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These are some notes on a very simple comparative introduction to four basic ap-
proaches of statistical inference—Fisher, Neyman–Pearson, Fisher/Neyman–Pearson hy-
brid, and Bayes—from a course on Quantitative & Statistical Reasoning at OU in Fall
2016. In particular, I hope to give a rough understanding of the differences between the
frequentist and Bayesian paradigms, though they are not entirely disjoint.

This is not intended as a practical introduction to how to numerically perform various
standard tests. For instance, I won’t explain z-tests, t-tests, F -tests, χ2-tests, or one-sided
tests versus two-sided tests. I will only work with small samples of discrete distributions for
transparency of computation. My goal is to focus on what I consider more basic conceptual
issues in understanding the statistical framework of hypothesis testing.

I assume a little familiarity of the notion of a random variable, conditional probabilities,
and a working understanding of the binomial distribution B(n, p), but no deeper study of
statistics or probability is required.

1 Two scenarios

Statistical inference is the use of statistical methods to draw conclusions about the world
from quantitative data. We will consider two simple scenarios.

1.1 Establishing a scientific fact

Scenario A: We want “statistically prove” some hypothesis H1.

Example A: Suppose there is a large study which indicates that a person with the disease
Cooties will recover in 1 week with probability 0.3. Dr Octopus thinks covering your body
in octopi gets rid of Cooties faster. He finds 10 unwilling Cooties patients to cover in octopi
and 6 recover in 1 week. (You’re not sure about what happened to the other 4, but you
think he ate at least 1 of them.) Based on this, should we conclude the octopus treatment
speeds up recovery?

There are different possibilities for the statement of H1, which we will come back to,
but for simplicity let’s just take the following:
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H1 : the 1-week recovery rate of octopi-treated patients is not 0.3.

In this scenario, the idea is that to statistically prove something we should be skeptical
of the claim, and so just for the purposes of the argument, we will assume the claim has
no truth, which is called the null hypothesis H0. That is, H0 is simply the statement
that H1 is not true. After a statistical evaluation, we can either reject H0—i.e., accept (a
statistical proof of) H1—or fail to reject H0. The idea is that we should reject the null, i.e.,
accept a statistical proof of H1, only if there is overwhelming evidence that the data was
very unlikely under the assumption of H0.

Note: this is the exact same idea as for a mathematical proof by contraction—to prove
something we start off by assuming its opposite and derive an impossibility. Of course, with
statistics, nothing is impossible (at least in a reasonable model), but might just be a very
small probability event.

In our example above, the null is then

H0 : the 1-week recovery rate of octopi-treated patients is 0.3.

That is, H0 is the statement that the octopus treatment has no effect, which is the
natural skeptical take on Dr Octopus’s claim. Put another way, we can think of the control
group as the population from previous study where the 1-week recovery rate is 0.3, and the
test group as the population that undergoes the treatment (Dr Octopus’s patients). Then
H0 is the statement that the 1-week recovery rate is the same for the test group as for the
control group.

Now you might have thought to take H1 to be H ′1: the 1-week recovery rate of octopi-
treated patients is > 0.3, or H ′′1 : the 1-week recovery rate of octopi treated patients is 0.6.
The problem with these is that their negations, the corresponding null statements H ′0 and
H ′′0 , do not put a specific probability distribution on the test group, which make it more
difficult to statistically test. (Actually, no collection of data would ever reject H ′′0 , because
H ′′0 is too broad—it allows for recovery rates like 0.5999999931—so even a huge amount of
data suggesting H1 can’t rule out very similar recovery rates.)

1.2 Comparing two possibilities

Scenario B: We believe that one of 2 alternative hypotheses H1 and H2 is true, but we
don’t know which, and we want to determine which is more likely.

Example B: Let’s say you’re invited as a contestant on the Monty Hall show. Recall, at
the end of the show, there are 3 doors—behind 1 is a car and the other 2 are goats, and the
goal is to choose the one with the car. Monty lets you pick one door initially and stand in
front of it, then opens one of the other two doors and reveals a goat, and lets you switch if
you want. You’ve seen the show twice, both times contestants stay, and one won and one
lost. You’ve heard two competing arguments—one says your probability q of winning if you
stay is 1

2 , and one says it’s 1
3—but try as you might you can’t figure out which is right. This

gives 2 hypotheses:

H1 : q =
1

2
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H2 : q =
1

3

So we’re friends and I help you prep the show, and we play the game 8 times with the
contestant staying each time, and find that the staying strategy won 3 out of these 8 times.
Together with the data of when you saw the show, we saw a contestant who stays won 4
out of 10 times. To what extent does this help us determine if H1 or H2 is correct?1

Mathematically, there are a couple of important differences between Scenario A and B.

• In Scenario B both hypothesis H1 and H2 are what are called simple hypotheses—
they exactly specify probability distributions. In Scenario A only the null H0 should
be simple, and the alternative H1 may be a composite hypothesis (not simple).

• Scenario B is about deciding between two (specific) options and one is essentially
forced to make a conclusion in favor of one of them. For Scenario A, we either
statistically prove something or fail to—we are not trying to prove H0 or H1 is true,
either we establish a belief in H1 or we simply don’t find enough evidence to conclude
H1.

The first point says that for Scenario B we must be in a situation where we know or
assume our population can behave in only one of two specific ways. The second point says
that Scenario B is a decision problem where we have to decide between two things, but
Scenario A is more exploratory—we are just trying to see if we can provide convincing
evidence for some hypothesis.

1.3 An index to approaches

We mentioned 4 methods we will compare in a very simplified setting. Here we briefly
outline the major differences, in the context of our two simple scenarios:

• Fisher’s approach is a soft, subjective approach for Scenario A. It uses statistical
measures, notably the p-value, as evidence to help the researcher make claims in light
of the context. (Fisher tests the statistical significance of the data, but does not use
solely this to admit a statistical proof of a hypothesis.)

• The Neyman–Pearson approach is a deterministic test for Scenario B. It requires the
choice of two parameters α, a significance level, and β, the power of the test (for one
of the hypotheses, say H1). The parameters α and β measure desired probability
cutoffs for false positives and false negatives, respectively.

• The hybrid Fisher/Neyman–Pearson approach is a deterministic test for Scenario A.
This uses Fischer’s p-value with Neyman and Pearson’s significance level α. This
seems to be both the most widely used and most problematic approach of the 4,
mainly because it is blindly used by scientists and other who don’t really understand
statistics.

1Of course, in practice, even if you can’t figure out which is right, you should always switch because that
is optimal no matter whether H1 or H2 holds. However, if you prefer, you can imagine a variant where
Monty Hall charges you money to switch so that it is not worthwhile to switch if H1 holds, and your rational
behavior really will change according whether one believes H1 or H2.
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• There are Bayesian approaches for both Scenarios A and B, though the treatment of
Scenario B is much more elementary. The Bayesian paradigm relies on assigning prior
probabilities (levels of belief) to alternative hypotheses, and using data with Bayes’
theorem to revise the probabilities of these hypotheses.

The non-Bayesian approaches above are often called frequentist approaches. The term
frequentist refers to specifying probability distributions just based on frequency of certain
data. For instance, in Example A we say the distribution for H0 is that the probability of
recovery in 1-week is 0.3. The underlying assumption is that this came from a study, say of
10,000 patients where exactly 30% recovered in 1-week. So we just counted the frequency
of 1-week recoveries to define this distribution. The Bayesian philosophy for Scenario A is
that you should treat the probability of 1-week recovery itself as a random variable, because
it may not be exactly 0.3. (For Scenario B this is not necessary as we assume in advance
that only one of 2 possible distributions can happen.)

One of the biggest debates about statistics is what approach to use when, and I hope
this note will make clear at least some of the main issues involved as well as limitations
you should be aware of when reading statistical studies. In particular, no one approach is
superior in all situations. Except for mine. Mine is the best.

2 Fisher’s approach

Fisher considered Scenario A, so let’s work with Example A.
Fisher’s p-value is the probability p that a result as extreme as what was found occurs,

assuming H0. Fisher says p measures the significance of the data. In general, there are
different ways to specify what we mean by “as extreme as.” In our example, the most
natural and obvious one is: (assuming H0) what is the probability that at least 6 out of 10
patients recovered in 1 week. Here we can use the binomial distribution to calculate

p = P (X ≥ 6) =
10∑
k=6

(
10
k

)
(.3)k(.7)n−k ≈ 0.047,

where X is a random variable with binomial distribution B(10, .3). In other words, there
was less than a 5% chance that data as extreme as what we found occurs if the treatment
has no effect.

This was a one-sided p-value: we only tested for extremes on one side of the expected
value E[X|H0] = 3. We could also do a two-sided p-value and look at the probability that
X differs from E[X] = 3 by at least 3, i.e., P (|X − 3| ≥ 3). In this case, the only adds
P (X = 0) ≈ 0.0001 to the one-sided p-value, so the difference between these methods is
negligible in this case (though not in general).

Note we test for data as extreme as a given result rather than just looking at the
probability of a given result because the probability of a given result may be small for any
result. That is, it might be that all or most outcomes are low probability events, so it
may not be insightful to look at just P (X = 6). So a better measure of how significant an
outcome is is to look at the probability of a range of outcomes similar to what was observed.
You might think that X = 7 is similar to X = 6, but X = 10 is not—however we include all
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extreme events as a conservative estimate, and since extreme events happen with very low
probability, they may not effect the results very much. Now you might think that X = 5 is
also similar to X = 6, but we have to make a cutoff somewhere, and X ≥ 6 is the simplest
one to make. We remark that there are alternative proposals to consider what outcomes
should be considered as similar to the observed one for use in calculating a p-value.

Going back to our problem, we can say from the p-value that the data provides a fair
amount of evidence for H1. Now Fisher says we should use the p-value in conjunction with
other information to decide whether to accept H1 or not. In fact, this could be a successive
process. Maybe with no other information, we can tell Dr Octopus: “okay, your method
looks promising—maybe the octopi eat up the cooties—why don’t you do try treating a few
more patients, as long as you promise not to eat them.” Then use the new data together with
the old data to compute a more informed p-value, and be more confident about accepting
or H1 or not.

Key to this is that with more and more trials, if H1 is true, the p-value will get closer
and closer to 0, boosting our confidence in H1. Conversely, if H0 is true, the p-value will
get closer to 1 with more data.

Actually, our above “conclusion”, that it might be worthwhile for Dr Octopus to do
more work, we did use a little bit of qualitative information: there is a possible explanation
that the treatment is effective because octopi may physically affect cooties. If the treatment
were something like “speak only in pig latin,” and it had the same results on 10 patients,
we would just chalk it up to chance as there is no plausible reason that the treatment could
be effective. We’ll mention some other things one might consider later when discussing the
hybrid approach.

Pros:

• Particularly suitable for combining quantitative and qualitative information.

• Researcher can factor in possible biases/flaws in experiment and prior beliefs.

• Forces you to take other factors into account and think about what is important, and
thus have some understanding both of statistics and of your study.

Cons:

• Is subjective and not entirely methodical.

• Requires you to take other factors into account and think about what is important,
and thus have some understanding both of statistics and of your study.

3 Neyman–Pearson approach

Different sources say different things about what Neyman and Pearson actually proposed,
and I’m not sure all of them are right. I’m no historian, or even statistician, but I’ve tried
to only attribute to them what I get from Neyman and Pearson’s paper On the problem
of the most efficient test of statistical hypotheses (Phil. Trans. R. Soc. Lond. A 1933 231
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289-337) applied to our Scenario B, though I will give more modern terminology as well.
(That paper is concerned with much greater generality than our Example B, which is a
trivial case in their setup.)

First of all, the Neyman–Pearson philosophy (for Scenario B) is that we are not trying
to establish the truth (or even necessarily belief) in H1 or H2, rather we are simply trying
to provide a decision rule for how to behave—should we behave as if H1 holds, or as if H2

holds? Their approach is such that over the long term of making many such decisions one’s
behavior follows the truth as much as possible (on average).

Perhaps the most obvious thing to do is compare how likely our data is given H1 (switch-
ing doesn’t matter) or given H2 (we should switch), which are called likelihood estimates.
In Example B, let X be a random variable representing the number of times a staying strat-
egy wins in 10 trials. Recall we observed an instance of X = 4. We compute

P (X = 4|H1) =

(
10
4

)
(
1

2
)4(

1

2
)6 ≈ .205

P (X = 4|H2) =

(
10
4

)
(
1

3
)4(

2

3
)6 ≈ .228

The Neyman–Pearson philosophy says, in its simplest form, since the observed data is more
likely under H2, we should behave as if H2 is true, i.e., switch.

However, the observed data is only slightly more likely under H2 than H1. In our
Example B, if there is no cost of switching, the relative likelihoods of H1 and H2 don’t
matter, and we should always switch just in case H2 holds. But if there is a cost for
switching, then we might want strong evidence in favor of H2 before we decide to switch,
and the strength of the evidence we seek should depend upon the cost of switching.

In the general Neyman–Pearson framework, we are allowed to do one of 3 things: behave
as if H1 is true, behave as if H2 is true, or remain on the fence. In Example B (with a cost
for switching), behaving as if H1 is true means you definitely stay, behaving as if H2 is true
means you definite switch, and remaining on the fence means you have no strong opinion
and may just stay or switch according to a spur-of-the-moment feeling or audience input.

There are two possible ways in which this approach forces a wrong decision: we might
treat H1 as false when it is true, or we might treat H1 as true when it is not. (We don’t count
staying on the fence as a wrong decision.) An important point is that we can estimate how
often our decision procedure will result in these errors. If we think of H1 as a null hypothesis,
and we are testing for the effectiveness of switching (H2), the first type of error (switching
when we shouldn’t) is called a Type I error or false positive, and the second is a Type
II error (not switching when we should) or false negative. (Neyman and Pearson did
not use this terminology, at least in this paper.)

Let’s say our observed value for X is k (so k = 4 in the original statement of Example
B). Neyman and Pearson introduce the likelihood statistic for our observation k

λ =
P (X = k|H1)

max {P (X = k|H1), P (X = k|H2)}
,

which measures how likely H1 is compared to H2 with observation k. Note H1 suggests k
should be larger, and λ = 1 if P (X = k|H1) ≥ P (X = k|H2), which happens when k ≥ 5.
The complete values for λ in this example are given in Table 1.
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Table 1: Likelihood statistic (rounded) for H1

k 0 1 2 3 4 5 6 7 8 9 10

λ .06 .11 .23 .45 .9 1 1 1 1 1 1

Table 2: Type I error estimates (rounded) for incorrectly treating H2 as true
C1 0 .06 .11 .23 .45 .9 1

k range — 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 10
Type I error 0 .00 .01 .05 .17 .38 .62

They propose a decision rule of the form: behave according to H2 (switch) if λ ≤ C1

and behave according to H1 (stay) if λ ≥ C2, and stay in doubt if C1 < λ < C2, for some
numbers C1, C2. The choice of C1 and C2 should be made based on the situation and
allow us to control the chance of Type I and Type II errors. (In our example, our choices
should depend upon the cost of switching and how much we want the car.) In our simple
situation, the choice of C1 can be translated as treat H2 as true whenever k ≤ K1, for some
appropriate K1 (see Table 2). Then the probability of a Type I error, that we “accept H2”
assuming H1 is true, is simply P (X ≤ K1|H1). Similarly, rule to stay if λ ≥ C2 is translated
to stay if k ≥ K2 for some K2, and the probability of a Type II error—that is we “accept
H1” assuming H2 is true—is just P (X ≥ K2|H2). We tabulated the values for Type I and
Type II errors for “critical values” of C1 and C2 in Table 2 and Table 3.

In particular, if we just use the naive decision rule to treat H2 as true (switch) if X ≤ 4
and treat H1 as true (stay) if X ≥ 5, then the chance of a Type I error (wrongly switching)
is about 38% and the chance of a Type II error (wrongly staying) is about 44%). Of course,
if it turns out our observation is extreme rather than being a borderline case for the decision
rule, we can be more confident of not making an error. (However, one should choose the
decision rule before considering the data.)

In the modern terminology, we use the following notation:
— the significance level α of our test is the probability of a Type I error
— the power 1− β of our test is the probability of a Type II error
Usually the test is presented with just a single cutoff C (or K in our example), where

you make one decision with a statistic on one side of C and the other on the other, so
you never have the remain in doubt option, though Neyman–Pearson explicitly give these 3
options in their paper. Then the recommended way to use the Neyman–Pearson test is to
specify α and β in advance and then calculate how large of a sample size n you need to get
a test with significance level α and power 1− β before doing your experiment. Using larger
samples will allow you to lower α (good) and increase β (good). For instance, in our naive
decision rule above we get α ≈ 0.38 and β ≈ .79, but if we used a sample size of n = 20,

Table 3: Type II error estimates (rounded) for incorrectly treating H1 as true
C2 0 .06 .11 .23 .45 .9 1

k range ≥ 0 ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5 —
Type II error 1 .98 .90 .70 .44 .21 0
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then the analogous decision rule is to switch if X ≤ 8 and stay if X ≥ 9. In this case we
get, α ≈ 0.25 and β ≈ 0.81, i.e., there’s about a 25% chance of a Type I error and a 19%
chance of a Type II error.

Pros:

• Provides systematic and practical way of making decisions.

• Can control likelihood of errors.

Cons:

• Requires specific (simple) alternative hypotheses to choose from (though more than 2
is okay).

• Doesn’t take into account other evidence you may have for H1 over H2 or vice versa,
which may be very helpful when you only have small or potentially biased samples.

• Typically there is no “optimal choice” of parameters α and β, so their choice is often
arbitrary, which can make a big difference in the targeted sample size n.

4 Fisher/Neyman–Pearson hybrid

The Fisher/Neyman–Pearson hybrid is a way to apply the Neyman–Pearson approach to
Scenario A. Recall Scenario A means we are trying to establish some hypothesis H1, and
we begin by assuming its opposite, the null hypothesis H0.

The first step in this hybrid method is to choose a significance level α for which we will
reject H0. Common values are α = 0.1, 0.05 and 0.01. The choice of α should depend on
the situation, and smaller values of α correspond to setting higher standards for believing
H1. For instance, if we are doing a DNA test for a murder trial (H0: not guilty; H1: guilty)
we want a very small α to be very sure that DNA evidence is incriminating before claiming
someone is guilty. Since the choice of α is very important, people don’t usually think about
it and just choose α = 0.05 because everyone else does.

Now we do our experiment and collect our data, and the p-value p as in Fisher’s approach,
and follow the simple rule {

p < α =⇒ reject H0

p > α =⇒ fail to reject H0

For instance, in Example A the p-value was .047 so if α = 0.05 we would reject H0, i.e.,
believe (or at least choose to act) as if Dr Octopus’ treatment is effective. But if we chosen
α = 0.01, or even α = 0.046, we would have failed to reject H0, i.e., not be convinced that
the treatment is effective. This should make it clear that the choice of α plays a crucial
role and is one of the major concerns with this method—with the same data, choosing α
slightly differently gives us different results.

On the other hand, let’s consider what the possible (1-sided) p-values are if Dr Octopus’
results had turned out a bit different. If k out of 10 treatments were effective (k ≥ 4),
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Table 4: approximate 1-sided p-values for Example A
k 4 5 6 7 8 9 10

p .35 .15 .047 .011 .0016 .00014 .0000059

then we get the p-values listed in Table 4. Note that if we had chosen α = 0.01, the only
results that would “test positive” (H1 seems effective) are k = 8, 9, 10, which have p-values
at most 0.0016 whereas the k = 7 case which has the closest p-value α = 0.011 would not
test positive. Put another way, α = 0.01 isn’t any weaker than the very strong α = 0.0017.
Thus, in some sense, the α = 0.01 choice doesn’t really give us the level of significance that
we want. This is mainly an issue because we are working with a discrete random variable
with a small sample size, but the earlier issue of our test results being very sensitive to the
choice of α is a concern even for large samples.

Now let’s think about what this test tells us and point out some common misconceptions.
As in the Neyman–Pearson approach, a Type I error is a false positive, i.e., rejecting

H0 when we shouldn’t (thinking the treatment may be effective when it’s not). Similarly,
a Type II error is a false negative, i.e., failing to reject H0 when it’s not true (e.g., not
realizing that a treatment works when it actually does).

The significance level α is the probability of a Type I error on a single run of this test
(when H0 holds). WARNING: a positive test result, say with α = 0.05, does not mean
we are 95% certain this drug is effective. A positive test result only means the observations
are relatively unlikely (past some threshold), but certainly not impossible, if there is no
effect. This is the only thing that is meant by the term statistical significance. I think
this point is the most misunderstood point about hypothesis tests like this.

For instance, let’s say we get a fingerprint sample at a crime scene and test it against a
fingerprint database of 10,000 people. If we choose, α = 0.001, we expect (on average) to get
10 positive matches.2 Say we get exactly 10 matches. Clearly we are not 99.9% certain that
each of these 10 people were at the crime scene. There’s not even a good reason (a priori)
to believe even one of them was at the crime scene. And unless we know the probability
of Type II errors is very very small, we can’t even rule out the other 9,990 people in the
database (let alone all the people not in the database).

If one just reports positive results, without giving p-values or saying how many things
were tested, knowing that something got a positive result is not so informative. If one
is trying to find some result and publish a paper, trying only 1 test with α = 0.05 and
getting a positive result is a lot more convincing than trying 12 tests and getting 1 positive
result. Maybe this is Dr Octopus’ 9th go. Or maybe other scientists have tried the octopus
treatment and didn’t get statistically significant results so they didn’t publish, but the one
time it does get a positive test result, it does get published. (Because the other studies
failed, other people don’t know about this approach and may try it again and get lucky.)

This issue is called publication bias. It means there are a lot of studies with statisti-
cally significant results out there, but we shouldn’t expect most of such one-off studies to
be true, statistically speaking. Rather, we should—as Fisher said—look at other factors:

2I know nothing about the science of fingerprint testing. For the purposes of this argument, let’s say we
have a computer program that can ID fingerprints to an accuracy level where 1/1000 different people will
match a given fingerprint. This corresponds to the mathematical choice of α = 0.001.
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bigger sample sizes and smaller p-values are generally better, and a convincing physical
explanation would be great. Moreover, the hypotheses, significance level and experimental
design (including sample size) should all be determined in advance of the study so they
are not biased by the data to give a positive result. (Or worse, one does not just vary
these things until they give the desired result—some people may confuse getting p < α as
the goal, rather than finding out the truth.) Remember, if there is an actual effect to the
treatment, we should see this by p-values getting smaller using data from sufficiently many
independent trials.

My general suggestion for how to think about a positive test result is that it means there
is some (preliminary, if it’s a first test) evidence that, say, a treatment may be effective.
And now we should evaluate it in context, and see if it is worth doing further experiments to
provide more evidence for something. If repeated, independent studies are getting similar
results, then we can be fairly confident that there’s something “real” behind the studies,
rather than chance.

Remarks on perceptions of science: There seem to be a number of people who think
“most science is wrong.” I believe this is in large part due the way science is portrayed
in the media. The media might report “Scientist prove green jelly beans cause acne!” (cf.
xkcd comic on course page) and convey this as a “scientific fact” when really there was just
one experiment that came up positive, perhaps by chance. Then this may get “disproved”
in another study, and these sorts of things happen all the time, so you don’t know when you
should trust any reports. The media also typically simplifies the conclusions of a scientific
paper which exacerbates this (out of honest misunderstanding, or a desire to be sensational,
or quite possibly both)—e.g., maybe you get “Red wine leads to longer, healthier lives!” for
some study indicates red wine is correlated with lower incidence of heart attacks for people
with certain predispositions, but then there is another study that says it increases the risks
of something else and you get the headline “Red wine may kill you!”

In fact (and to repeat a bit, but this is important) whether or not there is any effect
of a treatment, statistically speaking if you do enough tests you will get some positive
results and some negative results, so you need to look at a consensus view (in addition to
qualitative information) when multiple studies have been performed. Citing a single study
that supports your point of view is not necessarily very meaningful when there sufficiently
many studies to suggest all possible points of view.

I worry that many people think most scientists aren’t doing research right or because
(i) later refutations of all the (statistically unavoidable) false positives which are made to
sound more shocking than they are, and (ii) occasional scandals of some scientists fabri-
cating data/results. Some people might claim Ionniadis’ paper3 as proof that scientists
either don’t know what they’re doing or are dishonest most of the time. Sure, scandals
do happen, and some scientists don’t follow the scientific method correctly (consciously or
not) and may engage in “p-hacking” (manipulating data/tests to get a desired p-value), but
because of the large number of false positives that are inevitable together with publication
bias, one shouldn’t conclude we’re going about science in a bad way. (And scientists are
working on addressing these other issues too.) If you wanted to really conclude we’re doing
science badly, you would need to do a statistical analysis of studies which were later refuted,

3Why most published research findings are false, PLOS, 2005.
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taking into account the above factors as well as other important ones I’m not discussing.
Also, it shouldn’t even be that surprising that a lot of current science is coming to wrong
conclusions—historically, science has always been a process of experimenting and theorizing
and revising to find the truth, slowly getting more and more accurate.

Another caution: if the statistical test fails, that does not necessarily mean we should
believe H0. This process is designed with the idea that to statistically “prove” a statement
(H1), you should show overwhelming evidence that its opposite (H0) is not correct. It may
be that, without any a priori assumptions, the data favors H1 over H0, but if we don’t
meet the desired significance level, we will be cautious and not assert H1 without more
information. The choice of H0 and H1 at the start is important here, as alternate choices
of H0 and H1 will often give different results.

Some people argue against this hybrid approach, and here is my perspective. The
central problem with the hybrid approach is people not understanding Fisher’s perspective
or Neyman–Pearson’s. Fisher’s approach was to take things in context and try to see if
something is true, which may be a gradual process by gathering more and more evidence.
The Neyman–Pearson philosophy is that: okay, we’re going to get a lot of decisions wrong,
but we want a systematic rule to make decisions to get as many right as possible. The
trouble comes when people want a systematic approach like Neyman–Pearson but interpret
a statistically significant result as “proof” of an effect, and don’t think about contextual
evidence as Fisher wanted. (Of course, the same problem exists using the Neyman–Pearson
approach for Scenario B, but this hybrid test seems to be more common so the issue arises
more for the hybrid.) And the usefulness of preliminary results are even worse when people
don’t follow the systematic approach correctly.

Pros:

• Systematic and simple-to-use criterion.

• Can control Type I errors (and Type II with appropriate design).

Cons:

• Choice of α is rather arbitrary.

• Meaning of a positive test is widely misinterpreted, and the simplicity of the test
makes people think they know what they’re doing when they don’t (the Dunning–
Kruger effect). Teaching this test without solid theory is like giving a loaded gun to
a toddler.

• Knowing the value of a single positive test result, without the p-value and the total
number of tests tried (not even just the ones by the same researcher), provides little
information on how “surprising” the results are.

• If H0 is slightly incorrect to start with or there is a treatment effect but it is very minor
(e.g., the probability of 1-week recovery is actually .3000017), then the probability of
a positive test result is very high with large samples (simply because H0 is technically
not true, even though the efficacy of the treatment may be miniscule). (Someone who
knows what they’re doing can correct for this.)
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5 Bayesian approach

Just like the original Neyman–Pearson approach doesn’t use a null hypothesis, neither does
the Bayesian approach. Here one considers a set of possible underlying distributions for the
sample space, and assigns probabilities to them and updates these probabilities when new
data is available. This will be easiest to illustrate in the case of just two alternate (simple)
hypotheses H1 and H2, i.e., Scenario B.

Let’s return to Example B. The possible distributions for how are data should behave
are specified by the hypotheses H1 : q = 1

2 and H2 : q = 1
3 . The idea with the Bayesian

approach is that we want to assign probabilities to the hypotheses and they use Bayes’
theorem to update these probabilities in light of the data.

To do this, we need to assign prior probabilities: to our hypotheses. If we’re com-
pletely on the fence, then we can reflect this by saying H1 and H2 seem equally likely to
start, i.e., we set our priors as:

P (H1) = 0.5, P (H2) = 0.5.

On the other hand, if we were slightly more inclined to H1 say (maybe because it was the
first argument we heard/though of, or the people making that argument seemed a little more
trustworthy), we might take instead take something like P (H1) = 0.6 and P (H2) = 0.4.
But let’s work with the notion that H1 and H2 are equally likely a priori.

As in the Neyman–Pearson section, let X be a random variable representing the number
of types a staying strategy wins in 10 trials, and say the outcome of our experiment is k
out 10 wins. The idea is once we’ve observed X = k, this affects the probabilities of H1

versus H2. That is, our new belief for how likely H1 is should be the conditional probability
P (H1|X = k), the probability of H1 given that X = k, and similarly for H2.

Recall Bayes’ theorem says P (A|B) = P (B|A)P (A)
P (B) , where P (A|B) = P (A∩B)

P (B) . In our
case, this means

P (H1|X = k) =
P (X = k|H1)P (H1)

P (X = k)
.

Let’s work this out when k = 4. Recall we computed in the Neyman–Pearson section that

P (X = 4|H1) ≈ .117, P (X = 4|H2) ≈ .130.

We now know every term on the right except the “absolute probability” P (X = k). We
don’t know it directly, but we can compute it in terms of conditional probabilities:

P (X = k) = P (X = k|H1)P (H1) + P (X = k|H2)P (H2),

which when k = 4 gives

P (X = 4) ≈ .117 · .5 + .130 · .5 ≈ .124.

Thus we can revise our probabilities in light of X = 4 to get

P (H1|X = 4) ≈ .117 · .5
.124

≈ .47

12
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and we can similarly compute
P (H2|X = 4) ≈ .53.

Since these probabilities must sum to 1, we just computed the latter probability as 1 minus
the first. In other words, they say the data means H2 is ever so slightly likely than H1,
which corresponds with the observation that 4

10 is slightly closer to 1
3 than 1

2 . Now you
can forget about the experiment and update your beliefs as P (H1) = .47, P (H2) = .53,
and if you do another experiment, you can use Bayes approach again to update your beliefs
with these new probabilities as your priors. While it is true that at each step your beliefs
depend on your choice of priors, it is a theorem that with more and more experiments this
process will approach the limiting case P (H1) = 0, P (H2) = 1 since H2 is true. This is the
Bayesian approach in the simplest setting.

Note one key difference between the Bayesian approach and the Neyman–Pearson one,
is that the Bayesian approach quantifies how much more you believe H2 than H1 (or vice
versa), whereas Neyman–Pearson simply says you choose one or the other with controlled
errors. (Stricter controls on errors in Neyman–Pearson, or the hybrid, is similar to saying
how much more you believe one hypothesis over the other, but you may need to have a
really large sample size to get the desired control over errors.)

Finally, just roughly indicate the idea of the Bayesian approach for Scenario A. Recall
Example A. We had the initial hypothesis H0: the chance of 1-week recovery is q = .3.
However, this was based on a previous study which also has some uncertainty. To build
in this uncertainty, we can think of q as a random variable and assign it a probability
distribution, represented by the blue line in the graph below. Then if there is a lot of
evidence for a positive effect in the treatment, one can a version of Bayes’ theorem for
continuous random variables to update the distribution for q which may look like the red
line in the graph below.

Pros:

• Allows for uncertainty about the null hypothesis (particularly for Scenario A).

• Good for situations where you have well-informed prior beliefs about what is true.

• Quantifies beliefs in various hypotheses.

• Provides natural framework for gradually refining beliefs based on new evidence.

Cons:

13
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• Requires a choice of prior distributions, which potentially are quite arbitrary (partic-
ularly for Scenario A).

• If the amount of sample data is small, the results of this process are highly dependent
on the choice of priors.

• For Scenario A, the approach becomes considerably more complicated than the hybrid
test.

6 Exercises

For some of these exercises, you may want to use a mathematical software system. One
possibility is to use Sage (which uses the programming language Python, if you’re familiar
with that). You can use this online at:

https://sagecell.sagemath.org/

Here is how to use it to do some probability calculations. The following code

def p(n,k,q):

return binomial(n,k)*q^k*(1-q)^(n-k)

sum([p(10,k,.3) for k in range(6,11)])

computes
∑10

k=6

(
n
k

)
(.3)k(.7)n−k, which was the p-value for Example A. The first two

lines of code defines a function p(n, k, q) which returns P (X = k) if X is a random variable
with binomial distribution B(n, q), i.e., the probability of k success in n independent trials
if each trial has success probability q. You should have no need to change the first 2 lines
of code for these exercises. The last line of code says to sum up p(10, k, .3) for 6 ≤ k < 11.

1. Let’s modify Example A so there are n trials. What’s the smallest value of n for which
it is possible to get a p-value less than 0.05?

2. Make a table of p-values analogous to Table 4 for Example A but with a sample size
of n = 6 instead of n = 10.

3. Let’s suppose you do an experiment to test a hypothesis H1 with a sample size of 10,
and you get a p-value of 0.047. Then you do a follow up experiment with sample size
of 10 and you again get a p-value of 0.047. Does the second experiment convince you
of H1 more than the first?

4. Let’s suppose you do a hybrid test with α = 0.05. Suppose there are two experiments
(not necessarily about the same thing) which have sample sizes 10 and 1000, and they
both test positive. Is one more convincing than the other because of the difference in
sample sizes?

5. Say you have 2 independent hybrid tests, both with α = 0.05. Can you determine the
probability that both of them give false positive results?

14
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6. Make a table analogous to Table 3 of Type II errors for possible Neyman–Pearson
decision rules for Example B but with a sample size of n = 8 instead of n = 10.

7. Let’s modify Example B so there are n trials and use the following naive Neyman–
Pearson test. Think of H1 as a null. If we observe k successes, then we pretend H2 is
true if k

n is closer to 1
3 than 1

2 , and pretend H1 is true otherwise.

(a) What is the smallest value of n for which this rule has significance level α < 0.2?

(b) What is the smallest value of n for which this rule has power 1− β < 0.2?

8. Going through Example B with Bayes approach, what are your updated probabilities
if you start with priors P (H1) = 0.6, P (H2) = 0.4? What about with priors P (H1) =
0.4, P (H2) = 0.6?

9. Let’s modify Example B, and say we win k times out of n trials with the staying
strategy. Assuming H2 is true (which it is), then the observation being within one
standard deviation of the mean is saying that n − 2

√
n ≤ 3k ≤ n + 2

√
n. If we

use Bayes approach with priors P (H1) = P (H2) = 0.5, what is the smallest value
of n which gives an updated probability P (H2) > 0.9 for any observation k with
n− 2

√
n ≤ 3k ≤ n+ 2

√
n.
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