1. Prove that every open set in \(\mathbb{R}^n \) is a countable union of open balls \(N_{\varepsilon_j}(x_j) \).

2. Prove that the Bolzano-Weierstrass property does not hold for \(C[a,b] \), the continuous functions on the interval \([a,b]\) with the supremum metric.

3. (Extreme Value Theorem) Prove that if \(E \) is compact and nonempty in metric space \((X,d)\) and if \(f : E \rightarrow \mathbb{R} \) is continuous, then the values
 \[
 M = \sup_{x \in E} f(x)
 \]
 and
 \[
 m = \inf_{x \in E} f(x)
 \]
 are both finite real numbers. Further, prove that there exist \(x_M \) and \(x_m \) in \(E \) such that \(f(x_M) = M \) and \(f(x_m) = m \).

4. Let \(E \) be a compact subset of metric space \((X,d)\) and let \(f, g : E \rightarrow \mathbb{R} \) be uniformly continuous on \(E \). Prove that the functions \(f + g \) and \(fg \) are uniformly continuous on \(E \). Where did the compactness of \(E \) come in?