and E/F a quadratic field extension. One can define a topology
on E by realizing E ' F 2 as a vector space over F . Then M2(E) and GL2(E) are topological
groups. Let σ be the nontrivial Galois automorphism of E/F and ε ∈ F×. We define a quaternion
algebra over F by

D(F ) =
{(

a bε
bσ aσ

)
∈M2(E) : a, b,∈ E

}
.

This is a 4-dimensional algebra over F , whose center is isomorphic to F×, and it will be a division
algebra if and only if ε is not a square in F . If F = R, then either D(R) ' M2(R) if ε > 0 or
D(R) ' H, Hamilton’s quaternions, if ε < 0.

The multiplicative group of D(F ) is

D×(F ) =
{(

a bε
bσ aσ

)
∈ GL2(E) : a, b,∈ E

}
.

This construction of quaternion algebras works more generally (for instance, over Q). Quater-
nion algebras have many applications to number theory and automorphic forms. One amazing
theorem is the local Jacquet–Langlands correspondence, which provides a correspondence between
(finite-dimensional) representations of D×(Qp) and the (infinite-dimensional) “discrete series” rep-
resentations of GL2(Qp).

For fun, here are a couple simple exercises about subgroup and quotients of topological groups.

Exercise 2.1.10. Let H be a subgroup of a topological group G. Show the closure of H is also a
subgroup.

Exercise 2.1.11. Let H be an open subgroup of a topological groups G. Show H is also closed.

Given a subgroup H of G, one often considers the quotient space G/H (with the quotient
topology).

Exercise 2.1.12. Let H be a subgroup of G. Then G/H the projection map G→ G/H is open. If
H is closed, then the singleton sets of G/H are closed.

Exercise 2.1.13. Let H be a normal subgroup of G. Then G/H is a topological group.

2.2 l-groups

The topology of Qp, and therefore that of GL2(Qp), is very special. In this section we define l-groups,
which will be topological groups with similar topological properties.

Definition 2.2.1. Let X be a topological space. We say Y ⊆ X is connected if it is not a disjoint
union of proper open subsets of Y (in the subspace topology). We say X is totally disconnected
if no nonempty subsets are connected except singleton sets.

Lemma 2.2.2. Qp is totally disconnected.

Proof. Suppose X ⊆ Qp is connected and contains more than one element. Let x ∈ X. For some
r > 0, the ball Br(x) of radius r about x does not contain X. Since Br(x) is both open and closed,
we can partition X into 2 nonempty disjoint open subsets U = Br(x)∩X and V = Br(x)c∩X.

19



Exercise 2.2.3. Suppose X and Y are totally disconnected. Show X × Y is also.

Exercise 2.2.4. Let Y be a subspace of X. If X is totally disconnected, so is Y .

Corollary 2.2.5. The groups Mn(Qp) and GLn(Qp), as well as their subgroups, are totally discon-
nected.

To get a better sense of the topology of these groups, let’s determine bases for the topologies of
Mn(Qp) and GLn(Qp).

First, note that if G is a topological group, then for any g ∈ G, the map given by left multipli-
cation by g is a homeomorphism. Consequently, to determine a basis of open sets for G, it suffices
to determine a basis of open neighborhoods around the identity.

Now let’s determine a basis of open neighborhoods around 0 for Mn(Qp) ' Qn2

p . Recall a
basis of open (and also closed) neighborhoods around 0 in Qp are the sets pjZp = Bp−j (0) for
j ∈ Z. Consequently, a basis of open neighborhoods of 0 in Mn(Qp) will be sets of the form
pj1Zp × pj2Zp × · · · × pjn2Zp for j1, . . . , jn2 ∈ Z. It is clear that each set of this form is both
contained in and contains a set of the form pjMn(Zp) = pjZp × · · · pjZp. Hence a simpler basis of
open neighborhoods of any A ∈ Mn(Qp) is

{
A+ pjMn(Zp) : j ∈ Z

}
. Note each of these sets are

also closed.
Next, let’s determine a basis of open neighborhoods around 1 for GLn(Qp). By the above

remarks, one basis is {
(1 + pjMn(Zp)) ∩GLn(Qp) : j ∈ Z

}
.

In fact, it suffices to restrict j to be sufficiently large, say j ≥ 1. For j ≥ 1, put

Kj = (1 + pjMn(Zp)) ∩GLn(Qp).

Then {Kj} is a basis of open (and closed) neighborhoods of 1 in GLn(Qp)
It is a general fact that if a space has a basis of open neighborhoods which are also closed, then

the space is totally disconnected.
In fact, these sets Kj have more structure.

Exercise 2.2.6. Show Kj is an open subgroup of GLn(Qp). Further show, that

Kj ⊆ K0 := GL2(Zp) = {g ∈ GLn(Zp) ∩Mn(Zp) : |det g|p = 1.} .

Note that K0 is an open compact subgroup of GLn(Qp). To see that it is open (and closed), note
that Mn(Zp) is open (and closed) in Mn(Qp), so its restriction to GLn(Qp) is also. Next observe
that the preimage of (1/p, p) under the map det : GLn(Qp) → C× is the open (and closed) set
{g ∈ GLn(Zp) : |det g|p = 1}. Thus K0 is open (and closed).

To see that K0 is compact, observe it is the restriction of the compact subgroup Mn(Zp) of
Mn(Qp) to the closed subset {g ∈Mn(Qp) : | det g|p = 1}. One can similarly see eachKj is compact,
and we have a family of inclusions

· · · ⊂ K2 ⊂ K1 ⊂ K0.

It turns out that K0 is a maximal compact open subgroup of GLn(Qp).
Maximal compact open subgroups play an important role in our theory. In the case of GLn(Qp),

there is only one maximal compact open subgroup, up to conjugacy, but this is not true for other
algebraic groups. This is one feature that makes the theory simpler for GLn(Qp).
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Definition 2.2.7. An l-group is a locally compact totally disconnected Hausdorff topological group.

Example 2.2.8. Since Qp is locally compact Hausdorff,Mn(Qp) ' Qn2

p is also. Since an open subset
of a locally compact space Hausdorff is locally compact Hausdorff, so is GLn(Qp). Consequently,
Mn(Qp) and GLn(Qp) are l-groups. Note that Mn(R) and GLn(R) are not, since R is not totally
disconnected.

Exercise 2.2.9. Let G = GL2(Qp), and consider the subgroups P =
(
∗ ∗
0 ∗

)
, A =

(
∗ 0
0 ∗

)
and

N =
(

1 ∗
0 1

)
. Show P , A and N are l-groups.

In fact, all of the matrix groups we considered last section, taken over F = Qp, are l-groups.

2.3 Smooth representations

The representation π : GL2(R) → GL2(C) given by inclusion is a perfectly reasonable one, in that
it should be continuous and smooth (as a map of real manifolds). That is, varying g ∈ GL2(R)
continuously or smoothly does the same thing to π(g). A less trivial example is the symmetric
square representation Sym2 : GL2(F )→ GL3(F ) given in Example 1.2.14.

On the other hand, one can take the metric completion Cp of the algebraic closure Qp of Qp, and
this is abstractly isomorphic to C as a field. Hence (with the axiom of choice), one has an injective
ring homomorphism ι : Qp → C. This extends to an homomorphism π : GLn(Qp) → GLn(C),
which is algebraically a representation, but not one with any utility, for it completely disregards the
metric/topological structures of both Qp and C.

Therefore, when dealing with a topological group G, it makes sense to consider continuous
representations. Namely, suppose V is a finite-dimensional vector space over C. As above, one
can give GL(V ) which is isomorphic to GLn(C) for some n, a topology and consider continuous
homomorphisms π : G→ GL(V ).

If G is not compact, then there will be infinite-dimensional irreducible representations of G, so
one needs a way to put a topology on GL(V ) for infinite-dimensional V (which one often takes
to be Hilbert or at least Banach, and replaces GL(V ) with the group of invertible bounded linear
operators). These ideas are at the core of functional analysis.

However, for l-groups, it turns out that the stronger notion of smooth representations is easier
to define. While it is easy to see what it means for a function of GL2(R) or GL2(C) to be smooth—
namely, being smooth (real or complex) in each coordinate—it is less obvious what smoothness
should mean for a function of Qp, let alone GL2(Qp). Though not obvious, the correct definition is
quite simple.

For the rest of this chapter, unless otherwise stated, we assume G is an l-group.

Definition 2.3.1. Let G = Qp, or more generally any l-group. Then a function f : G → Cn is
smooth if it is locally constant, i.e., given any x ∈ G, there exists an open neighborhood U of x
such that f(y) = f(x) for all y ∈ U .

From the point of view of functional or harmonic analysis, this really is the right analogue of
smooth functions on R or C. While we will not discuss this now, here is another characterization
of smoothness.
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Proposition 2.3.2. Let G be an l-group, and f : G→ Cn. Then f is smooth if and only if for any
subset U ⊆ Cn, the preimage f−1(U) is open in G.

Proof. First suppose f is smooth. Consider the case when U = Uz = {z} is a singleton set, let
V = f−1(U) and take x ∈ V . Then there is an open neighborhood Vx of x such that f(y) = a for
all y ∈ Vx. By definition, Vx ⊆ V , so V is open.

For an arbitrary (nonempty) U , f−1(U) is a union of preimages f−1(Ua) of singleton sets, which
we now know are open.

Now suppose f−1(U) is open for any U ⊆ Cn. In particular, f−1(U) is open when U = {z} is a
singleton set. This means if x ∈ G such that f(z) = x, then f−1(U) is an open neighborhood of x
on which f is constant. Hence f is smooth.

In particular, this means f is continuous, and we see that being locally constant is much stronger
than just being continuous. Of course, on connected sets, such as R or C, locally constant just means
constant. However, on l-groups, there are a plethora of useful locally constant functions.

Example 2.3.3. The p-adic absolute value | · |p : Q×p → R is smooth. To see this, consider any
x ∈ Qp. Write |x|p = p−n for some n ∈ Z. Then the preimage of p−n under the absolute value is
the open (and closed) set pnZ×p .

Note that | · |p is not smooth on Qp because the preimage of 0 is just a single point, i.e., there is
no open neighborhood of 0 on which the absolute value is constant. Just to remark on the analogy
with the reals, the usual absolute value on R is smooth (infinitely differentiable) when restricted to
R× but of course not at 0.

Exercise 2.3.4. Show the map g 7→ |det g|p : GLn(Qp)→ R is smooth.

Identifying Mm(C) with Cm2 , we have a notion of f : G → Mm(C) being smooth, where G is
an l-group. It is easy to see that f : G → Mm(C) being smooth is equivalent to each coordinate
function being smooth. Given a finite-dimensional vector space V , we can identify GL(V ) with a
(topological) subspace of some Mm(C). Hence we may say f : G→ GL(V ) is a smooth function if
it is locally constant.

Thus, at least when V is a finite-dimensional vector space over C, the notion of a smooth
representation π : GLn(Qp)→ GL(V ) of an l-group should mean that f is a homomorphism which
is smooth, or equivalently each coordinate function is smooth. There is another way to characterize
this condition, which will be more useful for us.

Definition 2.3.5. Let V be a complex vector space. We say a representation π : G → GL(V ) is
smooth if

StabG(v) := {g ∈ G : π(g)v = v}

is an open subgroup of G for all v ∈ V .

Recall that by Exercise 2.1.11, open subgroups of topological groups are also closed.

Definition 2.3.6. Let π : G → GL(V ) be a representation of G on a Hilbert space V with inner
product 〈·, ·〉. A matrix coefficient of π is a function f : G→ C of the form

f(g) = 〈π(g)v, v′〉

for some fixed v, v′ ∈ V .
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Example 2.3.7. Let V = Cn with the standard inner product and e1, · · · , en the standard basis.
For a representation π of G on V , and g ∈ G, let A = (aij) = π(g). Then the matrix coefficient

fij(g) = 〈π(g)ei, ej〉

is simply given by
fij(g) = aji.

Hence this definition of matrix coefficients generalizes the notion for finite-dimensional repre-
sentations.

Proposition 2.3.8. Let π be a smooth representation of G on a Hilbert space V , and f : G → C
be a matrix coefficient. Then f is a smooth function of G.

Proof. Write f(g) = 〈π(g)v, v′〉 for some v, v′ ∈ V . Fix g ∈ G and let K = StabG(v). Then for any
k ∈ K, we have

f(gk) = 〈π(gk)v, v′〉 = 〈π(g)π(k)v, v′〉 = 〈π(g)v, v′〉 = f(g).

Since 1 ∈ K, this means gK is an open neighborhood of g on which f is locally constant, i.e.,
smooth.

This makes our definition of smooth representation seem more reasonable. In particular, it shows
that if V is finite dimensional, the smooth representation π is a smooth (locally constant) function
from G into GL(V ). In fact these criteria are equivalent, as the following exercise shows.

Exercise 2.3.9. Let π be a representation of G on V = Cn. Suppose every matrix coefficient of π
is a smooth function. Show π is a smooth representation.

This is in fact true when V is an arbitrary Hilbert space.
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Inter(O)mission

From here we followed Section 3 of Murnaghan’s notes “Representations of reductive p-adic groups,”
then went through a good deal of Chapter 6 of Goldfeld and Hundley’s new book “Automorphic
representations and L-functions for the general linear group, Vol. I.”
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3 A summary of local representation theory for GL(2)

All representations from now on will be on a complex vector space. Some references are Gel-
bart (Automorphic forms on adele groups), Bump (Automorphic forms and representations) and
Goldfeld–Hundley (Automorphic representations and L-functions for the general linear group, Vol.
I).

3.1 The p-adic case

Fix a prime p. We put G = GL2(Qp), Z =
{(

z
z

)}
the center, A the diagonal subgroup,

N =
{(

1 ∗
1

)}
the standard unipotent, B = AN the standard Borel and K = GL2(Zp) the

standard maximal compact.
Recall that a representation (π, V ) of G is called admissible if (i) π is smooth, and (ii) for each

compact open subgroup K ′ of G, the set of K ′-fixed vectors,

V K′ =
{
v ∈ V : π(k)v = v for all k ∈ K ′

}
,

is finite dimensional. The local component of an automorphic representation is admissible, so these
are the representations we are interested in classifying.

In fact, any smooth irreducible representation of G = GL2(Qp) is admissible, so the class of
irreducible smooth representations is the same as the class of irreducible admissible representations,
but this was not known at the time of the classification of the latter set and is inherently needed in
the theory we recall below.

3.1.1 Finite-dimensional representations

The finite-dimensional representations are relatively easy: any irreducible smooth finite-dimensional
representation of G is 1-dimensional (Schur’s lemma), and these are all of the form g 7→ χ(det g)
where χ is a smooth 1-dimensional representations, i.e., characters, of Q×p .

The characters of Q×p can be described as follows. (See, e.g., Paul Sally’s article “An introduction
to p-adic fields, harmonic analysis and the representation theory of SL2.”)

We can write any x ∈ Q×p uniquely as pnu where n ∈ Z and u ∈ Z×p is a unit. This gives an
isomorphism Q×p ' Z×Z×p . The characters of Z are just given by n 7→ esn for s ∈ C, which for our
purposes we will rewrite in the form p−ns

′ where s′ = −s/ ln p. Hence we can write any character
χ of Q×p as

χ(x) = p−nsω(u) = |x|sω(u), (x = pnu, u ∈ Z×p )

for some s ∈ C and ω a character of Z×p .
Any character ω of Z×p is unitary (has image in S1). By smoothness (in fact continuity), ω has

some higher unit group Z(n)
p = 1 + pnZp (n > 0) or Z(0)

p = Z×p = GL1(Zp) in its kernel. Note these
subgroups Z(n)

p for n ≥ 0 are open compact subgroups of GL1(Qp) = Q×p , i.e., they are analogous
to the family of compact open subgroups Kn of G = GL2(Qp) we defined earlier. The quotient
Z×p /Z

(n)
p is a finite abelian group, specifically Z×p /Z

(n)
p ' (Z/pnZ)× , which has order pn−1(p− 1) if

n ≥ 1 (and order 1 if n = 0). Hence ω may be viewed as a character of some finite abelian group
(Z/pnZ)×.
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We say χ has conductor c(χ) = n if n is minimal such that Z(n)
p is contained in the kernel of

ω (or equivalently, of χ). If c(χ) = 0, i.e., ω = 1, we say χ is unramified; otherwise χ is ramified.
This means the only unramified characters of Q×p are | · |sp, which is unitary if and only if s is

purely imaginary.
Further for a given conductor n, there are only finitely many possibilities for ω; to be precise

p− 2 possibilities if n = 1 and pn−2(p− 1)2 if n > 1. Again, χ(x) = |x|spω(u) is unitary if and only
if Re(s) = 1.

3.1.2 Principal series representations

Let ω1 and ω2 be two normalized unitary characters of GL1(Qp) = Q×p and s1, s2 ∈ C. Then one
can consider the characters χ1 and χ2 of Q×p given by

χi(x) = ωi(x)|x|si
p .

Consequently, χ = (χ1, χ2) extends to a character of the Borel B by

χ

[(
a

b

)(
1 x

1

)]
= χ1(a)χ2(b).

We define the normalized parabolic induction of χ to be

V (χ1, χ2) =
{
f : G→ C smooth | f

[(
a

b

)(
1 x

1

)
g

]
= χ1(a)χ2(b)

∣∣∣a
b

∣∣∣ 12 f(g)
}
.

Note Goldfeld and Hundley work with the non-normalized induction

Vnn(χ1, χ2) =
{
f : G→ C smooth | f

[(
a

b

)(
1 x

1

)
g

]
= χ1(a)χ2(b)f(g)

}
.

It is clear one can go between the two via

V (χ1, χ2) = Vnn(χ1| · |1/2, χ2| · |−1/2).

The normalization factor of |a/b|1/2 makes relations among and conditions on these representations,
as we will note below. Therefore, we will work with the normalized induction from now on, which
is standard.

We call V (χ1, χ2) the principal series representation of G induced from (χ1, χ2). Here the
action of G on V (χ1, χ2) is given by right translation, i.e.,

g · f(x) = f(xg), for g, x ∈ G, f ∈ V (χ1, χ2).

For example, one has

Lemma 3.1.1. The contragredient of V (χ1, χ2), denoted V̌ (χ1, χ2) or Ṽ (χ1, χ2) is equivalent to
V (χ−1

1 , χ−1
2 ).

Recall the following
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Theorem 3.1.2. The principal series V (χ1, χ2) is admissible. It is irreducible unless χ1χ
−1
2 = |·|±1

p .
If χ1χ

−1
2 = | · |p, then V (χ1, χ2) contains an irreducible admissible subspace of codimension 1,

called a special representation.
If χ1χ

−1
2 = | · |−1

p , then V (χ1, χ2) contains an invariant 1-dimensional subspace whose quotient
is irreducible. This quotient is also called a special representation.

(If one works with non-normalized induction for the principal series, the above conditions on
χ1χ

−1
2 become χ1χ

−1
2 = | · |2p and χ1χ

−1
2 = 1.)

Definition 3.1.3. If V (χ1, χ2) is irreducible, we write π(χ1, χ2) = V (χ1, χ2). If V (χ1, χ2), we
denote by π(χ1, χ2) the corresponding special representation.

Note we can write a special representation in the form π(χ| · |1/2p , χ| · |−1/2
p ) for an arbitrary

character χ of Q×p . When χ = 1, we call this the Steinberg representation St. Then one can
identify π(χ| · |1/2p , χ| · |−1/2

p ) with a twisted Steinberg representation St⊗ χ.
In general, for any representation (π, V ) of G and a character χ : Q×p → C×, one can form the

twist (π ⊗ χ, V ) where the action is given by

(π ⊗ χ)(g)v = χ(det g)π(g)v.

Hence one has that all special representations are obtained as twists of a single one, the Steinberg.
Similarly, one has the relation π(χ1, χ2)⊗ χ) ∼ π(χ1χ, χ2χ) for twists of principal series, where ∼
denotes equivalence.

Theorem 3.1.4. The irreducible admissible representations π(χ1, χ2) and π(µ1, µ2) (principal series
or special) are equivalent if and only if χ1 and χ2 equal, in some order, µ1 and µ2.

(This is another statement which is made much nicer by working with normalized induction for
the principal series.)

3.1.3 Supercuspidal representations

So now we know three kinds of irreducible admissible representations of G: the 1-dimensionals, the
irreducible principal series, and the special representations. There is one more kind: supercuspidal.

To motivate the definition, let us try to imagine proving that all infinite irreducible admissi-
ble representations are principal series or special. Let (π, V ) be an infinite irreducible admissible
representation of G, and consider the subspace

VN = 〈π(n)v − v|n ∈ N, v ∈ V 〉.

It is not hard to see that VN is invariant under the diagonal subgroup A (in fact, under the Borel).
One can then consider the action of B on the quotient

V N = V/VN ,

called the Jacquet module of V . One can show the Jacquet module is an admissible representation
of A, whose dimension is at most 2.

If (π, V ) is an irreducible principal series π(χ1, χ2), then the Jacquet module is essentially
(χ1, χ2). Conversely, whenever the Jacquet module is 2-dimensional, V is a principal series.
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If (π, V ) is a special representation π(χ · | · |p, χ), then the Jacquet module is 1-dimensional and
gives back χ. Conversely, whenever the Jacquet module is 1-dimensional, V is a special representa-
tion.

There is a third, sneaky possibility—the Jacquet module is zero-dimensional!

Definition 3.1.5. We say an infinite-dimensional irreducible admissible representation (π, V ) of G
is supercuspidal if the Jacquet module V N is 0-dimensional, i.e., if VN = V .

Exercise 3.1.6. Let (π, V ) be a 1-dimensional representation of G. One can still define the Jacquet
module V N as above. Show V N is 0-dimensional.

The Jacquet module, in some sense, gives us the classification of irreducible admissible rep-
resentations of G (1-dimensional, principal series, special, supercuspidal)—however it may seem
unsatisfactory as the supercuspidal guys are essentially defined to be the things that aren’t one of
the types we already know!

The first question to ask would be, do supercuspidal representations exist? The answer is
yes, and constructions are known but the theory is more complicated than for principal series.
Roughly the idea is that one can induce an irreducible representation of some compact open subgroup
K ′ of G (here one uses “compact induction.”) The simplest case comes from taking irreducible
representations of GL2(Fp) and lifting them to K via the projection

K = GL2(Zp)→ GL2(Fp)

induced by the isomorphism Zp/pZp ' Fp. These are known as depth 0 supercuspidal representa-
tions.

However, even without knowing the construction of supercuspidal representations (which was
not complete at the time of the classification), supercuspidal representations can be shown to have
several nice properties (indeed, the classification is not used to show this). For instance, one can
put an inner product 〈 · , · 〉 on V . Recall a matrix coefficient of (π, V ) is a function f : G → C
given by

f(g) = 〈π(g)v, v′〉

for v, v′ ∈ V . For supercuspidal π (but not principal series or special representations), the matrix
coefficients f have compact support. Further, they are what Harish-Chandra called supercusp forms,
i.e., ∫

N
f(g1ng2)dn = 0

for all g1, g2 ∈ G. These turn out to be particularly useful facts, allowing one to prove many
things for supercuspidal representations that are not so easy to prove for principal series or special
representations.

One should think of supercuspidal representations as the representations that are actually native
to GL(2), whereas the principal series and special representations (and 1-dimensionals) all come
from representations of GL(1). (Even though supercuspidals can be constructed by induction from
subgroups like K = GL2(Zp), this is still GL(2), just over Zp instead of Qp.)

We remark that this notion still holds when one works with representations of other groups, such
as GLn(Qp): there are “native” representations of GLn(Qp) which are supercuspidal. Roughly, other
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representations can be constructed by inducing a representation ρ = (ρ1, ρ2, . . . , ρk) of a parabolic
P = MN , where the Levi subgroup

M ' GLn1(Qp)×GLn2(Qp)× · · · ×GLnk
(Qp)

with n1 + n2 + · · · + nk = n and ρi being a supercuspidal representation of GLni(Qp) (here by a
supercuspidal of GL1(Qp) we just mean a character of Q×p ). (To be precise, one should perhaps allow
ρi to be a discrete series representations—which for GL2(Qp), means supercuspidal or special.)

3.1.4 Classification

Here we summarize the classification. Write π1 ∼ π2 for π1 and π2 being equivalent.

Theorem 3.1.7. Let π be an irreducible admissible representation of G = GL2(Qp). Then π is one
of the following disjoint types, where χ, χ1 and χ2 are arbitrary characters of Q×p .

(i) irreducible principal series π(χ1, χ2), i.e., χ1χ
−1
2 6= | · |±p ; we have π(χ1, χ2) ∼ π(χ2, χ1) and

no other equivalences;
(ii) a special representation, which we may write in the form π(χ| · |1/2p , χ| · |−1/2

p ) = St⊗χ, and
St⊗ χ ∼ St⊗ χ′ ⇐⇒ χ = χ′;

(iii) a supercuspidal representation;
(iv) 1-dimensional, of the form χ ◦ det.

Recall the central character ωπ of π is the character of Z ' Q×p satisfying

π(zg) = ω(z)π(g), z ∈ Z, g ∈ G.

Because the 1-dimensional representations will not arise as local components of global automor-
phic representations, we will exclude them in the discussion which follows. One often works with
representations of PGL2(Qp) = G/Z. It is easy to see that the irreducible admissible representa-
tions of PGL2(Qp) are same as representations of G = GL2(Qp) with trivial central character. We
remark that for π = π(χ1, χ2) (irreducible principal series or special), ωπ = χ1χ2.

Exercise 3.1.8. (a) Check that for any representation of G, ωπ⊗χ = χ2ωπ.
(b) Deduce the following corollary.

Corollary 3.1.9. The irreducible admissible representations of PGL2(Qp) are of one of the following
types

(i) irreducible principal series π(χ, χ−1) where χ 6= | · |±1/2
p is an arbitrary character of Q×p ;

(ii) a quadratic twist of Steinberg: St⊗ χ where χ2 = 1;
(iii) a supercuspidal representation of G with trivial central character;
(iv) 1-dimensional, of the form χ ◦ det where χ2 = 1.

There is some further classification one can do. For instance, one can consider which represen-
tations are unitary.

Definition 3.1.10. Let (π, V ) be an admissible representation of G. Then π is unitary (or uni-
tarizable) if there exists a positive-definite invariant Hermitian form on V , i.e., there is a positive-
definite Hermitian form ( , ) on V such that

(π(g)v, π(g)w) = (v, w) for all g ∈ G, v, w ∈ V.
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The above definition also makes sense for representations of Q×p .

Lemma 3.1.11. A character χ of Q×p is unitary if and only it is of the form ω| · |irp where r ∈ R
and ω is a finite order character.

Proof. First observe a 1-dimensional representation χ is unitary if and only if its image lies in S1:
for z, w ∈ C, x ∈ Q×p and ( , ) a Hermitian form on V = C, we have

(χ(x)z, χ(x)w) = χ(x)(z, χ(x)w) = χ(x)χ(x)(z, w) = |χ(x)|2(z, w).

Now by the classification of characters of Q×p given in Section 3.1.1, we can write χ = ω| · |sp for
some ω of finite order and s ∈ C. Since ω is finite order, it has image in S1. Therefore χ is unitary
if and only if | · |sp has image in S1, which is equivalent to s being purely imaginary.

Theorem 3.1.12. Let π be an irreducible admissible representation of G. Then π is unitary if and
only if π is one of the following types:

(i-a) (continuous series) an irreducible principal series π(χ1, χ2) where χ1, χ2 are both unitary;
(i-b) (complementary series) an irreducible principal series π(χ, χ−1) where χ = | · |σp , 0 < σ < 1;
(ii) a special representation with unitary central character; or
(iii) a supercuspidal representation with unitary central character.

Conjecturally, only types (i-a), (ii) and (iii) should occur as local components of automorphic
representations. We will say more about this when we move to the global theory.

3.1.5 Conductors

To each type of representation (i)–(iii) in the above theorem is associated some data which is used
in connection with the study of modular and automorphic forms.

First we discuss ramification. For n ≥ 0, let

K(n) =
{(

a b
c d

)
∈ K : c ∈ pnZp

}
.

In particular K(0) = K. This is a local (p-adic) analogue of the congruence subgroup Γ0(N), where
n is the largest power of p such that pn|N .

Definition 3.1.13. Let (π, V ) be an infinite-dimensional irreducible admissible representation of
G. Let n ≥ 0 be minimal such that V K(n) 6= {0}. We say the conductor of π is c(π) = n. If
c(π) = 0, we say π is unramified; otherwise it is ramified.

The conductor is always finite, and an important fact is that V K(c(π)) is 1-dimensional. A vector
in V K(c(π)) is called a new vector or new form, and is analogous to the notion of new forms in
the sense of modular forms.

Theorem 3.1.14. (i) For an irreducible principal series π = π(χ1, χ2), c(π) = c(χ1) + c(χ2).
(ii) For a special representation St⊗ χ, c(π) = 1 if χ is unramified; otherwise c(π) = 2c(χ).
(iii) If π is supercuspidal, then c(π) ≥ 2.

Corollary 3.1.15. Let π be an infinite-dimensional irreducible admissible representation. Then π
is unramified if and only if π is an unramified principal series, i.e., an irreducible principal series
π(χ1, χ2) with both χ1 and χ2 unramified.
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One reason to understand this is the following: if f ∈ Sk(N) is a new form, then it gives
rise to an irreducible admissible infinite-dimensional local representation πp for each p. To apply
representation theory to modular forms, one wants to understand the representations πp in the sense
of our classification above. For each p, the conductor c(πp) = np where np is the largest power of p
such that pnp |N .

In particular, if N = 1, then πp is an unramified principal series for all p. If N = p1 · · · pk where
all the pj ’s are distinct, then πp is either Steinberg or ramified principal series (with conductor 1)
for any p = pj , and πp is an unramified principal series for all other p.

3.1.6 L- and ε- factors

To the infinite-dimensional irreducible admissible representations π of G = GL2(Qp) one can asso-
ciate certain functions called local L- and ε- factors. When patched together these will give global
L- and ε- factors attached to automorphic representations.

One way to construct the L-factors is as follows. Suppose π has a Kirillov model K. Then for
φ ∈ K, one can define the zeta integral

Z(s, φ) =
∫

Q×p
φ(y)|y|s−1/2

p d×y.

Then the L-factor L(s, π) should be defined so it is the “gcd” of the local zeta functions Z(s, φ)
as φ ranges over K. More precisely, for each φ, there is a polynomial hφ such that Z(s, φ) =
hφ(p−s)L(s, π). In fact, for some φ, hφ = 1. Put another way, for a well chosen φ, we have
L(s, π) = Z(s, π).

This is carried out for GL1(Qp), i.e., for characters of Q×p , in Tate’s thesis.
We remark these zeta integrals are analogous to the construction of the completed L-function

Λ(s, f) of a modular form f via the Mellin transform:

Λ(s, f) =
∫ ∞

0
f(iy)|y|sd×y.

The fact that one needs choose an appropriate φ ∈ K to get the L-function from the zeta integral is
analogous to the fact that in the above Mellin transform definition of Λ(s, f), one needs to choose
f to be, say, a normalized Hecke eigen cusp form to define a nice L-function with an Euler product.

Definition 3.1.16. For certain irreducible admissible representations π of G, we define the local
L-factor L(s, π) as follows.

(i) For an irreducible principal series π = π(χ1, χ2), we set

L(s, π) =
1

(1− α1p−s)(1− α2p−s)

where αi = χi(p) if χi unramified and αi = 0 if χi is ramified.
(ii) For a special representation π(χ| · |1/2p , χ| · |−1/2

p ) = St⊗ χ, we set

L(s, π) =
1

1− αp−s

where α = χ(p)|p|1/2p = p−1/2χ(p) if χ| · |1/2p is unramified, and α = 0 else.
(iii) For π supercuspdial, we set

L(s, π) = 1.
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For simplicity, we only define ε-factors for PGL2(Qp).

Definition 3.1.17. Let ψ be the standard additive character of Qp, and π be an irreducible admis-
sible representation of PGL2(Qp). The local ε-factor ε(s, π, ψ) attached to π is

ε(s, π, ψ) = εpc(π)(1/2−s)

where ε = ±1. Specifically
(i) if π = π(χ, χ−1) is an irreducible principal series, then ε = χ(−1).
(ii-a) if π = St, then ε = −1.
(ii-b) if π = St⊗ χ, χ nontrivial quadratic, then ε = χ(−1).

3.2 The real case

Now let G = GL2(R). Of course, there are no compact open subgroups of G, but a maximal compact
subgroup is the orthogonal group K = O(2). As in the p-adic case, we let B = AN where A is the

diagonal subgroup of G and N =
{(

1 ∗
1

)}
⊂ G.

The representation theory for GL2(R) (which of course was historically studied before that for
GL2(Qp)) largely parallels the representation theory for GL2(Qp), but the details are quite different
due to the very different topologies on these groups. In fact, many problems turn out to be much
easier for real groups, whereas others turn out to be much easier for p-adic groups. Nevertheless,
Harish-Chandra—who developed much general theory over the reals and p-adics in the 1950’s and
1960’s—described a philosophy which he called the “Lefschetz principle:” whatever is true for real
groups is also be true for p-adic groups, and one should be able to treat them equally. I.e., even
though the details are quite different, one should be able to put the theories for G(Qp) and G(R)
inside a single framework.

In any case, it is not one of our goals to discuss the representation theory for GL2(R) in detail.
We simply give a summary of facts.

Let (π, V ) be a (smooth) representation of G on a Hilbert space V . First we should define
admissibility.

In the p-adic case, we defined admissible as the condition that V K′ is finite dimensional for
any compact open subgroup. Here, we don’t have compact open subgroups to work with. Another
way to state the p-adic condition is that the restriction πK′ of π to K ′ only contains the trivial
representation finitely many times. In particular, this means the restriction of π to GL2(Zp) contains
any finite order character χ◦det of GL2(Zp) at most finitely many times (to see this, restrict further
to a compact open subgroup on which χ ◦ det is trivial).

While one can define admissibility for G = GL2(R) in terms of K, it is perhaps simpler to think
of it in terms of the compact subgroup

K0 = SO(2) =
{(

cos θ − sin θ
sin θ cos θ

)
: 0 ≤ θ < π

}
,

which has index 2 in K = O(2). Since SO(2) is compact and abelian, all its irreducible representa-
tions are characters.
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Exercise 3.2.1. Show any continuous character of SO(2) is of the form

χk

[(
cos θ − sin θ
sin θ cos θ

)]
= e2πikθ

for some k ∈ Z.

Further since SO(2) is compact, any representation of SO(2) is semisimple, i.e., decomposes as
a direct sum of irreducible representations.

Definition 3.2.2. We say π is admissible if, for any k ∈ Z, the restriction πK0 of π to K0 contains
χk with finite multiplicity.

We first state what the classification looks like. Then we will briefly and informally discuss each
type of representation.

Theorem 3.2.3. Let π be an irreducible admissible unitary representation of PGL2(R). Then k is
one of the following types

(i) irreducible principal series;
(ii) an even weight k discrete series Dk for k ≥ 2;
(iii) finite-dimensional.

One defines principal series as in the p-adic case: begin with two characters χ1 and χ2 of R to
give a character of A; extend this to a character of B and induce to G. This is usually irreducible.
When it is not, it gives one of the discrete series representations Dk (k ≥ 2 is an integer). There is
also a prinicpal series representation which is in some ways similar to a discrete series—it is called
the limit of discrete series and denoted D∗1. The representations Dk are analogous to the special
representations in the p-adic case. (There are no supercuspidal representations in the real case.)

To be a little more precise, there are discrete series of the same weight with different central
characters, so one should write something like Dk,ω, where ω is the central character. If we fix a
central character ω, then the parity of k must be compatible with the central character and there is
a unique discrete series Dk,ω of weight k. Specifically, if ω is even (ω(−1) = 1) then k must be even,
and if ω is odd (ω(−1) = −1), then k must be odd. This is why one needs the condition of even
weight in part (ii) above. The fact that the are no odd weight discrete series with trivial central
character is closely related to the fact that that there are the weight of a modular form (with trivial
nebentypus character) must be even, which you may recall from last semester.

For simplicity, we describe the discrete series when ω = 1 (so k must be even). Let H denote
the upper half plane. Let Vk be the space of holomorphic square-integrable functions on H (w.r.t.
the hyperbolic measure on H), i.e.,

Vk =
{
f : H → C holomorphic

∣∣∣ ∫
H
|f(x+ iy)|2yk dx dy

y2
<∞

}
.

The discrete series of weight k is the representation (Dk, Vk) given by

(Dk(g)f)(z) =
(det g)k/2

(cz + d)k
f

(
az + b

cz + d

)
where g =

(
a b
c d

)
∈ GL2(R)+.

This statement technically needs g ∈ GL2(R)+ (matrices of positive determinant) to make sense
as H is not preserved by the full action of GL2(R), but one can extend the above definition to
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all g ∈ GL2(R) without much difficulty. Observe that when we restrict the discrete series to the
subgroup GL2(Z), the invariant one dimensional subspaces are the modular forms of weight k. One
can show the restriction Dk|K of the discrete series Dk to K = SO(2) decomposes as

Dk|K '
⊕
|j|≥k

j≡k mod 2

χj .

Finally, we remark that in the real case, irreducible finite-dimensional does not mean 1-dimensional—
the standard representation ρ : GL2(R) → GL2(C) is the simplest example. One also has the
symmetric powers of the standard representation

Symn(ρ) : GL2(R)→ GLn+1(C).

However all irreducible finite-dimensional representations are of the form Symn(ρ)⊗(χ◦det), where
χ is a character of R×. (Here Sym1(ρ) = ρ and Sym0(ρ) is trivial.)

One last thing that we should mention is that one often works with something slightly more
general than honest representations of GL2(R). Namely, one often works with what are called
(g,K)-modules, which are compatible pairs of representations of the Lie algebra g of G and of the
maximal compact subgroup K of G. Given a unitary representation of GL2(R), one naturally gets
a pair of representations on g and K, which form a (g,K)-module, though not all (g,K)-modules
are obtained in this way. However the classification for (g,K)-modules looks the same as the
classification for representations of G. Whether one uses (g,K)-modules or actual representations
of G depends upon the model one chooses for automorphic forms. We’ll say a little bit about this
in the next section.
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4 Automorphic Representations

From here, we went through a good part of Gelbart’s Bulletin article (linked to from the course
page).
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