Before you start these problems, make a list of the convergence tests and other properties of infinite series.

1. Prove the three parts of the Limit (or Asymptotic) Comparison Test. In each part, let \(a_j \geq 0 \) and \(b_j > 0 \) for all \(j \).

 a) If \(\lim_{j \to \infty} \frac{a_j}{b_j} = L \), where \(0 < L < \infty \), then \(\sum_j a_j \) converges if and only if \(\sum_j b_j \) converges. (Hint: Use the Comparison Test.)

 b) If \(\lim_{j \to \infty} \frac{a_j}{b_j} = 0 \) and \(\sum_j b_j \) converges, then \(\sum_j a_j \) also converges. (Hint: Start with the Zero Test.)

 c) If \(\lim_{j \to \infty} \frac{a_j}{b_j} = \infty \) and \(\sum_j b_j \) diverges, then \(\sum_j a_j \) also diverges.

2. Determine whether or not each of the following series converges or diverges. Explain which test(s) you use in each.

 a) \(\sum_{j=1}^{\infty} \frac{j^{1/7}}{j} \)

 b) \(\sum_{j=1}^{\infty} \frac{3j^2 - \sqrt{j}}{j^4 - j^2 + 1} \)

 c) \(\sum_{j=1}^{\infty} \left(\frac{3 + (-1)^j}{3} \right)^j \)

3. Determine whether or not each of the following series converges absolutely, converges conditionally, or diverges. Explain which test(s) you use in each.

 a) \(\sum_{j=1}^{\infty} \frac{(-1)^j j^2}{2^j} \)

 b) \(\sum_{j=1}^{\infty} \frac{(-1)^j \sqrt{j}}{j + 1} \)