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Abstract. The question of whether a closed Riemannian manifold has infinitely
many geometrically distinct closed geodesics has a long history. Though unsolved
in general, it is well understood in the case of surfaces. For surfaces of revolu-
tion diffeomorphic to the sphere, a refinement of this problem was introduced by
Borzellino, Jordan-Squire, Petrics, and Sullivan. In this article, we quantify their
result by counting distinct geodesics of bounded length. In addition, we reframe
these results to obtain a couple of characterizations of the round two-sphere.

All closed Riemannian manifolds contain a closed geodesic. If the manifold is not
simply connected, any length-minimizing representative of a nontrivial homotopy class
is a closed geodesic. In the simply connected case, this is already a nontrivial result.

A more difficult question is whether there exist infinitely many closed geodesics. To
avoid over-counting, one considers two geodesics geometrically distinct if their images
are distinct. This brings us to the well known question of whether there exist infinitely
many geometrically distinct closed geodesics. In this article, we restrict our attention
to surfaces, but we refer the reader to Oancea [12, Chapter 2] for a survey and a guide
to the literature on the problem.

For surfaces with genus g ≥ 1, one uses the infinitude of the fundamental group and
a length minimization argument to construct infinitely many geometrically distinct
closed geodesics. For the torus, it follows that the number of such geodesics of length
at most ` grows quadratically in ` (see Berger [2, Chapter XII.5.A]). For g ≥ 2, Katok
proved that this number actually grows exponentially in ` (see Remark 0.3 below).

In the remaining case, when the surface is the sphere, this question was only an-
swered affirmatively in the 1990s by Bangert and Franks [1, 5] (cf. [2] and Hingston
[6]). Hingston then proved a quantified version of this result (see [7]): Given any met-
ric on S2, the number of geometrically distinct closed geodesics of length at most ` is
asymptotically at least c`/ log ` for some constant c > 0.

In this article, we consider refinements of these results. As motivation, consider
a surface of revolution. Each profile curve connecting the poles extends to a closed
geodesic. In particular, the results of Bangert–Franks and Hingston are trivial in this
setting. On the other hand, all of these geodesics are in some sense the same. This
motivates the following definition: For a closed Riemannian manifold M , we say that
two geodesics on M are strongly geometrically distinct if there is no isometry taking
the image of one to the image of the other.

For metrics with finite isometry group, one has immediate analogues of the results
above. For metrics with infinite symmetry, it is unclear whether there exist infinitely
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many strongly geometrically distinct geodesics. For example, the constant curvature
metric on S2 has only one closed geodesic in this sense. In [3], Borzellino et al. prove
that all surfaces of revolution diffeomorphic to S2, except for the round spheres,
have infinitely many strongly geometrically distinct geodesics. Our main result is a
quantification of this result, as well as a straightforward observation that it extends
to all closed, orientable surfaces with continuous (equivalently infinite) symmetry.

Main Theorem. Let M be an orientable, compact surface with infinite isometry
group. Let N(`) denote the number of strongly geometrically distinct closed geodesics
on M of length less than or equal to `. One of the following occurs:

(1) M is isometric to a round sphere, and N(`) = 1 for all sufficiently large ` > 0.
(2) There is a constant c > 0 such that N(`) ≥ c`2 for all sufficiently large ` > 0.

We make a few remarks.

Remark 0.1. In the non-orientable case, one applies the theorem to the orientable
double cover to obtain an analogous characterization of the real projective plane with
constant curvature.

Remark 0.2. It is well known that a closed, orientable surface M can have infinite
isometry group only if M is diffeomorphic to S2 or the torus T 2 (see Lemma 1.1). In
the latter case, a simple extension of a standard argument shows the Main Theorem
holds. However the argument we provide for S2 carries over with little effort to the
case of T 2, so we include it in Section 3 for completeness.

Remark 0.3. For a compact surface M with genus g ≥ 2, the isometry group is finite,
so N(`) is related to the number n(`) of geometrically distinct closed geodesics on M
of length at most ` by the following relation:

N(`) ≤ n(`) ≤ CN(`),

where C denotes the number of elements in the isometry group. Hence asymptotics
on n(`) imply asymptotics on N(`), up to multiplicative constant. For a metric on M
with constant curvature −1, Margulis showed that the function n(`) is asymptotic to
ce`/` for some constant c, i.e., the quotient n(`)/(ce`/`)→ 1 as `→∞ (see Margulis
[11], cf. Katok [9, Section 1]). In particular, n(`) ≤ e` for all sufficiently large `. On
the other hand, Katok showed that, for any metric on M with the same area as the
constant curvature −1 metric,

lim inf
`→∞

log(n(`))/` ≥ 1,

with equality if and only if the metric has constant curvature −1 (see Katok [8], cf.
Berger [2, Chapter XII.5.B]). As a consequence, for the case of non-constant curvature,
there exists a constant a > 1 such that n(`) ≥ ea` for all sufficiently large `. Hence for
both S2 and surfaces of genus g ≥ 2, there is a sense in which the constant curvature
metric is characterized by having the fewest closed geodesics. We do not know whether
the constant curvature metrics on T 2 have a similar characterization.
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Consider now a metric on S2 with infinite isometry group. The metric takes the
form ds2 + h(s)2dθ2 and one can check that the arguments in Borzellino et al. for a
surface of revolution carry over to this slightly more general case to show that infinitely
many strongly geometrically distinct closed geodesics exist, i.e., lim`→∞N(`) = ∞.
In Section 2, we summarize their argument and supplement it where needed to prove
the claimed lower bound on the growth rate of N(`).

Before starting the proof, we point out that this theorem, combined with the work
of Hingston and Katok, immediately implies the following:

Corollary. Let M be an orientable, compact surface. Either M is isometric to a
round sphere and N(`) = 1 for all sufficiently large ` > 0, or there exists a constant
c > 0 such that N(`) ≥ c`/ log ` for all sufficiently large ` > 0.

Acknowledgements. This project began as part of the Summer Undergraduate
Research Fellowship program in the College of Creative Studies at UCSB. The second
author is grateful for the support provided by this program. The first author was
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1. Preliminaries on Lie group actions

In this section, we gather some results on isometric actions by Lie groups that are
required for the proofs. We summarize the results here:

Lemma 1.1. If M is a closed, orientable Riemannian manifold of dimension two
with infinite isometry group G, then the identity component G0 ⊆ G contains a circle
S1, and one of the following occurs:

(1) M is isometric to a round S2 and dim(G) = 3.
(2) M is diffeomorphic to S2 but not isometric to a round S2, dim(G) = 1, and

the fixed-point set of S1 is a pair of isolated points.
(3) M is diffeomorphic to a torus, and the fixed-point set of S1 is empty.

In particular, M cannot have genus g ≥ 2.

To prove this lemma, suppose M is a closed Riemannian manifold of dimension two
with infinite isometry group G. A theorem of Myers and Steenrod states that G is a
compact Lie group (see Kobayashi [10, Chapter II, Section 1]). Let G0 ⊆ G denote
the identity component. By compactness, G has only finitely many components. Since
G is infinite, this implies that G0 has positive dimension. In particular, the maximal
torus theorem implies that G0 contains a circle S1.

This circle acts isometrically on M , and its fixed-point set

F = {p ∈M | eit(p) = p for all eit ∈ S1}
equals the zero set of the associated Killing field X on M defined by X(p) =
d
dt

∣∣
t=0

(eit(p)). Moreover, F consists of isolated points, and the number of these points
equals the Euler characteristic of M (see [10, Chapter II, Theorems 5.3 and 5.5]). Since
the Euler characteristic of M equals 2−2g where g is the genus, it follows either that
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M is diffeomorphic to S2 and F is a pair of isolated points or that M is diffeomorphic
to T 2 and F is empty.

It suffices to show that dim(G) = 3 if and only if M is a round S2, and that
dim(G) = 2 only if M is diffeomorphic to T 2. Regarding the first of these claims, we
note that a round S2 has isometry group O(3), which is three-dimensional. Conversely,
it is a classical fact that, if the isometry group of a compact two-manifold is three-
dimensional, then M is either S2 or the real projective plane RP2 equipped with a
metric of constant curvature (see [10, Chapter II, Theorem 3.1]). If, moreover, M is
orientable, as in Lemma 1.1, then we conclude that M is isometric to a round S2.

Suppose now that dim(G) = 2. The only compact, connected, two-dimensional Lie
group is the two-torus, so G0 = T 2 (see Bröcker–tom Dieck [4, page 169]). Since
G0 acts effectively on M and has the same dimension as M , it follows that G0 acts
transitively on M and hence that the Gauss curvature is constant. By the Gauss–
Bonnet theorem and the fact that the genus g ≤ 1, either M is a round S2 or a flat
T 2. In the first of these cases, we have dim(G) = 3, a contradiction to the assumption
that dim(G) = 2. Hence M is isometric to a torus with constant zero curvature.

2. Proof of Main Theorem for the sphere

Assume that M is a Riemannian manifold diffeomorphic to S2 with infinite isometry
group. Let {p, q} ⊆ M denote the fixed point set of this circle action according to
Lemma 1.1. Choose a minimal geodesic c from p to q. By rescaling the metric if
necessary, assume that c is defined on [0, π] and that c(0) = p and c(π) = q. There
exists a smooth function h : (0, π)→ (0,∞) and an isometric covering map

σ :
(
(0, π)× R, ds2 + h(s)2dθ2

)
−→ M \ {p, q}

(s, θ) 7→ eiθ · c(s),

where the dot denotes the action of the circle element eiθ on c(s). Since M is smooth
at p = c(0) and q = c(π), we conclude that the extended function h : [0, π] → R
satisfies h(0) = h(π) = 0 and h′(0) = −h′(π) = 1 (see [13, Chapter 1, Section 3.4]).
The strategy now is to follow the proof in Borzellino et al. [3], which covers the case
of a surface of revolution. Note that, for a surface of revolution, h(s) represents one
coordinate of a unit-speed curve in the plane and hence satisfies the condition that
|h′(s)| ≤ 1 (see Petersen [13, Chapter 1, Section 3.3, Example 18]). Although we
are considering a more general class of surfaces, the arguments of Borzellino et al.
extend to our situation. We summarize the proof here since our strategy is simply to
supplement it, as needed, in order to prove the Main Theorem.

In the coordinates induced by σ, the geodesic equations are

s′′(t) = h(s(t))h′(s(t))θ′(t)2,

θ′′(t) = −2
h′(s(t))

h(s(t))
s′(t)θ′(t).

The meridians, γ(t) = σ(t, θ0), satisfy these equations and extend to closed geodesics
passing through both poles, p and q. Since θ0 is arbitrary, we have by uniqueness
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that meridians are the only geodesics that pass through the poles. In the rest of
this section, we consider those geodesics that do not pass through the poles. Since σ
defines an isometric covering map onto M \ {p, q}, we can write a geodesic γ(t) as
σ(s(t), θ(t)) for smooth functions s : R → (0, π) and θ : R → R. For example, the
parallels given by γ(t) = σ(s0, t/h(s0)) are closed geodesics provided that h′(s0) = 0.
Another example of a geodesic is provided in Figure 1.

Figure 1. A geodesic asymptotic to a parallel. The surface is S2

equipped with a rotationally symmetric metric.

An important consequence of the geodesic equations is Clairaut’s relation. This
states that, for each non-meridian geodesic γ, there exists a constant cγ > 0 such that

h(s(t)) cosα(t) = cγ,

where α(t) is the angle between γ′(t) and the coordinate vector field σθ at γ(t). Since
the cosine function is bounded, h(s(t)) cannot go to zero, hence any non-meridian
curve has its s–coordinate bounded by some interval

[s0(γ), s1(γ)] = [inf s(t), sup s(t)] ⊆ (0, π).

Further analysis shows the following.

Lemma 2.1 (Clairaut). For a ∈ (0, π), let γa be a unit-speed geodesic starting with s–
coordinate a and initial direction γ′(0) in the θ-direction. One of the following occurs:

1. parallel: h′(a) = 0, and s(t) = a for all t.
2. asymptotic: h′(a) > 0 (resp. < 0) and there exists b = b(a) > a (resp. < a)

such that h′(b) = 0 and s(t)→ b as t→∞.
3. oscillating: h′(a) > 0 (resp. < 0) and there exists b = b(a) > a (resp. < a)

such that h′(b) < 0 (resp. > 0) and s(t) oscillates between a and b, achieving
these extremal values at integral multiples of some time, denoted T (a).

According to this result, we refer to the parameter a ∈ (0, π) as parallel, asymptotic,
or oscillating. Following [3, Proposition 3.1], we let U ⊆ (0, π) denote the subset
consisting of oscillating a ∈ (0, π) for which h′(a) > 0 and h′(b(a)) < 0, where
b(a) = inf{b > a | h(b) = h(a)}. Geometrically, the s–coordinate of γa oscillates
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between a and b(a). It follows that U ⊆ (0, π) is an open set and that the function
a 7→ b(a) on U is smooth. Indeed, this function is given by h composed with a local
inverse of h, and so it is smooth by the inverse function theorem. Figure 2 indicates
the region U for a function h(s) corresponding to the dumbbell shape from Figure 1.

0 s0 s1 s2 s3 π
s

h
(s

)

U

Figure 2. Example of function h(s) corresponding to a surface of
revolution with the shape of a dumbbell, as in Figure 1. Here, s is the
arclength coordinate. The value a = s0 corresponds to an asymptotic
geodesic as in Lemma 2.1, and the values a ∈ {s1, s2, s3} correspond to
parallel geodesics. The blue region is U , the set of oscillating values of
a for which h′(a) > 0.

For each a ∈ U , let γa(t) = σ(s(t), θ(t)) be as in Lemma 2.1 and define

R(a) = 2

∫ T (a)

0

θ′(t)dt,

L(a) = 2T (a) = 2

∫ T (a)

0

1dt,

where T (a) is the time referred to in the third conclusion of Lemma 2.1. This defines
two functions R : U → R and L : U → R. The geometric interpretation of these
functions is as follows. The quantity 2T (a) denotes the time required for a geodesic
starting at s = a and parallel to σθ to have its s–coordinate go to b(a) and back to
a. We call this a “full trip”. It then follows by symmetry that R(a) and L(a) denotes
the total rotation and length of the geodesic on a full trip. In [3], the authors prove
that R(a) is a continuous function of a. For our purposes, we also need that L(a) is
continuous.

Lemma 2.2. The functions L,R : U → R are continuous.
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Proof. The proofs for R and L are similar, so we only prove it for L. Fix a ∈ U .
Choose a non-trivial interval [a1, a2] ⊆ U containing a on which h′ ≥ c1 > 0. We
prove now that L is continuous on [a1, a2].

To do this, we rewrite expression for L(a). First, the unit-speed condition implies
that 1 = |γ′a(t)|2 = s′(t)2 + h(s(t))2θ′(t)2. Since s(t) is increasing from t = 0 to
t = T (a), this implies

s′(t) =
√

1− h(s(t))2θ′(t)2.

Next, the second geodesic equation implies that d
dt

(h(s(t))2θ′(t)) = 0. As a result,
h(s(t))2θ′(t) equals a constant C. At t = 0, the unit-speed condition implies that
θ′(0) = 1/h(s(0)) = 1/h(a), so we have that C = h(a). Putting this together, we
obtain

s′(t) =
√

1− h(a)2/h(s(t))2.

Finally, we use this expression in order apply the change of variables s = s(t) to the

integral L = 2
∫ T (a)
0

dt. This gives us the expression

L = 2

∫ b(a)

a

ds√
1− h(a)2/h(s)2

.

Regarding the right-hand side as a function of a, we may write L(a) = 2
∫ b(a)
a

l(a, s)ds,

where l(a, s) is given by h(s)/
√
h(s)2 − h(a)2. This integral is improper at both end-

points, so we proceed by proving the following two claims:

(1) For all sufficiently small δ > 0, Lδ(a) = 2
∫ b(a)−δ
a+δ

l(a, s)ds is smooth.
(2) The functions Lδ converge uniformly to L on [a1, a2].

The first claim follows from the Leibniz integral rule since l(a, s) is a smooth function
on the set {(a, s)|a ∈ [a1, a2], a + δ ≤ s ≤ b(a) − δ}. To prove the second claim,

it suffices to prove that
∫ a+δ
a

l(a, s)ds → 0 and
∫ b(a)
b(a)−δ l(a, s)ds → 0 uniformly in

a ∈ [a1, a2] as δ goes to 0. These claims are proven similarly, so we only prove the
first. The second only requires the additional fact that b(a) depends smoothly on a.

Observe that l(a, s) is non-negative and bounded above as

l(a, s) =
h(s)√

h(s)2 − h(a)2
≤ 1

2c1

2h(s)h′(s)√
h(s)2 − h(a)2

.

Integrating this expression and applying the change of variables y = h(s)2 − h(a)2,
we conclude that∫ a+δ

a

l(a, s)ds ≤ 1

2c1

∫ h(a+δ)2−h(a)2

0

dy
√
y

=

√
h(a+ δ)2 − h(a)2

c1
.

Since h is smooth and hence uniformly continuous on [0, π], this last quantity con-
verges to 0 uniformly in a as δ → 0. This completes the proof. �

We proceed to the proof of the Main Theorem, that the number N(`) of strongly
geometrically distinct closed geodesics grows quadratically in `. The idea is to show,
for all large ` > 0, that a large number of values of a exist such that a ∈ U , R(a) = 2π p

q
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for some rational p
q
, and L(a) ≤ `/q. These three conditions imply that any choice of

γa as in Lemma 2.1 is oscillating, closes up after q “full trips”, and is a closed geodesic
with length at most `.

First, we dispose of the case where the isometry group G satisfies dim(G) 6= 1. By
Lemma 1.1, we have dim(G) = 3 and that M is a round sphere. In this case, the
isometry group is O(3) or SO(3), and every unit-speed geodesic can be carried to any
other by an isometry, so N(`) = 1 for all ` larger than 2πr, where 1/r2 is the Gauss
curvature of M . This completes the proof of the Main Theorem in this case.

We assume from now on that dim(G) = 1. As a result, the identity component G0 ⊆
G equals the circle group. By compactness, G has only finitely many components. In
particular, for each oscillating value of a as above, at most finitely many other such
values result in geodesics that are not strongly geometrically distinct from γa. This
issue results in a multiplicative factor (equal to the number of components in the
isometry group) in our estimates. Since the Main Theorem involves an unknown
multiplicative constant anyway, we simply assume, without loss of generality, that
the isometry group equals the circle.

The proof is carried out in three cases, which are based roughly on the setup in
[3]. One key step is to prove that there exists an asymptotic geodesic if h has more
than one critical point. This actually need not be the case. Indeed, a capped cylinder
provides a counterexample, since every critical point is a local maximum and hence
not a limiting value of an asymptotic geodesic. This problem is easy to fix, however,
by breaking the proof into cases as follows.

Lemma 2.3. If h has infinitely many critical points, then N(`) = ∞ for all suffi-
ciently large ` > 0.

Proof. If h′(a) = 0, then γa(t) = σ(a, t/h(a)) is a closed geodesic of length 2πh(a).
Moreover, the image of γa maps to itself under any isometry, so distinct values of
a yield strongly geometrically distinct closed geodesics. The result follows since h is
bounded on [0, π]. �

Lemma 2.4. If h has finitely many critical points, and R is locally constant, then
N(`) =∞ for all sufficiently large ` > 0.

Proof. In this case, the argument in [3, Corollaries 4.4 and 4.5] is valid since the
critical points are isolated. Indeed, first suppose that h has more than one critical
point (as in Figure 2). The arguments there show that M has an asymptotic geodesic
and hence that R is unbounded on U . However Lemma 2.1 and the assumptions of this
lemma imply that R takes on only finitely many values, so this is a contradiction.
Assume instead that h has a unique critical point, s0 (as in Figure 3 below). It
follows as in [3, Corollary 5.4] that U = (0, s0) and that R(a) = lima′→0R(a′) = 2π
for all a ∈ (0, s0). But L is continuous on (0, s0) and hence on [ s0

3
, s0

2
], so there exist

infinitely many strongly geometrically distinct closed geodesics of length at most L0,
where L0 = max{L(s) | s ∈ [ s0

3
, s0

2
]} <∞. �

Lemma 2.5. If h has finitely many critical points and R is not locally constant, then
there exists a constant c > 0 such that N(`) ≥ c`2 for all sufficiently large ` > 0.
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s0
s

h
(s

)

U

Figure 3. An example of a profile curve h(s) with a unique critical
point. As in Figure 2, s is the arclength parameter and U is the set of
oscillating s–values a for which h′(a) > 0.

Proof. Choose a closed interval I ′ ⊆ U that is mapped by R to some non-trivial
interval I ⊆ R. Let 2π p

q
∈ I. Each a ∈ U that is mapped by R to 2π p

q
corresponds

to a closed geodesic of length qL(a). Since L is continuous on I ′, this length is at
most qL0, where L0 is the maximum value of L on I ′. This length is at most ` if and
only if q ≤ b`/L0c. To estimate N(`) from below, it suffices to count the number of
rationals p

q
∈ 1

2π
I with q ≤ b`/L0c. By Lemma 2.6 below, there is a constant c′ such

that the number of such rationals is at least c′ (b`/L0c)2 for all sufficiently large `.
Taking c = 1

2
c′/L2

0, we conclude that N(`) ≥ c`2 for all sufficiently large ` > 0. �

As indicated in the previous proof, it suffices to prove the following counting lemma.

Lemma 2.6. Inside any connected, non-trivial interval I ⊆ R, there exist constants
c > 0 and n0 ∈ N such that for all n ≥ n0, there are at least cn2 rational numbers in
I with denominator at most n.

Proof. The proof uses Farey fractions. Let Fn denote the set of rationals a/b written
in reduced form such that 0 ≤ a ≤ b ≤ n. It is easy to see that the number of elements
in Fn satisfies

|Fn| = 1 +
n∑
k=1

φ(k),

where φ(k) is the Euler totient function, given by the number of integers 1 ≤ i ≤ k
coprime to k. According to Walfisz [14],

n∑
k=1

φ(k) =
3

π2
n2 + O

(
n (log n)2/3 (log log n)4/3

)
.
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In particular, it follows that constants c1 > 0 and n0 > 0 exist such that |Fn| > c1n
2

for all n ≥ n0.
The idea now is to inject Fn into I in a controlled way. First, it is clear that the

conclusion of the lemma holds for I if and only if it holds for {1+ i | i ∈ I}. Hence, we
assume without loss of generality that I 6⊆ (−∞, 0]. Choose positive integers a and
b such that I contains the interval

[
a
b
, a+1

b

]
. Set c = 1

2

(
c1
b2

)
, and choose n0 ≥ n1 such

that bn/bc ≥ n1 and c1
(
n
b
− 1
)2
> cn2 for all n ≥ n0. We claim that n ≥ n0 implies

that the number of rationals x ∈ I with denominator at most n is at least cn2.
To do this, consider the injection Fbn/bc → I given by x 7→ a+x

b
. Note that the

rationals in the image of this map have denominator at most n. Hence the total
number of rationals in I with denominator at most n is at least the order of Fbn/bc.

For all n ≥ n0, this order is at least c1 (bn/bc)2, which in turn is greater than cn2. �

This completes the proof of the Main Theorem in the case where M is a sphere.

3. Proof of Main Theorem for the torus

Assume now that M is diffeomorphic to the torus and has infinite isometry group.
In this case, there exists an isometric covering map from

σ : (R× R, ds2 + h(s)2dθ2)→M,

where h : R→ R is some smooth, positive, and periodic function on R, as in Figure
4. To fix notation, we perform a global scaling so that the period is π.

s0 s1 s0 + π
s

h
(s

)

U

Figure 4. Example of function h(s) corresponding to a torus of rev-
olution. Here, s is the arclength coordinate. The s–values congruent
to s0 or s1 modulo π correspond to parallel geodesics. The blue region
labeled U is, by analogy with the sphere case, the set of oscillating
s–values a such that h′(a) > 0.
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As with the case where M is diffeomorphic to S2, we obtain the same geodesic
equations and Clairaut relation. However, Lemma 2.1 does not hold since it is possible
for geodesics to have the property |s(t)| → ∞ as t →∞. Indeed, this is the case for
meridians. As a substitute, we make the following easy observation.

Lemma 3.1. The π–periodic function h : R→ R has at least one of the two following
properties:

(1) (non-isolated case) There exist infinitely many critical points in (0, π).
(2) (asymptotic case) There exists an isolated local minimum at some s0 ∈ R.

In the first case of the lemma, it follows that N(`) = ∞ for all ` ≥ 2πmax(h).
In the second case, it follows as in the case where M is a sphere that the rotation
function R(a) is unbounded. One can imagine why this happens if h(s) is as in Figure
4, since R(a)→∞ as a→ s0 from the right. Given that R(a) is unbounded, it follows
that R(a) is not locally constant and hence that N(`) ≥ c`2 asymptotically in ` for
some constant c > 0. This concludes the proof in this case, and it concludes the proof
of both theorems in the introduction.

References

[1] V. Bangert. On the existence of closed geodesics on two-spheres. Internat. J. Math., 4(1):1–10,
1993.

[2] M. Berger. Geometry revealed. Springer, Heidelberg, 2010. A Jacob’s ladder to modern higher
geometry, Translated from the French by Lester Senechal.

[3] J.E. Borzellino, C.R. Jordan-Squire, G.C. Petrics, and D.M. Sullivan. Closed geodesics on orb-
ifolds of revolution. Houston J. Math., 33(4):1011–1025, 2007.
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