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ABSTRACT

PANTS DECOMPOSITIONS OF SURFACES

A thesis submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

in

MATHEMATICS

by

JOSEPH MICHAEL RANDICH
APRIL 2015

at

THE GRADUATE SCHOOL OF THE UNIVERSITY OF CHARLESTON,
SOUTH CAROLINA AT THE COLLEGE OF CHARLESTON

In this Master Thesis, we consider pants decompositions of any orientable

2-dimensional surface with any genus g. We show that any decomposition compatible with

the same zipper system, and which is contractible in the inner handlebody corresponding

to the decomposition, may be transformed into any other decomposition satisfying the

same conditions via elementary transformations known as zipped flips. This puts us one

step closer to showing that the groupoid on double pants decompositions, introduced by

Felikson and Natanzon in [5], acts transitively on its objects.
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Chapter 0

Introduction

In this Master Thesis, we study pants decompositions of 2-dimensional surfaces. Our main

goal is to fill in holes present in a paper by Felikson and Natanzon [5].

A pants decomposition of a surface is a decomposition that results in pieces that

are thrice-punctured spheres. A double pants decomposition is a pair of such

decompositions that satisfy certain compatibility conditions. In [5], they introduce a

groupoid acting on double pants decompositions generated by elementary transformations

called flips and handle twists and attempt to show that this groupoid acts transitively on

double pants decompositions corresponding to Heegaard splittings of a 3-dimensional

sphere.

Heegaard splittings are certain decompositions of a 3-manifold and are of wide

interest in mathematics. Viewing double pants decompositions as Heegaard splittings had

been done prior to the work of Felikson and Natanzon, specifically in [7] and [9]. Their

claim is that the groupoid they create is a new idea. Furthermore, they extend their result

to show that the mapping class group of the surface, which describes certain symmetries,

is contained in the groupoid, which is studied in the literature ([1],[8],[10]).

In reading through their paper, however, various inconsistencies were found.

Specifically, their Lemma 1.12 incorrectly asserts that a flip c′ of a curve c in a pants

decomposition P is a zipped flip in respect to some zipper system Z ′, where a zipped flip

is a specific type of flip. This result is an integral piece of the proof of their main theorem,

thus justifying the aim of this thesis. Furthermore, much of their work deals with double
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pants decompositions, but in the proof of their main theorem, single pants decompositions

(specifically those which are compatible with a set of curves called a zipper system) play a

major role. Therefore, the properties of these types of decompositions explored in this

paper are necessary.

In Chapter 1, we define pants decompositions of surfaces, zipper systems,

compatibility, and zipped flips. We then introduce a category Pz
g of pants decompositions

which are compatible with a particular zipper system Z that has zipped flips as

morphisms.

In Chapter 2, we discuss how pants decompositions correspond to handlebodies

and introduce the notion of a pants decomposition being contractible in the inner

handlebody that it corresponds to. We also define what it means for two decompositions

to be zipped flip equivalent. The rest of the chapter is devoted to proving transitivity of

zipped flips on Pz
g. The main result comes in the form of a corollary and is stated here:

Main Result. Given a handlebody H and any zipper system Z, any two pants

decompositions contractible in H and compatible with Z are zipped flip equivalent.

In the language of our defined category, this says that our morphisms act

transitively on our objects when the objects in question are contractible in a

corresponding handlebody. Before proving this result, several lemmas are proven and the

notion of a friendly pants decomposition is introduced. An algorithm is provided

describing how one may take any friendly pants decomposition to any other via a sequence

of zipped flips. Finally, another algorithm is provided for changing the principal zipper

(introduced in Chapter 1), which leads to our main corollary.
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Chapter 1

Pants Decompositions

1.1 Preliminaries

Definition 1.1.1 (Homeomorphism [11]). Let X and Y be arbitrary topological spaces,

and let f : X → Y be a continuous bijection. When the inverse of f is also continuous, f

is said to be a homeomorphism.

Definition 1.1.2 (Embedding [11]). Let X and Y be arbitrary topological spaces, and let

f : X → Y be a continuous injection. The function f ′ : X → f(X) obtained by restricting

the range of f to its image is bijective. When f ′ happens to be a homeomorphism, f ′ is

said to be an embedding.

Definition 1.1.3 (Manifold [2]). An n-dimensional manifold is a Hausdorff space X with

a countable basis such that each point x ∈ X has a neighborhood that is homeomorphic

with either an open subset of Rn or of Rn+ = {(y1, y2, . . . , yn) ∈ Rn | yn ≥ 0}.

Definition 1.1.4 (Closed). A manifold is closed when it is compact and contains no

boundary, that is, each of its points have an open neighborhood homeomorphic to an open

subset of Rn.

Definition 1.1.5 (Surface). A surface S is a 2-dimensional manifold.

Definition 1.1.6 (Orientable). A surface S is orientable if for every x ∈ S, there exists a

ϕx : Ux → Rn (or Rn+) where Ux ⊂ S is an open set containing x and ϕx is a
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homeomorphism, and whenever Ux ∩ Uy 6= ∅, ϕy ◦ ϕ−1x is orientation preserving (when the

domain of ϕx is restricted to Ux ∩ Uy).

From this point on, unless otherwise noted, we consider surfaces S which are

connected, closed, and orientable.

Definition 1.1.7 (Euler Characteristic [4]). Given a surface S and any triangulation of

that surface, the surface’s Euler Characteristic is χ(S) = v − e+ f where v is the number

of vertices in the triangulation, e is the number of edges, and f is the number of faces.

Figure 1.1: A triangulation of the unit square whose edges are identified, or the torus.
Notice that there are 5 vertices, 15 edges, and 10 faces (accounting for the identifications)
giving an Euler characteristic 0.

Remark 1.1.8. The Euler Characteristic may be equivalently defined in terms of

polygons rather than triangles. When using polygons, we will refer to it as cellularization.

Theorem 1.1.9 (Classification of Surfaces [4]). Given two orientable surfaces S1 and S2,

S1 is homeomorphic to S2 if and only if χ(S1) = χ(S2). Furthermore, for every surface S,

χ(S) ≤ 2 and χ(S) is even.

Definition 1.1.10 (Genus). Given a surface S, its genus is g = 2−χ(S)
2 .

Remark 1.1.11. Throughout this paper, we use two specific embeddings of surfaces in

R3. The first is what we refer to as the lateral embedding which has the holes of the
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surface arranged in a linear fashion (Figure 1.2a). The second is referred to as the circular

embedding which has the holes arranged in a roughly circular fashion (Figure 1.2b).

Notice that these embeddings are symmetric with respect to the xy-plane.

(a) Lateral Embedding (b) Circular Embedding

Figure 1.2: Examples of circular and lateral embeddings.

In regards to the two embeddings mentioned in Remark 1.1.11, the genus of a

surface is equal to the number of ‘holes’ it possesses.

Definition 1.1.12 (Homotopy [11]). Given a topological space X and two paths

f, f ′ : I → X, where I = [0, 1], f is path homotopic to f ′ when there is a continuous map

F : I × I → X such that F (s, 0) = f(s) and F (s, 1) = f ′(s) for each s ∈ I. We call F a

path homotopy between f and f ′.

One may intuitively think of a homotopy of two paths, or curves in a surface, as a

‘continuous deformation’ of one curve into the other. When discussing path homotopic

curves in S, we typically just say ‘homotopic’.

Remark 1.1.13 (Path Homotopy Classes [11]). Path homotopy defines an equivalence

relation on the set of paths in X, which verifies easily. Given two paths f, g where

f(1) = g(0), one may define composition f ? g of paths to be the path h given by

h(s) =

 f(2s) for s ∈
[
0, 12
]

g(2s− 1) for s ∈
[
1
2 , 1
]

The function h is well-defined and continuous, and we think of h as the path whose first

half is f and whose second half is g. Furthermore, the operation ? is well-defined on path

homotopy classes.
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Definition 1.1.14 (Isotopy [13]). An isotopy is a homotopy h for which every section ht

is a homeomorphism (onto its image). In particular, during an isotopy of a simple closed

curve, the image remains simple at every stage.

Notice that isotopy is stronger than homotopy; at a given section of a homotopy,

the curve may self-intersect, or backtrack, or act strangely in other ways. Isotopies are

better behaved.

However, Baer shows that for closed orientable surfaces with g > 1 (the only

surfaces we consider), isotopy and homotopy of simple closed unoriented curves are

equivalent [3]. Therefore, we may use the two interchangeably.

Definition 1.1.15 (Contractible Curve). A curve c in S is contractible (in S) if c is

null-homotopic, that is, it is homotopically equivalent to a single point.

From now on, we consider curves ci in S to be embedded non-contractible loops

(with possibly different base points) and consider them up to homotopy, where the

basepoints are free to move.

Definition 1.1.16 (Necessary Intersections [5]). Two curves c1, c2 in S share k necessary

intersections if c1 and c2 intersect at k points, and there are no homotopically equivalent

pairs of curves that intersect each other less than k times.

For a pair of curves, c1, c2 ∈ S, we will denote their number of necessary

intersections by |c1 ∩ c2|. When dealing with a curve ci which intersects a collection of

curves {cj}, we again denote the total number of necessary intersections ci shares with all

of the cj by |ci ∩ (
⋃
cj)|. The situation should be clear by context.

1.2 Pants and Zippers

Definition 1.2.1 (Pair of Pants). A pair of pants is a surface that is homeomorphic to a

thrice-punctured sphere, that is, to a sphere with three boundary components. (Note that

this surface is also homeomorphic to a disk with two punctures).
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Definition 1.2.2 (Pants Decompositions). A pants decomposition P = {c1, . . . , cn} of a

surface S is a set of non-oriented, mutually-disjoint curves that decompose S into pairs of

pants.

(a) A pair of pants. (b) A pants decomposition.

Figure 1.3: A pair of pants and an example of a pants decomposition of a genus 3 surface.

Definition 1.2.3 (Self-folding). Given a pants decomposition P of a surface S, a curve

ci ∈ P is said to be self-folding if it accounts for two of the three boundary components of

a pair of pants.

Noting that we allow self-folding curves in P , the following Proposition should be

clear by inspection. Self-folding curves play a major role in our decompositions, as will be

seen in the following sections.

Proposition 1.2.4. Given a pants decomposition P of a surface S with genus g, P

decomposes S into 2g − 2 pairs of pants.

Proof. Note that a pair of pants has Euler Characteristic −1.1 Given a pants

decomposition P of a surface S, since S is closed, and since the edges of pairs of pants

that are glued to each other are circles (and therefore contribute zero to the Euler

characteristic), there are no double counting issues. Thus, each pair of pants in the

decomposition will contribute exactly −1 to χ(S). So, for n(P ) = the number of pairs of

pants of P , we have n(P ) = −χ(S). Recall from Definition 1.1.10 that g = 2−χ(S)
2 . It

follows that n(P ) = 2g − 2. �

1The reader is encouraged to pick their favorite triangulation of a pair of pants and verify the claim.
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Proposition 1.2.5. Given a pants decomposition P of a surface S, P contains 3g − 3

curves.

Proof. Given a pants decomposition P of a surface S, by Proposition 1.2.4, P yields

2g − 2 pairs of pants. By definition, there are 3 curves of P corresponding to each pair of

pants. So there are 6g − 6 total curves. Noticing that each curve in a pair of pants gets

identified with another curve (possibly one from the same pair), we avoid double-counting

by dividing this number by 2, and we have our result. �

Definition 1.2.6 (Handle). A handle is a self-folding pair of pants, that is, a pair of

pants that has a self-folding curve account for two of its three boundary components.

For example, the pants decomposition in Figure 1.4 yields three handles.

Given some pants decomposition P of a surface S, the curves of P may be

classified in the following way: Curves in P that bound handles are principal curves.

Curves contained completely within handles are referred to as the self-folding curves of P .

If P yields g handles, then curves which lie outside of any handle and which are not

principal curves are referred to as the middle curves of P .

Definition 1.2.7 (Standard). A pants decomposition P of a surface S is standard if it

cuts g handles out of S.

Figure 1.4: A standard pants decomposition of a genus 3 surface. Notice that the decom-
position in Figure 1.3b is non-standard.

Definition 1.2.8 (Zipper System [5]). A zipper system Z = {z1, . . . , zg+1} of a surface S

is a set of g + 1 mutually disjoint curves that decompose S into two separate disks, each of
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which has g punctures. We name these two disks S+ and S−; one may think of these as

corresponding to the ‘top’ and ‘bottom’ of S with respect to the zipper system.

Definition 1.2.9 (Equatorial Zipper System). Given a surface S along with either the

lateral or circular embedding mentioned in Remark 1.1.11, the equatorial zipper system ZE

is the set of curves resulting from intersecting S with the xy−plane.

Definition 1.2.10 (Compatibility [5]). We say that a pants decomposition

P = {c1, . . . , c3g−3} is compatible with a zipper system Z = {z1, . . . , zg+1} if∣∣∣∣∣ci ∩
(
g+1⋃
j=1

zj

)∣∣∣∣∣ = 2 for each 1 ≤ i ≤ 3g − 3. This means that each curve of P shares

exactly two necessary intersections somewhere in the zipper system.

z1

z2
z3

c2c1 c3

Figure 1.5: A pants decomposition of a genus 2 surface compatible with the equatorial
zipper system. The ci make up the pants decomposition and the zi make up the zipper
system.

Lemma 1.2.11 (Hexagons [5]). If P is a pants decomposition compatible with a zipper

system Z, then the curves of Z decompose each pair of pants from P into two hexagons.

Proof. Suppose a curve zj intersects a curve ci in the boundary of a pair of pants p1. The

curves of a pants decomposition cut zj into segments. Let l be a segment of zj contained

in p1. Then, since curves do not have unnecessary intersections, l may travel through p1 in

two ways, shown in Figure 1.6a and Figure 1.6b. If l intersects the same boundary curve

twice, as it does in Figure 1.6a, when considering the entire zipper system, for that

boundary curve of p1, the

∣∣∣∣∣ci ∩
(
g+1⋃
j=1

zj

)∣∣∣∣∣ = 2 condition is broken. This happens because

the zipper segments that intersect the other boundary curves must travel through the pair

of pants in a non-trivial way, so they must also intersect the boundary curve in question.
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Therefore, l must intersect each boundary curve only once, as it does in Figure 1.6b. So,

considering all of Z, p1 looks as it does in Figure 1.6c and it is clear that p1 is decomposed

into two hexagons. �

(a) (b) (c)

Figure 1.6: For a pants decomposition compatible with a zipper system Z, the curves of Z
decompose a pair of pants from P into two hexagons.

Remark 1.2.12. If P is a pants decomposition compatible with a zipper system Z, then

there exists an orientation-reversing involution τ of S such that τ preserves Z pointwise

and such that τci = ci for each ci ∈ P . To build this involution, one needs only to switch

the pairs of hexagons in each pair of pants described in Lemma 1.2.11 [5].

A particularly important involution that will be used throughout the paper is the

north/south reflection. This involution arranges the two hexagons of a pair of pants so

that, in respect to an embedding of the pants in R3, they are symmetric about the

xy-plane. This induces an involution of S so that the curves of P are symmetric about the

xy-plane.

The following proposition sheds light on how a zipper system Z interacts with a

surface S. By definition, Z decomposes S into two g-punctured disks. But from this

definition, it is not immediately clear how this is done. Specifically, we may construct a

set of curves that decompose S in the appropriate way where certain curves are boundary

components of only one of the two resulting disks. However, we see that zipper systems

that are compatible with pants decompositions, and are therefore the only systems we

wish to consider, cannot behave in this way.
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Proposition 1.2.13. For a surface S, let Z be some zipper system such that there exists

a pants decomposition P of S where P is compatible with Z. Then Z must decompose S

into two separate g-punctured 2-disks such that each zi ∈ Z is a boundary component of

each 2-disk.

Proof. Since P is compatible with Z, by definition, Z decomposes S into two separate

connected, g-punctured disks S+ and S−. Choose any zj ∈ Z. Without loss of generality,

suppose zj is a boundary component of only S+. By Remark 1.2.12, there exists an

involution τ that preserves the curves in Z pointwise and which sends S+ to S− and vice

versa. Since τ preserves zj pointwise, this means zj is contained in S−, contradicting our

assumption. Thus, zj must be a boundary component of both S+ and S−. �

Proposition 1.2.14 ([5]). Let P be a standard pants decomposition compatible with some

zipper system Z. Then

• each handle hi of P completely contains exactly one curve of Z, and

• there exists exactly one z0 ∈ Z that visits each of g handles exactly once.

Proof. To see the first claim, consider a handle hi of P . By Lemma 1.2.11, the curves of Z

decompose hi into two hexagons. Let pi and si be the principal and self-folding curves,

respectively, of hi. Then since two of the boundary components of hi come from si, and

are therefore identified, the zipper segment running between them also gets identified, and

is therefore the same curve, as seen in Figure 1.7. Therefore, each handle contains exactly

one curve of Z. Since P is standard, it yields g handles, so g of the g + 1 curves of Z are

contained in them. Therefore, the curve of Z that intersects each principal curve must be

the same, and since it may only intersect each principal curve exactly twice, it visits each

handle exactly once, so we have our second claim. �

Definition 1.2.15 (Principal Zipper). Given a standard pants decomposition P

compatible with a zipper system Z, suppose z0 ∈ Z is the curve that visits each handle of

P mentioned in Proposition 1.2.14. Then z0 is said to be the principal zipper.

The z1 curve in Figure 1.5 is an example of a principal zipper.
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pi
pi

si si
si

zk
zi

zizj

zj zk=

Figure 1.7: A handle hi completely contains a curve zi ∈ Z. Here, zj is actually the principal
zipper z0 defined below in Definition 1.2.15.

Definition 1.2.16 (Cyclic Order [5]). Given a standard pants decomposition P

compatible with a zipper system Z, suppose z0 ∈ Z is the principal zipper. Then the

cyclic order of Z is [z1, z2 . . . , zg] if an orientation of z0 goes from hi to hi+1, where hi is

the handle containing zi.

For consistency’s sake, we always define our cyclic order by using a positive

orientation on z0 in respect to our choice of S+.

Definition 1.2.17 (Boring). Given a pants decomposition P compatible with the

equatorial zipper system ZE , P is said to be boring if τP |S+ = P |S− where τ is the

north/south reflection. This means that P |S+ and P |S− are symmetric.

Figure 1.8: A pants decomposition of a genus 3 surface that is not boring. The decomposi-
tions shown in Figure 1.3b and in Figure 1.4 are boring.

We now introduce the graph representation of a pants decomposition, P . Given

any pants decomposition P , construct a graph where each vertex corresponds to a pair of
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pants in P and each edge corresponds to a ci ∈ P . See Figure 1.9. Then an edge between

two vertices corresponds to the curve in P that the two pairs of pants share. Since

self-folding curves are allowed, it follows that we must allow loops in our graph; a loop

corresponds to a handle in the decomposition.

It is easy to see that we always have tri-valent graphs since each pair of pants is

bounded by three curves. Furthermore, these graphs are always connected. In the case of

a standard pants decomposition, its corresponding graph is a tree, with one loop attached

to each vertex corresponding to a handle.2

1
1

4

22
33

4

Figure 1.9: A pants decomposition of a genus 3 surface and its corresponding graph.

Proposition 1.2.18. Given a pants decomposition P of a surface S, there exists a zipper

system Z for which P is compatible if and only if its corresponding graph is planar.

Proof. First, suppose P is compatible with some zipper system Z. Then Z decomposes S

into two connected pieces, S+ and S−. It follows from Proposition 1.2.13 that there exists

a homeomorphism of S that takes Z to ZE and P to some P ′ compatible with ZE such

that the north/south involution may be used. Then S′+ and S′− are symmetric, so we need

only consider S′+. Since S′+ is a punctured disk, it may be embedded in R2. Now within

each pair of pants, we may draw a node. For each curve of P ′, we may draw an edge

which intersects the curve exactly once and connects two nodes. If the curve is self-folding

(and hence corresponds to only one pair of pants), we may draw the edge intersecting it as

a loop, which corresponds to a 1-cycle in the graph. Thus we have our planar graph. See

Figure 1.10.

Next, suppose that P has a planar corresponding graph. Consider the graph in R2.

2The skeptical reader will be pleased to find a proof of this in Corollary 1.2.19.
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Figure 1.10: For a genus 3 surface and some pants decomposition P , the punctured disk S′+ is
drawn with circular boundary components from ZE . The curves of P ′ and the corresponding
planar graph are shown.

We wish to trace g + 1 curves, zi, around the graph such that R2 r
⋃
zi has a connected

component that completely contains the graph. To see that there are, indeed, g + 1

curves, consider the graph as the 1-skeleton of a cellularization of the 2-sphere. Then each

zi corresponds to a face of this cellularization. See Figure 1.11 for an example. Now since

each vertex of our graph corresponds to a pair of pants, by Proposition 1.2.4, there are

2g − 2 vertices. Since these graphs are always tri-valent, there are 3g − 3 edges (an edge

for each pants curve). So, since the Euler characteristic of a sphere is 2 [4], we have

2g − 2− (3g − 3) + f = 2 where f is the number of faces. Thus, we have f = g + 1, so

there are g + 1 of the zi.

Now, in this connected component, for each edge, er, draw a simple curve cr that

intersects er and the two curves zj and zk on either side of er. Glue this component to a

copy of itself along the zi. This results in a surface S′ that has
⋃
{ci} = P ′ as a pants

decomposition compatible with ZE . Then there exists a homeomorphism that takes P ′ to

P and ZE to Z, where P is compatible with Z. See Figure 1.12 for an example. �

Corollary 1.2.19. For any standard pants decomposition, there exists a zipper system for

which it is compatible.

Proof. Consider a standard pants decomposition P of a surface S. Then P cuts g handles
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z2

z3
z4

z1

Figure 1.11: A planar graph corresponding to a pants decomposition of a genus 3 surface
is shown as a cellularization of the 2-shpere. Notice that each zi sits within a colored face.

z2

z1

z3
z4

c1

c3

c2

c4

c6

c5

(a)

c1

c3

c4

c2

c6 c5

z2

z3 z4

z1

(b)

Figure 1.12: A pants decomposition is created in (a) by drawing a curve cr for each edge of
the planar graph from Figure 1.11. When the two connected components are glued along
the zi, the surface in (b) is created, after isotopy.
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from S. This means the graph G corresponding to P has g nodes with 1-cycles, ci,

attached. Apart from these 1-cycles, the claim is that G is a tree. For if it was not, then

there would be at least one cycle elsewhere in G. Consider a regular neighborhood of

Gr
⋃
ci. Since the regular neighborhood of G is homeomorphic to S, this extra cycle,

along with the g 1-cycles, corresponds to a surface with genus at least g + 1 which

contradicts our assumption that S was of genus g. Therefore, G cannot contain cycles

other than the 1-cycles corresponding to the self-folding curves of P , and is therefore a

tree, so is compatible with some zipper system. �

1.3 Zipped Flips

Definition 1.3.1 (Flip). Given a pants decomposition P , a flip ϕi of P is a replacement

of the curve ci ∈ P with a new curve c′i such that ci is not self-folding and that the

following hold:

• c′i is not homotopically equivalent to any curve in P .

• |c′i ∩ ci| = 2.

• |c′i ∩ cj | = 0 for all j 6= i.

Two examples of flips are shown in Figure 1.13. Notice that flips may not be

performed in handles, but may be applied to principal curves. See Figure 1.14.

ci
ci‘

ci‘

Figure 1.13: Two possible flips c′i of a curve ci in P .
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pi pi‘

Figure 1.14: The principal curve pi is flipped to p′i.

Definition 1.3.2 (Zipped Flip). Given a pants decomposition P compatible with a

zipper system Z, a zipped flip ζi of P with respect to Z is a replacement of the curve

ci ∈ P with a new curve c′i such that ci is not self-folding and that the following hold:

• c′i is not homotopically equivalent to any curve in P .

• c′i shares exactly two necessary intersections with Z. That is,

∣∣∣∣∣c′i ∩
(
g+1⋃
j=1

zj

)∣∣∣∣∣ = 2.

• |c′i ∩ cj | = 0 for all j 6= i.

By inspection, we see that ζi(P ) is a new pants decomposition that is compatible

with Z. It should also be noted that there is a unique choice for ζi, specifically, it is

obvious that ζi ◦ ζi(P ) = P . This also implies that a zipped flip is reversible.

z1

z2
z3

c1 c3c2‘

Figure 1.15: The curve c′2 is a zipped flip of the curve c2 seen in Figure 1.5.

The curve c′2 in Figure 1.15 is a zipped flip of c2 from Figure 1.5. Notice that

zipped flips are just special types of flips. We see, however, that not every flip is a zipped

flip in the following proposition.

Proposition 1.3.3. Not every flip c′i of a curve ci in a pants decomposition is a zipped

flip.
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Proof. Consider the pants decomposition P of the genus 4 surface shown in Figure 1.16.

It should be obvious that P has a planar corresponding graph. Now, the curve c may be

flipped to the curve c′ ∈ P ′ as shown in Figure 1.16. Figure 1.17 shows the graph

representation of P ′. Upon inspection of this graph, we see that it is graph isomorphic to

a K3,3 graph, which is known to be non-planar [12]. Therefore, by Proposition 1.2.18, P ′

is not compatible with any zipper system, and thus c′i is not a zipped flip. �

c c ‘

Figure 1.16: A pants decomposition P of a genus 4 surface is shown on the left. A flip c′ of
the curve c gives way to a pants decomposition P ′ shown on the right. Colored nodes are
placed within each pair of pants corresponding to a graph representation of P ′. Figure 1.17
shows that this graph is not planar. Note that ZE is not drawn for clarity’s sake.

Figure 1.17: The graph corresponding to P ′ seen in Figure 1.16 is shown on the left. It is
obvious that this is graph isomorphic to the K3,3 graph shown on the right.

As mentioned in the Introduction, Felikson and Natanzon relied heavily on a result

(their Lemma 1.12) which claims that any flip of a curve c in a given pants decomposition
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compatible with a zipper system Z is a zipped flip in respect to some zipper system Z ′.

Our Proposition 1.3.3 contradicts this, telling us that we must find a workaround if zipped

flips are to be used to prove the main theorem of [5].

Definition 1.3.4 (Category of Compatible Pants Decompositions). Let Pz
g be the

category of pants decompositions of a genus g surface that are compatible with a particular

zipper system Z. The objects of this category are the pants decompositions, and the

elementary morphisms are zipped flips. All other morphisms are compositions of zipped

flips. Associativity of the morphisms is immediate.
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Chapter 2

Transitivity of Zipped Flips

In this chapter, we work towards our Main Result, which is that given any pants

decompositions Pa, Pb that are compatible with the same zipper system and contractible

in the same handlebody, Pa may be taken to Pb via a sequence of zipped flips. We begin

by proving some results regarding standard pants decompositions that are boring and

contractible in the inner handlebody corresponding to P .

2.1 Contractible Decompositions

Definition 2.1.1 (Handlebody). A handlebody is a 3-dimensional ball which has several

handles attached, where a handle is a solid cylinder, with each handle being attached to

the ball along two 2-disks.

Figure 2.1: An example of a handlebody.
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Remark 2.1.2. Given a pants decomposition P of a surface S, one may construct a

handlebody H in the following way: First, for each pair of pants pi ∈ P , consider a 3-disk

Di that contains three 2-disks in its boundary - one disk for each curve that bounds pi.

Then for each adjacent pair of pants pi, pj from P , attach Di to Dj along the appropriate

disks. One obtains a handlebody H (denoted H(P ) when speaking specifically of the

handlebody generated by P ) whose frontier coincides with S and which maintains the

structure of P [5]. Therefore, when considering pants decompositions of surfaces, we may

speak of pants decompositions of corresponding handlebodies.

Note that the genus of H is the genus of its frontier.

Definition 2.1.3 (Contractible - Pants Decompositions). Given a handlebody H, a pants

decomposition P of fr(H) is contractible in H whenever each ci ∈ P bounds an embedded

disk in H.

Figure 2.2: An example of a contractible pants decomposition of a handlebody’s frontier.
The curves of the pants decomposition bound shaded disks in the handlebody.

We mention that contractibility is usually defined in terms of curves bounding

disks that are not necessarily embedded. However, by Dehn’s Lemma, a contractible curve

bounds an embedded disk in H [6]. Thus, our definition is suitable.

Lemma 2.1.4 (Boring iff Contractible). A pants decomposition P of a surface S

compatible with ZE is boring if and only if it is contractible in the handlebody H in R3 with

fr(H) = S.

21



Proof. To see the first direction, note that if P is boring, each curve ci ∈ P intersects the

equator twice, and ci+ = ci− where ci+ = ci ∩ S+ and ci− = ci ∩ S−. Therefore, ci bounds

a disk in H, so is contractible.

To see the reverse direction, since P is compatible with ZE , again note that each

ci ∈ P has only two equatorial crossings. Then we may orient ci+ and ci− so that

ci = ci+ ? ci− is defined. Notice that it is a loop in H, and since it is contractible, it is

null-homotopic. Since ci+ and ci− are both connected paths, it must be that they are

inverses of each other. Therefore, they may be isotoped so that they travel through the

same points, just in an opposite orientation. Since this holds for all ci ∈ P , we have that

τP |S+ = P |S− where τ is the north/south reflection, and thus P is boring. �

Definition 2.1.5 (Zipped Flip Equivalent). Given two pants decompositions Pa, Pb,

objects in Pz
g, Pa is said to be zipped flip equivalent to Pb if there exists a morphism

carrying one to the other.

Lemma 2.1.6 (Middles Lemma). Given any standard boring pants decomposition P of a

surface with genus greater than 3, any arrangement of its middle curves M is zipped flip

equivalent to any other.

Proof. We prove the claim via induction:

Our base case, g = 4, is trivial. In this case, by Proposition 1.2.5, there are 9 curves

in P . Since P is standard, there are 4 principal curves and 4 self-folding curves, leaving

only one middle curve. Since P is boring, it follows that there are only two choices for this

curve, and performing a zipped flip to either choice yields the other. See Figure 2.3.

Assume the claim holds for g = n. Now consider g = n+ 1. The middle curves are

embedded in a (n+ 1)-punctured sphere. Each puncture corresponds to a principal curve,

pi ∈ P . Suppose the principal curves are labelled in ascending order with respect to the

cyclic order of ZE . By Proposition 1.2.5, every pants decomposition contains 3g − 3

curves. It is obvious that for g > 2, standard pants decompositions have 2g curves which

make up handles (g principal curves and g self-folding curves), leaving g − 3 middle

curves. Therefore, we have n− 2 middle curves.
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m
m ‘

Figure 2.3: There are only two possible middle curves for a standard boring pants decom-
position of a genus 4 surface. It is obvious that m may be zipped flipped to m′ and vice
versa. Note that the self-folding curves are not drawn to avoid clutter.

The principal zipper z0 ∈ ZE contains g = n+ 1 connected components

{zk0 | 1 ≤ k ≤ g} in the sphere, where zj0 is the section of z0 travelling between hj and

hj+1. Now consider z20 . If there are middle curves that intersect z20 , zipped flip them so

this is not the case. The claim is that if z20 has no intersections with middle curves, mi,

then there is some middle curve mv which bounds a pair of pants with p2 and p3 as the

other boundary components. Specifically, this would mean that the curve mv intersects z10

and z30 .

To see that this is true, suppose that there is no middle curve intersecting z30 .

Then there are no curves separating p2, p3, and p4 from each other, so they must bound a

pair of pants. But the only way a pair of pants can be bounded by three principal curves

is in the g = 3 case. So, there must be a middle curve, say mh, that intersects z30 . The

same argument applies for z10 , so there is a middle curve mk that intersects z10 . Since no

curve intersects z20 , and since pairs of pants are bound by only three curves from P , either

mh = mk or there is another curve mv that intersects both z10 and z30 . See Figure 2.4.

So, let pi be the pair of pants bounded by mv, p2, p3. Consider the complement of

pi ∪ h2 ∪ h3 in the surface. It is precisely the g = n case. By induction, we may rearrange

the middle curves in the surface in any boring way we please, via zipped flips. Arrange

them so that they all emanate from z10 . See Figure 2.5.

Since any arrangement of middle curves may be put into this form, and since

zipped flips are invertible, we have our result. �

23



h7

h1

h2

h3

h4

h5
h6

z01

z07

z06

z05

z04

z02

z03

p2
p1

p3

p7

p4

p5

p6

mv

Figure 2.4: If no middle curve intersects z20 , then there must be a middle curve mv that
intersects both z10 and z30 , isolating h2 and h3. Note that the self-folding curves, zippers
other than z0, and middle curves other than mv are not drawn to avoid clutter.

h7

h1

h2

h3

h4

h5
h6

z01

z07

z06

z05

z04

z02

z03

p2
p1

p3

p7

p4

p5

p6

mv

m2 m3

m4

=m1

Figure 2.5: The middle curves emanate from z10 . Here, the m1 curve is mv from Figure 2.4.
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Lemma 2.1.7 (Permutation of Cyclic Order). Given any standard boring pants

decomposition P and a zipper system Z, any two zippers zi, zi+1 may be transposed in the

cyclic order via zipped flips.

Proof. Without loss of generality, the handles of P are labelled in ascending order with

respect to an orientation of z0. The case of g = 2 is trivial. For g > 2, consider the

handles hi, hi+1 which correspond to pi and si, and pi+1 and si+1, respectively, where

pi, pi+1 are principal curves and si, si+1 are self-folding curves. If g = 3, then hi, hi+1 are

separated from the third handle by its principal curve. If g > 3, then by Lemma 2.1.6, we

may arrange the middle curves of P is such a way that hi, hi+1 are separated from the rest

of the decomposition by a middle curve. Then as seen in Figure 2.6, we may transpose

zi+1 and zi in the cyclic order in the following way:

First, zipped flip pi+1. Then zipped flip si+1. We now have the desired result.

Since the choice of zi, zi+1 were arbitrary, the process may be repeated so that any

permutation of the cyclic order is achievable. �

si

pi p

si+1

i+1

Figure 2.6: Two handles may be transposed in the cyclic order by zipped flipping pi+1

followed by si+1. Note that the equatorial zippers are not drawn to avoid clutter.

Notice that zipped flipping pi followed by si would result in a different pants

decomposition, but would have the same effect of zi+1 and zi being transposed in the

cyclic order. Later in Theorem 2.1.9, when speaking of ‘pushing one handle past another’,

we are referring to zipped flipping one handle’s principal and self-folding curves and

leaving the other’s alone.

Before proving the following Theorem, we begin by introducing some notation: For

the next theorems, with respect to the specific embeddings used, we refer to the outermost

zipper as the outermost curve, geometrically, in ZE . We refer to an inner zipper as any
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curve in ZE which lies inside of the outermost zipper, geometrically. See Figure 1.15; here,

z1 is the outermost zipper while z2 and z3 are inner zippers.

Definition 2.1.8 (Friendly Pants Decomposition). A pants decomposition P that is

compatible with the equatorial zipper system ZE is said to be friendly if it is

• boring,

• standard, and

• the outermost zipper is the principal zipper.

Note that the pants decomposition shown in Figure 1.4 is friendly.

Given a friendly pants decomposition P , we can arrange the curves of P in the

following way:

First, considering the lateral embedding of S, since P is friendly, we need only to

consider P |S+ in view of symmetry. Choose a basepoint x0 ∈ z0 ⊂ S+ in the center of the

bottom of S+. Give each self-folding curve of P a positive orientation from endpoints on

z0 to endpoints on some other zi. Isotope all curves so that they begin in some small

neighborhood of x0, their cyclic order is preserved, and they contain no unnecessary

intersections. Furthermore, isotope the curves so that they share no unnecessary

intersections with the vertical lines which pass through the centers of each puncture of S+.

We will refer to these vertical lines vi as the vertical(s) of S+, or just the vertical(s). See

Figure 2.7. Notice that at this point, each principal curve follows almost the same path as

its corresponding self-folding curve, up to the puncture the self-folding curve ends at.

Once the principal curve reaches this puncture, it wraps around it and follows almost the

same path back to the neighborhood of x0. Therefore, a principal curve is determined by

its corresponding self-folding curve, so we may focus only on the self-folding curves of P .

Next, we will define a curve’s complexity to be the number of necessary

intersections it shares with the upper verticals of S+ (the sections of the verticals between

the top of the puncture and the outer boundary of S+). Then simplifying a curve amounts

to reducing this number of intersections. The claim is that this is accomplished via zipped

flips.
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z0

z0

x0

v1 v2 v3 v4 v5

Figure 2.7: Curves of a friendly pants decomposition of a genus 5 surface are isotoped so
that they begin in a neighborhood of x0 and share no unnecessary intersections with other
curves or verticals. Note that only S+ and the self-folding curves are shown.
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Finally, we denote by Ps the simple friendly pants decomposition seen in Figure

2.8. Specifically, Ps is the friendly decomposition whose self-folding curves have no

intersections with the upper verticals and whose principal curves all have one intersection

with the vertical corresponding to the puncture it wraps around.

a b c d e

z0

x0

Figure 2.8: A simple friendly pants decomposition of a genus 5 surface. In P |S+ , its self-
folding curves have no intersections with upper verticals, and its principal curves have one
intersection with upper verticals. Note that the middle curves and the zippers are not
drawn to avoid clutter.

Theorem 2.1.9 (The Friendly Theorem). Given any two friendly pants decompositions

Pa and Pb, Pa is zipped flip equivalent to Pb.

Proof. Using the set-up described above, we first show that given any friendly pants

decomposition Pa, that Pa is zipped flip equivalent to Ps where Ps is the simple friendly

decomposition. Then since Pa was an arbitrary decomposition, and since zipped flips are

invertible, it will follow that any friendly Pa is zipped flip equivalent to any friendly Pb.

First, consider the base case of g = 2. This verifies trivially as, up to isotopy, there

is only one possible friendly pants decomposition.

Next, assume the claim holds for g = n. Consider the case of g = n+ 1. Select a

self-folding curve, si, you wish to simplify (obviously this choice excludes curves not
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sharing intersections with the verticals). The corresponding principal curve pi bounds a

handle hi. Consider the complement of hi in S. It is a genus n surface with a single

puncture. Filling in this puncture with a disk yields a closed genus n surface. Notice that

in doing so, any homotopically equivalent curves become identified, and we are left with a

friendly pants decomposition of a g = n surface. So, by induction, we may rearrange the

curves on this surface in any friendly way we wish, using only zipped flips. We may then

use these new curves on our g = n+ 1 surface.

For j 6= i, choose a vertical vj that shares a necessary intersection with si. Redraw

the self-folding curve sj that ends at the puncture corresponding to vj in the following

way: Trace the si curve exactly until the lowest intersection with the upper vertical. Then

isotope sj slightly so that it contains no intersections with si. See Figure 2.9. At this

point, si and its corresponding principal curve pi, as well as the newly drawn pj and sj ,

correspond to handles hi and hj , respectively. Now by Lemma 2.1.6, we may draw a

middle curve mi so that it isolates hi and hj and so that these handles are next to each

other in the cyclic order. See Figure 2.10. Note that in the case of g = 3, the third

principal curve isolates these handles. Now draw in the remaining curves however you like.

Then hi and hj are still next to each other in the cyclic order.

z0

x0

v1 v2 v3 v4 v5

s1s2

Figure 2.9: Here, we wish to simplify the self-folding curve from Figure 2.7 ending at
the puncture that corresponds to v2. This curve is labelled s2. We wish to remove the
intersection with v1, so s1 is redrawn so that it follows s2 until the puncture at v1.

Now by Lemma 2.1.7, we may transpose the cyclic order of hi and hj . The claim is

that this will simplify si and pi. To see this, notice that transposing the cyclic order of
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z0

x0

v1 v2 v3 v4 v5
m1

Figure 2.10: A middle curve m1 is drawn so that it isolates s1 and s2 (and therefore p1 and
p2) and preserves the cyclic order.

these two handles has the effect of pushing hi past hj . See Figure 2.11. In S+, this causes

the curves of hi to follow a similar path as before, just on the other side of the curves of

hj . In particular, this causes the section of si that shared the lowest intersection with the

upper verticle to now travel below the puncture (and therefore intersect the lower vertical).

See Figure 2.12. This causes an intersection with the upper vertical to be removed. Now

we may isotope the hi curves so that they share no unnecessary intersections with the

verticals. Notice that we have reduced the complexity of these curves. See Figure 2.13.

z0

si

z0
pi

pi+1
si+1

Figure 2.11: An isotopy of Figure 2.6 restricted to S+ is shown. Notice that by transposing
the cyclic order, the handle corresponding to the i+ 1 curves is pushed past the other via
zipped flips to pi+1 and si+1.

Repeat this process for si as many times as necessary until si and pi have no

intersections with any vertical except for vi. Since si shares no intersections with any
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vi vi

Figure 2.12: In general, pushing a self-folding curve past si removes an intersection with
upper vi. Note that a similar result holds if the curves are travelling in the opposite direction.

z0

x0

v1 v2 v3 v4 v5
m1

z0

x0

v1 v2 v3 v4 v5

Figure 2.13: The s2 curve from Figure 2.9 is pushed past s1 in the top figure. This new
curve may be isotoped to the curve shown in the bottom figure.
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other upper vertical or any other curve in P , si must travel from the neighborhood of x0

to the puncture in a trivial way, specifically, so that si may be istoped such that it has no

intersections with vi. So, si has no intersections with upper verticals, and therefore pi has

one intersection with the upper vi. By induction, it is possible to arrange the rest of the

curves in the simple friendly manner. Thus, Pa is zipped flip equivalent to Ps. Since Pa

was arbitrary, and since zipped flips are invertible, we have our result. �

Lemma 2.1.10 (The Boring Lemma). Given any boring pants decomposition P , P is

zipped flip equivalent to a standard boring pants decomposition P ′.

Proof. Boring pants decompositions have planar corresponding graphs. Suppose P is a

boring non-standard pants decomposition. Since it is non-standard, its graph contains at

least one cycle of length greater than one. Choose one of these cycles. Choose an edge ei

in this cycle. Then ei corresponds to a curve ci ∈ P . Two pairs of pants are adjoined by ci

(since ei is not a loop, and therefore ci is not a self-folding curve). Each of these pairs of

pants correspond to nodes in the graph, say n1 and n2. For each of these nodes, there are

two edges connecting them to two other nodes. Say n1 gets connected to n11 and n21 and

that n2 gets connected to n12 and n22. See Figure 2.14. Then zipped flipping ci results in

n1, n2 being replaced with new nodes n′1, n
′
2, respectively, where n′1 is connected to n11 and

n12 and n′2 is connected to n21 and n22. This has the effect of replacing the edge ei in the

cycle with either the node n′1 or n′2, and so the length of the cycle that ei was part of is

reduced by one. See Figure 2.14.

Note that this process does not affect 1-cycles. To see this, notice that since our

graph is trivalent, there is only one edge eligible for this process connected to a node that

has a 1-cycle. Therefore, the edge is not part of a larger cycle, and thus will not be flipped

leaving the 1-cycle untouched. Now, repeat this process to edges in the cycle, and to each

cycle, until only 1-cycles remain. This gives a tree with 1-cycles attached which

corresponds to a standard pants decomposition P ′. Since P was boring, so is P ′, and we

have our result. �
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ci

ci‘n1

n2

n1

n2

ei ei‘

n1

‘n1 ‘n2

1 n12 n11 n12

n22 n22n21 n21

‘n1 ‘n2n21 n22 n21 n22

n11 n11

n12 n12

Figure 2.14: The top row illustrates how the pairs of pants joined via ci and the corre-
sponding graph relate. The bottom shows a section of the graph for some boring pants
decomposition. Specifically, it shows a cycle of length 4 that contains the edge ei and the
resulting graph after ci is zipped flipped.
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Lemma 2.1.11 (The Handle Lemma). The curves of the pants decomposition P shown in

Figure 2.15 are zipped flip equivalent to one another.

Proof. Follow the steps in Figure 2.15. Zipped flip pi, then zipped flip si. Notice that

these two zipped flips took our handle hi to a new handle h′i with principal curve s′i and

self folding curve p′i. �

pi pi‘

si si

pi‘ si‘

Figure 2.15: The handle that has si as a self-folding curve and pi as a principal curve is
contained in a surface bounded by two other curves from P . Zipped flip pi then si to change
which zipper section the curves intersect.

Before proving the following Theorem, we introduce more notation: Using the

circular embedding for a given surface S and a pants decomposition P compatible with

the equatorial zipper system ZE , denote by 〈c1, c2, . . . 〉zi the order in which curves cj ∈ P

intersect a zipper zi ∈ ZE with respect to a counter-clockwise orientation on zi, when

viewing S from above. We refer to this as the curve order on zi.

Theorem 2.1.12 (The Boring Theorem). Given any two boring pants decompositions

Pa, Pb both compatible with the equatorial zipper system, Pa is zipped flip equivalent to Pb.

Proof. Let Pa be some boring pants decomposition. Lemma 2.1.10 states that Pa is zipped

flip equivalent to some P ′a which is standard and boring. The same holds for some Pb.

Now if P ′a and P ′b have the outermost zipper as their principal zipper, we have nothing

more to prove in light of Theorem 2.1.9. So, assume P ′a has one of the inner zippers as its

principal zipper. Then showing that the principal zipper can be changed via zipped flips

yields our result.

First, using the circular embedding, without loss of generality, we may arrange the

curves of P as in Figure 2.16 by Lemma 2.1.6 and by the curve-simplifying method used
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in Theorem 2.1.9. Specifically, arrange the curves so that z0 is the principal zipper and

the curve order on z0 is

〈s1, p1, p2, s2, p2,m1, p3, s3, p3,m2, p4, s4, p4, . . . ,mg−3, pg−1, sg−1, pg−1, pg, sg, pg,mg−3,

mg−4, . . . ,m2,m1, p1〉z0 .

Next, zipped flip p1,m1,m2, . . . ,mg−3 consecutively in that order. By inspection,

we have 〈s1, p2, s2, p2, p′1, p3, s3, p3,m′1, p4, s4, p4,m′2, . . . ,m′g−3, pg, sg, pg〉z0 and

〈s1, p′1,m′1,m′2, . . . ,m′g−3〉z1 . See Figure 2.17.

Now apply Lemma 2.1.11 consecutively to each handle. We get

〈s1, p′1,m′1,m′2, . . . ,m′g−3〉z0 and

〈s1, s′2, p′2, s′2, p′1, s′3, p′3, s′3,m′1, s′4, p′4, s′4,m′2, . . . ,m′g−3, s′g, p′g, s′g〉z1 . See Figure 2.18.

Finally, zipped flip m′g−3,m
′
g−4, . . . ,m

′
2,m

′
1, p
′
1 consecutively in that order. We see

that z1 now has curve order

〈s1, p′′1, s′2, p′2, s′2,m′′1, s′3, p′3, s′3,m′′2, s′4, p′4, s′4,m′′3, . . . ,m′′g−3, s′g−1, p′g−1, s′g−1, s′g, p′g, s′g,

m′′g−3,m
′′
g−4,m

′′
g−5, . . . ,m

′
2,m

′
1, p
′′
1〉z1 , and z0 has curve order 〈s1〉z0 . So z1 is now the

principal zipper as it visits each handle, and we have our result. See Figure 2.19. �

Corollary 2.1.13. Given a handlebody H and any zipper system Z, any two pants

decompositions contractible in H and compatible with Z are zipped flip equivalent.

Proof. Let P be some pants decomposition of the frontier of the handlebody H that is

compatible with Z, and that is contractible in H. Then each curve in P bounds an

embedded disk in H. Cutting along these disks results in pieces that are solid pairs of

pants. As in Remark 1.2.12, there exists an involution, τ , of H fixing Z and leaving P , and

the disks, invariant. Then there is a homeomorphism of H which carries Z to the

equatorial zipper system and τ to the north/south reflection. Here, by Lemma 2.1.4, a

pants decomposition P ′ that is compatible with the equatorial zipper system is

contractible if and only if it is boring. Then Theorem 2.1.12 applies. �
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Figure 2.16: The initial arrangement of curves for Theorem 2.1.12 on a genus 7 surface.
Note that only the top part of the curves are drawn in light of symmetry.
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Figure 2.17: The second arrangement of curves for Theorem 2.1.12 on a genus 7 surface.
Again, note that only the top part of the curves are drawn in light of symmetry.
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Figure 2.18: The third arrangement of curves for Theorem 2.1.12 on a genus 7 surface.
Again, note that only the top part of the curves are drawn in light of symmetry.
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Figure 2.19: The final arrangement of curves for Theorem 2.1.12 on a genus 7 surface.
Again, note that only the top part of the curves are drawn in light of symmetry.
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Conclusions and Future Directions

We conclude that, using zipped flips, any two pants decompositions compatible with the

same zipper system and which are contractible in the same handlebody may be taken

from one to the other. The final goal would be to show that any two pants decompositions

contractible in the same handlebody and compatible with potentially different zipper

systems are zipped flip equivalent. Due to time constraints, this was not achieved here.

However, upon successful completion of this task, a major aspect of the argument used in

the main theorem of [5] would be restored.

Even further research would entail addressing other aspects of [5] dealing with

double pants decompositions, and potentially working with Felikson and Natanzon to

correct any remaining inconsistencies.
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