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Abstract. A rational projective plane (QP2) is a simply connected, smooth, closed man-
ifold M such that H∗(M ;Q) ∼= Q[α]/〈α3〉. An open problem is to classify the dimensions
at which such a manifold exists. The Barge–Sullivan rational surgery realization theorem
provides necessary and sufficient conditions that include the Hattori–Stong integrality con-
ditions on the Pontryagin numbers. In this article, we simplify these conditions and combine
them with the signature equation to give a single quadratic residue equation that determines
whether a given dimension supports a QP2. We then confirm existence of a QP2 in two new
dimensions and prove several non-existence results using factorization of the numerators of
the divided Bernoulli numbers. We also resolve the existence question in the Spin case, and
we discuss existence results for the more general class of rational projective spaces.

The rank one symmetric spaces given by the complex projective plane CP2, the quater-
nionic projective plane HP2, and the Cayley plane OP2 have the property of being simply con-
nected, closed, smooth manifolds M with cohomology ring isomorphic to Z[α]/〈α3〉. These
examples exist in dimensions 4, 8, and 16 respectively. By Adams’ resolution of the Hopf
invariant one problem, no other dimension supports such a manifold (see [Ada60]). In fact,
Adams’ proof also covers mod 2 projective planes, i.e., manifolds as above with the property
that H∗(M ;Z2) ∼= Z2[α]/〈α3〉 (cf. [Liu62, SY61] for work on odd prime analogues).

By analogy, a rational projective plane (denoted QP2) is a simply connected, closed,
smooth manifold M with rational cohomology ring isomorphic to Q[α]/〈α3〉. The dimen-
sions at which such a manifold exist are not yet classified. The second author began work on
this question and proved that a QP2 exists in dimension 32 but not in any other dimension
less than 32 aside from 4, 8, and 16 (see [Su14]). It was also shown that a necessary condition
for the existence of a QP2 in dimensions n > 4 is that n = 8k for some k. Fowler and the
second author showed further that k must be of the form 2a + 2b, and that no QP2 exists in
dimensions 32 < n < 128 and 128 < n < 256.

Theorem A. A QP2 exists in dimension n ≤ 512 if and only if n ∈ {4, 8, 16, 32, 128, 256}.
Moreover, no QP2 exists in any dimension 512 < n < 213, except for five possible exceptions,
n ∈ {544, 1024, 2048, 4160, 4352}.

The approach is by rational surgery, as in [Su14, FS16]. By the rational surgery realization
theorem of Barge and Sullivan, the existence of a QP2 in a particular dimension is equivalent
to the existence of formal Pontryagin classes that satisfy the Hirzebruch signature equation
and the Hattori–Stong integrality conditions (see [Su14], cf. [Bar76, Sul77]). The main step
in this article is to show that two of the Hattori–Stong integrality conditions are sufficient to
imply the others (see Section 2). We then prove that the signature equation and these two
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integrality conditions are equivalent to a single quadratic residue equation (see Section 3).
In Sections 4 and 5, we apply these simplifications to answer the existence question for QP2

in all but five dimensions less than 213 and, in particular, to prove Theorem A.
Section 5 also contains some general non-existence results. They rely on congruences of

Carlitz and Kummer, and obstructions from irregular prime factors of the numerators of the
divided Bernoulli numbers. The results provide new infinite families of dimensions that do
not support a QP2 (see Section 5 for precise families of dimensions obstructed).

Theorem B. There are infinitely many dimensions of the form 2a, and infinitely many
dimensions of the form 8(2a + 2b) with a 6= b, that do not support the existence of a QP2.

As mentioned above, Fowler and the second author proved that no QP2 exists in a di-
mension not of the form 2a or 8(2a + 2b) for some a 6= b (see [FS16]). It remains an open
question whether infinitely many dimensions, and whether any dimension of the latter form,
can support a rational projective plane.

We specialize in Section 6 to the Spin case, and we classify the dimensions that support a
Spin QP2. Note that HP2 and OP2 are examples in dimensions 8 and 16.

Theorem C. A Spin QP2 exists in dimension n if and only if n ∈ {8, 16}.

The necessary and sufficient conditions for existence of Spin QP2 are analogous to the
smooth case except the Spin Hattori–Stong integrality conditions involve the Â–genus instead
of L–genus. The obstructions coming from the signature equation, integrality of Â–genus,
and one of the Spin Hattori–Stong conditions are sufficient to prove no Spin QP2 exists in
dimensions n > 16.

Finally, we discuss existence questions for rational projective spaces. Extending the no-
tation above, let QPnd denote a simply connected, smooth, closed manifold in dimension dn
with rational cohomology isomorphic to Q[α]/〈αn+1〉, |α| = d. For example, a QP2

8 is a
rational Cayley plane. The main existence result we prove in Section 7 is the following.

Theorem D. If a QP2
4k exists, then a QP2m

4k/m exists whenever 4k/m ∈ 2Z.

We illustrate this theorem with some examples:

I. By Theorems A and D, higher dimensional analogues QPn8 of rational Cayley planes
exist for n ∈ {4, 16, 32}. Note that QPn8 exist for all odd n (see [FS16]).

II. No QP2
32 exists, however there exist higher dimensional analogues, QP4

32 and QP8
32.

In light of the last example, it may be asked whether every power of two can be realized as
the degree d of a QPnd for some n ≥ 2. The answer is yes by Theorem D if infinitely many
dimensions equal to a power of two support a QP2, but this too remains an open question.

Acknowledgements. We want to thank Matthias Kreck and Don Zagier for email commu-
nication regarding their independent work on this problem, which includes results equivalent
to Theorem A stated above, as well as nonexistence results beyond the range of dimensions
we considered in this paper.

We also want to thank Yang Su and Jim Davis for communication about this problem and
Sam Wagstaff for discussions on Bernoulli numbers that made possible the proof of Theorem
B. Finally we are grateful to the referee for carefully reading and making suggestions to
improve the paper. The first author was supported by NSF Grant DMS 1622541.
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1. Preliminaries

We consider the question of whether a QP2 exists in dimension n. By the graded com-
mutativity of the cup product, the dimension n must be a multiple of four. Moreover, the
second author proved that, except for dimension four, a QP2 can exist only if n = 8k for
some integer k (see [Su14]).

We first outline the necessary and sufficient condition for the existence of a simply con-
nected, closed, smooth manifold realizing a prescribed rational cohomology ring. If M8k

is an 8k–dimensional QP2, then all its rational Pontryagin classes vanish except for pk ∈
H4k(M ;Q) and p2k ∈ H8k(M ;Q). Hence the total L class can be written as

L = 1 + skpk + sk,kp
2
k + s2kp2k.

As derived in [MS74] and [And69], the coefficients are

sk =
22k(22k−1 − 1)|B2k|

(2k)!
,

sk,k =
1

2
(s2k − s2k).

With a choice of orientation, we may assume that the signature of M is 1. The following
necessary conditions must hold true:

(1) (Hirzebruch signature equation)

〈L(pk, p2k), µ〉 = sk,k〈p2k, µ〉+ s2k〈p2k, µ〉 = 1, (1)

(2) (Hattori–Stong integrality condition from ΩSO
8k )

〈Z[e1, e2, . . .]·L , µ〉 ∈ Z[1/2] (2)

(3) (Pontryagin numbers of QP2)

〈p2k, µ〉 = x2 and 〈p2k, µ〉 = y for some integers x and y (3)

Condition (3) is a consequence of the rational cohomology ring structure of M . Since
H∗(M ;Q) = Q[α]/〈α3〉, where α is any generator in H4k(M ;Q), we may write the Pontryagin
classes pk = aα and p2k = bα2 for some rational numbers a and b. By the choice of orientation,
the rational intersection form of M is isomorphic to 〈1〉 and the signature is 1, so we must have
〈α2, µ〉 = r2 for some rational number r, then the Pontryagin numbers of M can be expressed
as 〈p2k, µ〉 = a2r2 = x2 and 〈p2k, µ〉 = br2 = y, where x and y must be integers because the
Pontryagin numbers of a smooth manifold must be integers. With this substitution, the
signature equation (1) can be written as

sk,kx
2 + s2ky = 1.

The Hattori–Stong integrality condition (2) characterizes the integral lattice in Qp(8k)

formed by all possible Pontryagin numbers of a smooth 8k-dimensional manifold in ΩSO
8k .

The el classes are defined as follows. If one writes the total Pontryagin class formally as

p =
∏
i

(1+x2i ) =
∏
i

(1+ti), the k-th Pontryagin class can be expressed as the k-th elementary

symmetric function of ti.

pk = σk(t) =
∑

i1<···<ik

ti1ti2 · · · tik .
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Consider the variable Ti that is written as a power series of ti as follows:

Ti := e
√
ti + e−

√
ti − 2 =

∞∑
n=1

2tni
(2n)!

= 2

(
ti
2!

+
t2i
4!

+ . . .

)
.

We denote the l-th elementary symmetric functions of the variable Ti as

el := σl(T ) =
∑

i1<···<il

Ti1Ti2 · · ·Til .

Since each el class can be written as a rational linear combination of monomials of the
Pontryagin classes pk, in our case of QP2, each el class can be written as a rational linear
combination of p2k and p2k. Therefore the Hattori–Stong Integrality condition (2) can be
expressed as a set of integrality conditions on the Pontryagin numbers 〈p2k, µ〉 = x2 and
〈p2k, µ〉 = y.

As discussed in [Su14], by the rational surgery realization theorem ([Bar76] and [Sul77]),
the above necessary conditions are also the sufficient conditions for the existence of a QP2.
More precisely, there exists a smooth closed manifold M in dimension n = 8k such that
H∗(M ;Q) = Q[α]/〈α3〉 if and only if there exist pair of integers x2 and y which realize the
Pontraygin numbers of a QP2 as in (3), and they satisfy the signature equation (1) and the
Hattori–Stong integrality conditions in (2). So the problem is reduced to solving a system of
Diophantine equations, which is purely an elementary number theoretic problem.

2. Reducing the integrality conditions

In the proof of existence of 32-dimensional QP2 in [Su14], the second author explicitly
computed the Hattori–Stong integrality condition in dimension 32. The calculation involved
concretely writing each el classes in Condition (2) in terms of the Pontraygin classes p24 and
p8. In this section, we simplify the Hattori–Stong integrality condition in our case of QP2 to
a much simpler form. The argument works for any dimension.

Theorem 1. There exists a QP2 in dimension n = 8k if and only if there are integers x and
y that satisfy the following conditions:

sk,kx
2 + s2ky = 1 (4a)(

(−1)k+1sk
(2k − 1)!

+
1

2(4k − 1)!

)
x2 − y

(4k − 1)!
∈ Z[1/2] (4b)

x2

[(2k − 1)!]2
∈ Z[1/2] (4c)

Moreover, for any pair of integers x and y satisfying the above conditions, there is a QP2

whose Pontryagin numbers satisfy 〈p2k, µ〉 = x2 and 〈p2k, µ〉 = y.

We spend the rest of this section on the proof. Condition (1), the signature equation, is
the same as Equation (4a), and Condition (3) on the integrality of the Pontryagin numbers is
implicit in the statement. Therefore it is sufficient to show that the Hattori–Stong integrality
conditions stated in Condition (2) are equivalent to Equations (4b) and (4c). Since a QP2

satisfies pω = 0 except possibly for pk, p
2
k and p2k, Condition (2) is equivalent to the claim that

〈el·L, µ〉 ∈ Z[1/2] for all 1 ≤ l ≤ 2k and that 〈elem·L, µ〉 ∈ Z[1/2] whenver 1 ≤ l +m ≤ 2k.
In the following lemma, we calculate the el class in terms of the Pontryagin classes.



ON DIMENSIONS SUPPORTING A RATIONAL PROJECTIVE PLANE 5

Lemma 2. If pω = 0 except pk, p2k and p2k, then

e1 =
(−1)k+1

(2k − 1)!
pk +

1

2(4k − 1)!
p2k +

−1

(4k − 1)!
p2k (5)

and

el =
(−1)l+1

l

[
Ml(2k)e1 + [Ml(k)−Ml(2k)]

(−1)k+1

(2k − 1)!
pk

]
+

1

2

l−1∑
i=1

eiel−i (6a)

=
(−1)k+lMl(k)

l(2k − 1)!
pk +

(−1)lMl(2k)

l(4k − 1)!
p2k + p2k term (6b)

where Ml(k) =
l−1∑
j=0

(−1)j
(

2l

j

)
(l − j)2k.

Proof. For any partition ω = (ω1, · · · , ωr), there is the monomial symmetric polynomial

mω(t) =
∑

i1<···<ir

tω1
i1
tω2
i2
· · · tωr

ir
. Let us denote the ml polynomial of the variable Ti by

ml := ml(T ) =
∑
i

T li .

Note, in particular, that

m1 =
∑
i

Ti =
∞∑
k=0

2

(2k)!

∑
i

tki =
∞∑
k=0

2

(2k)!
mk(t). (7)

Similar to the calculation carried out in [BLLV74] page 488, we find the coefficient of pk and
p2k in ml. Let {−}k denote the degree k terms in an expression. We have

{ml}k =

{∑
i

(
e
√
ti + e−

√
ti − 2

)l}
k

=

{∑
i

(
e
√
ti/2 − e−

√
ti/2
)2l}

k

=

∑
i

2l∑
j=0

(−1)j
(

2l

j

)
e
√
ti(l−j)


k

=
∑
i

2l∑
j=0

(−1)j
(

2l

j

)
tki (l − j)2k

(2k)!

=
mk(t)

(2k)!

2l∑
j=0

(−1)j
(

2l

j

)
(l − j)2k

=
2

(2k)!
mk(t)Ml(k)

Using Equation (7) and the fact that ml only contains terms of degree at least l, this implies
that

{ml}k =

{
Ml(k){m1}k = Ml(k){e1}k if l ≤ k
0 if l > k
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By the Newton-Girard identities relating the monomial symmetric function mk(t) with the
elementary symmetric functions pi = σi(t),

e1 = m1 = {m1}k + {m1}2k =
2

(2k)!
mk(t) +

2

(4k)!
m2k(t)

=
2

(2k)!
(−1)k+1k pk +

2

(4k)!
(k p2k − 2k p2k)

=
(−1)k+1

(2k − 1)!
pk +

1

2(4k − 1)!
p2k +

−1

(4k − 1)!
p2k (8)

ml = {ml}k + {ml}2k = Ml(k){e1}k +Ml(2k){e1}2k
= Ml(2k) ({e1}k + {e1}2k) + [Ml(k)−Ml(2k)] {e1}k

= Ml(2k)e1 + [Ml(k)−Ml(2k)]
(−1)k+1

(2k − 1)!
pk (9)

Again by the Newton-Girard identities relating the symmetric functions ml = ml(T ) and
ei = σi(T ),

ml = (−1)l+1l el + (−1)l+2 l

2

l−1∑
i=1

eiel−i +
∑
`(ω)>2

cωeω.

Since pk, p
2
k and p2k are the only non-trivial classes, and each class ei can be expressed as

a rational linear combination of these classes, eω = 0 if the partition ω has length `(ω) > 2.
Then we may express

el =
(−1)l+1

l
ml +

1

2

l−1∑
i=1

eiel−i,

which gives (6a) if we plugin (9), and (6b) if we plugin (8).
�

Using Formula (5) for e1 from this lemma, we obtain the formulas
〈e1·L, µ〉 =

(
(−1)k+1sk
(2k − 1)!

+
1

2(4k − 1)!

)
x2 − y

(4k − 1)!
,

〈e1e1·L, µ〉 =
x2

[(2k − 1)!]2
,

where 〈p2k, µ〉 = x2 and 〈p2k, µ〉 = y. Note that these are Conditions (4b) and (4c) in
Theorem 1. To complete the proof of Theorem 1, it suffices to prove that the conditions
〈e1·L, µ〉 ∈ Z[1/2] and 〈e1e1·L, µ〉 ∈ Z[1/2] imply that 〈el·L, µ〉 ∈ Z[1/2] for all l ≤ k and
〈elem·L, µ〉 ∈ Z[1/2] for all l +m ≤ 2k.

Lemma 3. If pω = 0 except possibly for pk, p2k, and p2k, and if 〈e1e1·L, µ〉 ∈ Z[1/2], then
〈elem·L, µ〉 ∈ Z[1/2] for all l,m ≥ 1.

Proof. By Equation (5) in Lemma 2, e1e1·L = (pk/(2k − 1)!)2. Together with Equation (6b),
this implies that

elem·L =
(−1)lMl(k)

l(2k − 1)!

(−1)mMm(k)

m(2k − 1)!
p2k = (−1)l+m

Ml(k)

l

Mm(k)

m
e1e1·L.
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To prove the lemma, it is sufficient to show that l divides Ml(k) for any integer l. By the

definition of Ml(k) in Lemma 2, it suffices to show that l divides
(
2l
j

)
(l−j) for all 0 ≤ j ≤ l−1.

To see this, we use the fact that a/ gcd(a, b) divides
(
a
b

)
. In particular, 2l divides

(
2l
j

)
gcd(2l, j),

which in turn divides 2
(
2l
j

)
gcd(l, j). Hence l divides

(
2l
j

)
(l − j), as required. �

Together with Lemma 3 and the comments preceding it, the following lemma implies
Theorem 1.

Lemma 4. If pω = 0 except possibly for pk, p2k, and p2k, and if 〈e1·L, µ〉 ∈ Z[1/2] and
〈e1e1·L, µ〉 ∈ Z[1/2], then 〈el·L, µ〉 ∈ Z[1/2] for all l ≥ 1.

Proof. By lemma 2 equation (6a),

〈el·L, µ〉 = (−1)l+1Ml(2k)

l
〈e1·L, µ〉+ (−1)l+k

Ml(k)−Ml(2k)

l(2k − 1)!
〈pk·L, µ〉+

1

2

l−1∑
i=1

〈eiel−i·L, µ〉

By the proof of Lemma 3, we have that l divides Ml(k), so the assumption of the lemma
implies that the first term lies in Z[1/2]. Moreover, the terms involving 〈eiel−i·L, µ〉 lie in
Z[1/2] by Lemma 3, so it suffices to show that the second term lies in Z[1/2]. To do this,
note that

〈pk·L, µ〉
(2k − 1)!

= sk(2k − 1)!〈e1e1·L, µ〉 =
22k(22k−1 − 1)|B2k|

2k
〈e1e1·L, µ〉.

and that

Ml(2k)−Ml(k)

l
=

l−1∑
j=0

(−1)j
1

l

(
2l

j

)
(l − j)2k

(
(l − j)2k − 1

)
.

Hence it suffices to prove that l divides
(
2l
j

)
(l−j) and that (l−j)2k−1

(
(l − j)2k − 1

)
|B2k|/(2k)

is an integer for all 0 ≤ j ≤ l−1. The first of these statements holds by the proof of Lemma 3.
The second nearly holds by the Lipschitz-Sylvester theorem that a2k(a2k−1)B2k/(2k) ∈ Z for
all integers a (see, for example [IR90, p. 247]). In fact, an elementary argument shows that
the statement still holds with a2k replaced by a2k−1, as required (cf. [Sla95] for a stronger

statement that a2k can also be replaced by ablog2(2k)c+1). �

3. Reducing to a single quadratic residue equation

It was proved in [FS16] that QP2 can only exist in dimensions of the form n = 8k where
k = 2a + 2b for some integers a ≤ b. This result follows by a consideration of the 2-adic
order of the coefficients in the signature equation. Here we divide into two cases, k = 2a and
k = 2a + 2b with a < b. In each case, we combine the integrality conditions involving (4b)
and (4c) with the signature equation (4a). The result is equivalent to one single quadratic
residue equation.

We introduce the following notation and recall some well known facts about Bernoulli
numbers (see [IR90, Chapter 15]):

• ν2(n): the 2-adic order of n.
• wt(n): the number of ones in the binary expansion of n.

• Od[n]: the odd part of n, i.e., n/2ν2(n).
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• Nn: the numerator of the divided Bernoulli number |Bn|
n . Nn is 1 only for n =

2, 4, 6, 8, 10, 14, otherwise it is a product of powers of irregular primes.

• Dn: the denominator of the divided Bernoulli number |Bn|
n . By the theorem of von

Staudt-Clausen, D2k =
∏

p−1 | 2k
pµ+1 where pµ is the highest power of p dividing 2k.

• ODn: the odd part of the denominator of the divided Bernoulli number |Bn|
n .

The e21 · L condition (4c) in Theorem 1 requires x2

[(2k−1)!]2 ∈ Z[1/2]. It follows that

x = Od[(2k − 1)!]x̄

for some integer x̄ with the same parity as x. Together with a change of variable z = 2y−x2,
the signature equation (4a) can be written as:

s2k (Od[(2k − 1)!] x̄)2 + s2k z = 2, (10)

where x̄ and z must have the same parity. So far, this shows that a QP2 exists in dimension
8k if and only if there exist x̄, z ∈ Z such that x̄ ≡ z mod 2, Equation (10), and Equation
(4b) in Theorem 1 hold.

Next, we eliminate Equation (4b) through another change of variables. Before proceeding,
we need the following 2-adic numbers:

ν2

(
|B2k|
2k

)
= −ν2(D2k) = −(ν2(k) + 2),

ν2[(2k − 1)!] = 2k − ν2(k)− wt(k)− 1,
ν2[(4k − 1)!] = 4k − ν2(k)− wt(k)− 2.

Using the variables x̄ and z, the e1·L condition (4b) can be written as

(−1)k+1 sk
(2k − 1)!

(Od[(2k − 1)!]x̄)2 − 1

2(4k − 1)!
z ∈ Z[1/2]. (11)

Since the 2-adic order of the left hand side is

inf

{
ν2

[
sk

(2k − 1)!

]
, ν2

[
1

2(4k − 1)!

]}
= ν2

[
1

2(4k − 1)!

]
= −[4k − ν2(k)− wt(k)− 1],

we can multiply by 24k−ν2(k)−wt(k)−1 in (11) and expand sk using the definition to get

(−1)k+122k+wt(k)−1 (22k−1 − 1)N2k

OD2k
x̄2 − 1

Od[(4k − 1)!]
z ∈ Z. (12)

This allows us to write z as

z = Od[(4k − 1)!]

(
(−1)k+122k+wt(k)−1 (22k−1 − 1)N2k

OD2k
x̄2 + l

)
(13)

for some integer l with the same parity as z. The following lemma ensures that z ∈ Z for any
integers x̄ and l (of the same parity or not). This lemma implies that Equation (13) holds
for some l of the same parity at z if and only if Condition (11) holds. In other words, we can
use Equation (13) to make the change of variables from (x̄, z) with x̄ ≡ z (mod 2) to (x̄, l)
with x̄ ≡ l (mod 2).

Lemma 5. For any integer k, OD2k divides Od[(4k − 1)!].
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Proof. The odd part of the denominator of the divided Bernoulli number is

OD2k =
∏

p−1 | 2k
p odd prime

pµ+1,

where pµ is the highest power of p that divides 2k. Consider the factor pµ+1 for some odd
prime p such that p − 1 divides 2k. If p ≤ 2k − 1 and p - k, then pµ+1 equals p and divides
(2k− 1)!. If p = 2k+ 1, then pµ+1 equals p and divides (2k+ 1). Finally, if p | k, then µ ≥ 1
and pµ+1 divides k2, which means it divides (2k)(3k). Altogether, we have that OD2k divides
(2k − 1)!(2k + 1)(2k)(3k), which divides (4k − 1)!. Since OD2k is odd, the result follows.

�

Altogether, these arguments show that a QP2 exists in dimension 8k if and only if there
exist integers x̄, l ∈ Z such that x̄ ≡ l mod 2 and such that Equations (10) and (13) hold.
Substituting Equation (13) into Equation (10), we derive an equation in x̄ and l that holds
for some x̄ and l of the same parity if and only if a QP2 exists in dimension 8k. We determine
the precise equations in the cases k = 2a and k = 2a + 2b with a < b separately.

Theorem 6 (Dimension 8k where k = 2a). There exists a QP2 in dimension 8k = 8(2a) if
and only if there is integer solution x̄ to the quadratic residue equation

akx̄
2 ≡ ck (mod bk) (14)

where

ak = (22k−1 − 1)N2k

[
ρk(2

2k−1 − 1)N2k − 22k(24k−1 − 1)N4k

]
,

bk = (24k−1 − 1)N4kOD2k,

ck = 2OD2kOD4k,

and where ρk = OD4k/OD2k.

Remark 7. We remark that, if x̄ is a solution to Equation (14) and l ∈ Z such that
akx̄

2 + bkl = ck, then it follows by the parities of ak, bk, and ck that x̄ and l have the same
parity. Hence the condition that x̄ ≡ l mod 2 is not required in Theorem 6.

Remark 8. In this case of k = 2a,

OD2k =
∏

p−1 | 2k
p odd prime

pµ+1 =
∏

p−1=2c

c≤a+1

p =
∏

Fi is a Fermat prime
Fi≤2a+1+1

Fi.

It follows that ρk = OD4k/OD2k is 1 unless p = 4k + 1 is a Fermat prime, in which case

ρk = 4k + 1. The only known examples of Fermat primes are Fi = 22
i

+ 1 where 0 ≤ i ≤ 4.
It is known that Fi is composite for 5 ≤ i ≤ 32.

Proof. Since k = 2a, we have ν2(k) = a, wt(k) = 1, and (−1)k+1 = −1, so the signature
equation (10) becomes[

(22k−1 − 1)N2k

OD2k
x̄

]2
+

(24k−1 − 1)N4k

OD4k

z

Od[(4k − 1)!]
= 2. (15)
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The e1·L condition (13) becomes

z = Od[(4k − 1)!]

(
−22k (22k−1 − 1)N2k

OD2k
x̄2 + l

)
. (16)

Substituting Equation (16) into Equation (15), replacing OD4k by ρkOD2k, and simplifying
yields

akx̄
2 + bkl = ck,

where ak, bk, and ck are as in the theorem. Reducing modulo bk, we obtain Congruence
(14). �

We now consider dimensions of the form n = 8k = 8(2a + 2b) with a < b. Recall that it
remains an open problem whether such a dimension supports a QP2.

Theorem 9 (Dimensions 8k where k = 2a+2b and a < b). There exists a QP2 in dimension
8k = 8(2a + 2b) with a 6= b if and only if there is an odd integer solution x̄ to the quadratic
residue equation

Akx̄
2 ≡ Ck (mod Bk) (17)

where

Ak = 2(22k−1 − 1)N2k

[
(22k−1 − 1)N2k

(
OD4k

OD2k

)
+ (−1)k+122k(24k−1 − 1)N4k

]
,

Bk = (24k−1 − 1)N4kOD2k,

Ck = OD2kOD4k.

Proof. In the case that k = 2a+2b with a 6= b, we have wt(k) = 2, and ν2(k) = min{a, b} = a
without loss of generality, so the signature equation (10) becomes

2

[
(22k−1 − 1)N2k

OD2k
x̄

]2
+

(24k−1 − 1)N4k

OD4k

z

Od[(4k − 1)!]
= 1. (18)

The e1·L condition (13) becomes

z = Od[(4k − 1)!]

[
(−1)k+122k+1(22k−1 − 1)N2k

OD2k
x̄2 + l

]
. (19)

Substituting (19) into (18) and proceeding as in the previous proof implies the theorem. �

4. Existence in dimensions 128 and 256

Recall that dimensions 4, 8, 16, and 32 are known to support the existence of a QP2.
Having simplified the signature and Hattori–Stong integrality conditions to a single quadratic
reciprocity condition in the previous section, we proceed to the proof that dimensions 128
and 256 also support a QP2.

Proof of existence in dimensions 128 and 256. It suffices to prove that Equation (14) has
solution when 8k = 128, i.e., when k = 16. Factoring out the common divisor of OD2k =
3·5·17 from ak, bk, and ck, Equation (14) is equivalent to an equation of the form

ax̄2 ≡ c (mod b)

where gcd(a, b) = 1 and gcd(c, b) = 1. The coefficients are large, so we do not include
the calculations here. It suffices to solve the equation x̄2 ≡ a−1c (mod b). Now a−1c is a
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quadratic residue modulo b if and only if it is a quadratic residue modulo all odd prime

factors p of b. Hence it suffices to show that the Legendre symbols
(
a
p

)
=
(
c
p

)
for all prime

factors p of b, and one can easily verify this using Mathematica.
For dimension 256, one proceeds similarly to check that Equation 14 has a solution when

8k = 256, i.e., when k = 32. Again it happens that the greatest common divisor of ak, bk,
and ck is OD2k = 3·5·17. �

5. Non-existence results in higher dimensions

So far, all the dimensions known to not support a QP2 were proved by obstructing the
signature equation. As stated in [FS16, Lemma 3.2], one can search for an irregular prime p
such that p ≡ 5 (mod 8), νp(s2k) > 0 and νp(sk) = 0 to obstruct the signature equation in

a candidate dimension of the form n = 8k where k = 2a + 2b. Adopting the same idea and
using the more explicit necessary and sufficient conditions derived in Theorems 6 and 9, we
prove the following proposition stating that any prime p ≡ ±3 (mod 8) detected as a factor
of the the numerator of the divided Bernoulli number is an “obstructing” prime.

Proposition 10. If the numerator N4k of |B4k|
4k has a prime factor p ≡ ±3 (mod 8), then

there does not exist a QP2 in dimension n = 8k. In particular, if N4k ≡ ±3 (mod 8), then
there is no QP2 in dimension 8k.

Proof. The second statement follows immediately from the first. To prove the first, we claim
that a QP2 exists in dimension 8k only if two is a quadratic residue modulo N4k. Indeed,
when k = 2a, Theorem 6 implies that some x̄ ∈ Z exists such that[

ρk(2
2k−1 − 1)N2kx̄

]2
≡ 2OD2

4k (mod N4k) (20)

Similarly, when k = 2a + 2b and a 6= b, Theorem 9 implies that

2

[(
OD4k

OD2k

)
(22k−1 − 1)N2kx̄

]2
≡ OD2

4k (mod N4k) (21)

Since OD2
4k and N4k are coprime, the claim follows.

Now if N4k has a prime factor p ≡ ±3 (mod 8), 2 is a quadratic nonresidue modulo p.
Since two is a quadratic residue modulo N4k only if two is a quadratic residue modulo pr for
every prime power dividing N4k, 2 is also a quadratic nonresidue modulo N4k. This implies
that no QP2 exists in this dimension. �

In the following corollary, we use Carlitz’s congruence to find families of dimensions where
N4k ≡ ±3 (mod 8). Then Proposition 10 implies non-existence of QP2 in these dimensions.

Corollary 11. No QP2 exists in dimension 8k for all k of the form 2a+i + 2a with i ∈
{1, 2, 3, 5, 7} and a ≥ 0.

Note that the corollary provides infinite families of dimensions 8(2a + 2b) with a 6= b that
do not support a QP2, which implies part of Theorem B. We remark that this corollary holds
for many more values of i, and we suspect it holds for infinitely many values of i.

Proof. We show that N4k ≡ ±3 (mod 8) for all k of the form 2a+i + 2a with i ∈ {1, 2, 3, 5, 7}
and a ≥ 0. Firstly one can computationally verify the claimed values k of the form 2i + 1
(i.e., those special values with a = 0). This can be done with a computer or by hand using
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some of the observations that follow. We omit the proof of this part. Once this is done, it
suffices to show that N4k ≡ N4(2i+1) for all k of the form 2a+i + 2a = 2a(2i + 1). To show

the latter claim, recall that Carlitz [Car53] proved that 2a+3 divides 2B4k − 1 since 2a+2

divides 4k (cf. [How95, Theorem 2]). We write B4k = 4kN4k/D4k = Od[4k]N4k/(2OD4k) in

terms of the numerator N4k and denominator D4k = 2ν2(4k)+1OD4k of the divided Bernoulli
number B4k/(4k). Multiplying by 2OD4k and applying the Carlitz congruence, we have that
(2i + 1)N4k ≡ OD4k modulo 2a+3 and hence modulo 8. To complete the proof, it suffices to
show that the reduction of OD4k modulo 8 is independent of a where again k = 2a(2i + 1).

We have that OD4k is the product of p1+νp(4k) over odd primes p such that p− 1|4k. Note
that νp(4k) = νp(2

i + 1) for odd primes p. Note also that p 6= 2 and p − 1|4k implies that
p = 2cd + 1 for some 1 ≤ c ≤ a + 2 and some divisor d of 2i + 1. Note moreover that c ≥ 3
implies that p ≡ 1 (mod 8). Hence

OD4k ≡
∏

p∈P2∪P4

p1+νp(2
i+1) (mod 8)

where P2 is the set of primes p of the form 2d + 1 for some divisor d of 2i + 1 and where,
similarly, P4 is the set of primes p of the form 4d + 1 for some divisor d of 2i + 1. Clearly
this quantity is independent of a, so we have N4·2a(2i+1) ≡ N4(2i+1) (mod 8), as claimed. �

Note that the problem in dimensions less than 256 has been resolved in [Su14, FS16]. Now
we are ready to prove the non-existence dimensions included in Theorem A.

Theorem 12 (Theorem A). There does not exist a QP2 in dimension n = 8k when 256 <
n < 213 except possibly when n ∈ {544, 1024, 2048, 4160, 4352}.

Proof. For all 8k = 8(2a + 2b) strictly between 256 = 8(25) and 8192 = 8(210) except the
five exceptions stated in the theorem, we show that the numerator of the divided Bernoulli
number N4k either is congruent to ±3 (mod 8) itself, or it has a prime divisor p ≡ ±3
(mod 8). Then Proposition 10 concludes these dimensions do not support a QP2.

Firstly, we eliminate all dimensions 8k where k = 2a+ 2a−i with i ∈ {1, 2, 3, 5, 7}, since we
have shown in Corollary 11 that N4k itself is congruent to ±3 (mod 8) in these dimensions.
In Table 1, we list all the remaining values of k = 2a + 2b in the range we consider. While
N4k ≡ ±1 (mod 8) in each of the dimensions, we frequently find N4k has an irregular prime
factor p ≡ ±3 (mod 8), which then obstruct existence of QP2 by Proposition 10.

Note that for the values of k of the form 2a and in the range we consider, we are able
exclude k = 26 (i.e., dimension 29) and k = 29 (i.e., dimension 212) using the irregular primes
67 and 37, respectively. �

Remark 13. We remark on the limits of this method to further obstruct existence of QP2.
The Bernoulli numerators and their irregular prime factors are of great importance in number
theory, and with the aid of computers, factorizations of high order Bernoulli numerators have
been done by various authors. Sam Wagstaff’s webpage [Wag] maintains a list of known prime
factors of the Bernoulli numerators up to B300. We used this list to check whether N4k has
a prime factor p ≡ ±3 (mod 8).

In dimensions 8k ∈ {544, 1024, 2048, 4160, 4352, 8192}, we put “?” in the column of irreg-
ular prime. This indicates that, based on [Wag], we do not know whether N4k has a prime
factor p ≡ ±3 (mod 8).
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Table 1. Dimensions up to 213 of the form 8k = 8(2a + 2b) with a > b that
are not ruled out by Proposition 10.

(a, b)
prime factor p|N4k

with p ≡ ±3 (mod 8)
dimension
n = 8k

there exists a QP2

in dimension n ?

(5, 1) 29835096585483934621 272 No
(5, 5) 67 8(26) = 512 No
(6, 0) 15897346573 520 No
(6, 2) ? 544 ?
(6, 6) ? 8(27) = 1024 ?
(7, 1) 67 1040 No
(7, 3) 811 1088 No
(7, 7) ? 8(28) = 2048 ?
(8, 0) 26251 2056 No
(8, 2) 37 2080 No
(8, 4) 59 2176 No
(8, 8) 37 8(29) = 4096 No
(9, 0) 4349 4104 No
(9, 1) 1669 4112 No
(9, 3) ? 4160 ?
(9, 5) ? 4352 ?
(9, 9) ? 8(210) = 8192 ?

We now state a second approach to obtain more nonexistence results. We thank Sam
Wagstaff for pointing us to the Kummer’s congruence, which is applied to extend Proposition
10 to rule out families of dimensions by the obstructing irregular primes.

Proposition 14. If the numerator Nm of |Bm|
m has a prime factor p ≡ ±3 (mod 8), then for

any k such that 4k ≡ m (mod p− 1), there does not exist a QP2 in dimension 8k.

Proof. Suppose p is an prime factor of the numerator of |Bm|
m . By Kummer’s congruence,

whenever 4k ≡ m (mod p− 1),

B4k

4k
≡ Bm

m
≡ 0 (mod p),

so p is also a prime factor of the numerator of |B4k|
4k . If, in addition, p ≡ ±3 (mod 8),

Proposition 10 implies that no QP2 exists in dimension 8k. �

Applying Proposition 14 to the first irregular prime 37, which divides N32, we obtain the
following result.

Proposition 15 (Obstruction by the irregular prime 37 dividing N32). There does not exist
a QP2 in any dimension of the form n = 26r+5+26s+5 or n = 26r+3+26s+7 for any r, s ∈ Z≥0.
In particular, there is no QP2 in dimension 26r for any r ≥ 1.

Proof. Note that 4k = 4(2a + 2b) ≡ 32 (mod 37 − 1) whenever 2a + 2b ≡ 8 (mod 9). This
holds whenever (a, b) ≡ (2, 2) (mod 6) or (a, b) ≡ (0, 4) (mod 6), as 26 ≡ 1 (mod 9) by the
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Euler’s theorem. Then by Proposition 14, these two cases correspond to the dimensions
n = 8k stated in the theorem. �

We apply Proposition 14 to the first thirteen irregular primes congruent to ±3 (mod 8),
the results are listed in Table 2. The following proposition summarizes the families of nonex-
istence dimensions of the form n = 2a obstructed by the primes p ∈ {37, 67, 101, 59, 389, 347}.
Together with Corollary 11, this completes the proof of Theorem B.

Proposition 16 (Obstruction to dimensions 2a by the first few irregular primes). There
does not exist a QP2 in any dimension of the form 26r+6, 210r+9, 220r+16, 228r+28, 248r+21,
or 2172r+138 for any r ∈ Z≥0.

Remark 17. Proposition 14 provides new infinite families of dimensions that do not support
a QP2. Moreover, it seems that most irregular primes, of which there exist infinitely many,
provide such families of dimensions that do not support a QP2. It seems to be a difficult
problem to classify the dimensions that are obstructed by such arguments.

Table 2. Dimensions ruled out by Proposition 14

irregular prime p |Nm,

p ≡ ±3 (mod 8)

(a, b) such that

4k = 4(2a + 2b) ≡ m (mod p− 1)

dim n = 8k (n > 256) that

does not support a QP2

37 |N32 (a, b) ≡ (2, 2);(0, 4) (mod 6)
26r+5 + 26s+5;

26r+3 + 26s+7

59 |N44

(24, 24); (0, 23); (1, 10); (2, 12);

(3, 5); (4, 8); (6, 22); (7, 14);

(9, 17); (11, 26); (13, 19); (15, 18);

(16, 27); (20, 21) (mod 28)

228r+27 + 228s+27;

228r+3 + 228s+26;
. . .

67 |N58 (5, 5);(1, 7) (mod 10)

210r+8 + 210s+8;

210r+4 + 210s+10

. . .

101 |N68

(12, 12); (0, 4); (2, 19);

(3, 14); (6, 7); (8, 16);

(10, 15); (11, 18) (mod 20)

220r+15 + 220s+15;

220r+3 + 220s+7;
. . .

131 |N22 no such (a, b)

149 |N130 no such (a, b)

157 |N62 and N110 no such (a, b)

283 |N20
(0, 2); (4, 40); (14, 22);

(16, 30); (18, 34); (24, 42) (mod 46)

246r+3 + 246s+5;

246r+7 + 246s+43;
. . .

293 |N156 (1, 8) (mod 9) 29r+4 + 29s+11

307 |N88 no such (a, b)

347 |N280

(134, 134); (0, 47);

(26, 141); · · · (mod 172)

2172r+137 + 2172s+137;

2172r+3 + 2172s+50;
. . .

379 |N174 (2, 9);(3, 14); (8, 15) (mod 18)

218r+5 + 218s+12;

218r+6 + 218s+17;
. . .

389 |N200
(17, 17); (1, 23); (3, 39); (8, 45);

(10, 26); (13, 20); (16, 35); (19, 42);

(28, 31); (36, 41) (mod 48)

248r+20 + 248s+20;

248r+4 + 248s+26;
. . .

6. Spin QP2

As studied in [FS16], if a smooth manifold M is a QP2 that admits a spin structure, the
following conditions must hold true:
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(1’) (Hirzebruch signature equation) 〈L(pk, p2k), µ〉 = sk,k〈p2k, µ〉+ s2k〈p2k, µ〉 = 1,

(2’) (Stong integrality condition from ΩSpin
8k )

〈Z[e1, e2, . . .]·Â , µ〉 ∈ Z (22)

(3’) (Pontryagin numbers of QP2)

〈p2k, µ〉 = x2 and 〈p2k, µ〉 = y for some integers x and y

Condition (2’) characterizes the integral lattice in Qp(8k) formed by all possible Pontryagin

numbers of smooth 8k-dim Spin manifolds. The total Â class can be written as

Â = 1 + akpk + ak,kp
2
k + a2kp2k,

where the coefficients

ak =
−|B2k|
2(2k)!

,

ak,k =
1

2
(a2k − a2k).

Similar to the smooth case, the signature equation (1’) and the spin integrality condition
(2’) together can be written as a set of integrality conditions on the Pontryagin numbers
x2 = 〈p2k, µ〉 and y = 〈p2k, µ〉. In [FS16], it was shown that there is no solution to (1’) and
(2’) together in dimension 32, which proved the nonexistence of spin structure on any 32
dimensional QP2. Now we prove the following theorem, a special case of which asserts the
nonexistence of Spin QP2 in any dimension greater than 16.

Theorem 18. Let M8k be a simply connected closed smooth manifold that admits a spin
structure. Assume all Pontryagin numbers of M vanish except possibly for ξ = p2k[M ] and
y = p2k[M ]. If the signature σ = σ(M) is nonzero, then

ν2(2σ) ≥ 4k − 2ν2(k)− 5.

In our case of Spin QP2, the dimension is either four or of the form 8k. Since a 4–
dimensional Spin manifold must have even intersection form, a QP2 in dimension four cannot
be Spin. For dimensions 8k, Theorem 18 applies. Since the signature is 1, we have the
estimate

1 ≥ 4k − 2ν2(k)− 5 ≥ 4k − 2 log2(k)− 5,

which is contradiction unless k ∈ {1, 2}. Hence the following is immediate.

Corollary 19 (Theorem C). A QP2 admitting a Spin structure can only exist in dimensions
8 and 16, i.e., the dimensions of HP2 and OP2.

Proof of Theorem 18. Assume that such a manifold exists. Its Pontryagin numbers ξ =
p2k[M ] and y = p2k[M ] satisfy the signature equation, the Â genus condition, and the e1e1·Â
condition. Hence 

〈L, µ〉 = sk,kξ + s2ky = σ. (23a)

〈Â, µ〉 = ak,kξ + a2ky ∈ Z. (23b)

〈e1e1·Â, µ〉 =
ξ

[(2k − 1)!]2
∈ Z. (23c)
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By (23c), ξ = [(2k − 1)!]2ξ1 for some integer ξ1. Let z = 2y − ξ. The signature equation

(23a) and the Â genus condition (23b) can be written as

[sk(2k − 1)!]2ξ1 + s2kz = 2σ

[ak(2k − 1)!]2 ξ1 + a2kz = 2m

for some m ∈ Z. Using the fact that s2k = −24k+1(24k−1−1)a2k, we use the second equation
to eliminate z in the first equation. This yields, after simplification,

24k+1 [(2k − 1)!ak]
2 (22k − 1)2ξ1 − 24k+2(24k−1 − 1)m = 2σ.

Computing ν2 of each of the two summands on the left-hand side yields

4k − 5− 2ν2(k) + ν2(ξ1)

and 4k + 2 + ν2(m). Both of these are at least 4k − 5− 2ν2(k), so

ν2(2σ) ≥ 4k − 5− 2ν2(k),

as claimed. �

7. Existence of rational projective spaces

Generalizing the notion of rational projective plane, a simply connected closed smooth
manifold M is called a rational projective space if H∗(M ;Q) ∼= Q[α]/〈αn+1〉, n ≥ 1. We
let QPnd denote a (nd)–dimensional rational projective space where d is the degree of the
generator. In [FS16], it was shown that higher dimensional analogues of rational Cayley
planes, i.e., QPn8 for n > 2, exist in dimension 8n whenever n is odd. We prove the following
theorem that extends existence results on rational projective plane to rational projective
spaces.

Theorem (Theorem D). If a QP2
4k exists, then a QP2m

4k/m exists whenever 4k/m ∈ 2Z.

Proof. Assume m is an integer such that 4k/m is an even integer. Let A denote the 8k-
dimensional rational graded commutative algebra Q[α]/〈α2m+1〉 where |α| = 4k/m. Note
that A is realizable as a cohomology ring only if the degree of the generator |α| = 4k/m
is even. By the Sullivan-Barge rational surgery realization theorem, there exists a 8k-
dimensional closed smooth manifold M such that H∗(M ;Q) = A if and only if there exist
choices of cohomology classes pi ∈ H4i(X;Q) for i = 1, . . . 2k, where X is a Q-local space
carrying the desired rational cohomology data such that H∗(X;Q) = H∗(X;Z) = A; and a
choice of fundamental class µ ∈ H8k(X;Q), such that the pairs 〈pi1 · · · pir , µ〉, i1+· · ·+ir = 2k
are integers that satisfy

(i) The signature equation that 〈L(p1, . . . , p2k), µ〉 = 1
(ii) The Hattori–Stong integrality conditions that 〈Z[e1, e2, . . .]·L , µ〉 ∈ Z[1/2].
(iii) The rational intersection form 〈· ∪ ·, µ〉 is isomorphic to 〈1〉.
If we let the choice of cohomology classes be pi = 0 except pk and p2k, Conditions (i) and (ii)

become exactly the same as the corresponding conditions to realize a QP2, which are stated
as (1) and (2) in section 1. Moreover, the substitution stated in (3) in the QP2 case still
holds true here. By the desired rational cohomology ring A, any choice of cohomology classes
pk and p2k can be written as pk = aαm and p2k = bα2m for some rational numbers a and b.
Under a choice of orientation, (iii) requires the rational intersection form with respect to µ
to be isomorphic to 〈1〉 and the signature is 1, so the choice of µ must satisfy 〈α2m, µ〉 = r2
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for some rational number r, therefore we may still express the pairs 〈p2k, µ〉 = a2r2 = x2 and
〈p2k, µ〉 = br2 = y, where x and y must be integers. So under such choice of having all pi = 0
except pk and p2k, the sufficient conditions to realize a QP2

4k in dimension 8k are also the

sufficient conditions to realize a QP2m
4k/m in dimension 8k. �

As an application of this theorem, combined with the the existence of a QP2 in dimensions
32, 128, and 256, we have the following existence results of rational projective spaces.

Corollary 20. Each of the following manifolds exists.

I. Higher dimensional analogues, QPn8 for n ∈ {4, 16, 32}, of rational Cayley planes.
II. Higher dimensional analogues QP8

16 and QP16
16 of the 32–dimensional QP2.

III. Manifolds QP4
32 and QP8

32, despite the fact that no rational projective plane exists with
generator in degree 32.

IV. Manifold QP4
64.

Remark 21. Note that a dimension not supporting a QP2
4k is not necessarily one that does

not support a QP2m
4k/m. The sufficient conditions (i), (ii), and (iii) in the proof above might

be realized by choices of cohomology classes with nonzero pi other than pk and p2k.

Remark 22. It is natural to ask if one can obtain a general existence theorem for rational
projective spaces similar to the quadratic residue equation stated in Theorem 6 and Theorem
9 for rational projective planes. For the case of QP4

4k, which has rational cohomology ring
Q[α]/〈α5〉, |α| = 4k, as addressed in [FS16, Remark 6.2], the signature equation becomes
a quartic Diophantine equation with 4 unknowns if we assume each of the four Pontryagin
classes pk, p2k, p3k, and p4k could be nonzero. It also remains to be seen whether one can
simplify the Hattori–Stong integrality conditions in this case.
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