1. Use the definition of a limit to prove \(\lim_{j \to \infty} \frac{\sin j - \cos j}{j} = 0 \).

2. Let \(\{a_j\} \) be a convergent sequence of integers having the limit \(L \). Prove that the sequence is “eventually constant”, i.e. there exists \(N \in \mathbb{N} \) such that for all \(j > N \), \(a_j = L \).

3. Let \(\{a_j\} \) be a sequence of nonnegative real numbers that converges to 0 and \(\{x_j\} \) is a sequence for which there exists \(N \in \mathbb{N} \) such that for all \(j \geq N \), \(|x_j - L| < a_j \). Prove that \(\lim_{j \to \infty} x_j = L \).