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Overview

• Soup is tasty.

• Algebras are interesting.

• Superalgebras are more interesting.

• Graded algebras appear naturally in many areas of math
(think cohomology rings).
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Algebras

Definition
An (unital) algebra A over a field k is a vector space A along with
a bilinear map

m : A×A→ A

and a distinguished identity element (unit) 1A such that
m(1A, a) = a = m(a, 1A) for all a ∈ A.

Morally, A is a vector space in which we also know how to multiply
two vectors to produce a new vector, and this multiplication is
compatible with the existing structures.
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Algebra Examples

The following are all examples of algebras over C
• C

• C[x]
• The Clifford algebra on one generator C(1) := C[x]/(x2 − 1)

• The general linear Lie algebra gln(C) := (Mn(C), [ , ])
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Superspaces

Definition
A superspace over a field k (with char(k) 6= 2) is a Z2-graded
vector space V = V0 ⊕ V1.

Example

km|n is the superspace km+n with km|n0 = km and km|n1 = kn.

Definition
A subsuperspace W of V is a subspace such that
W = (W ∩ V0)⊕ (W ∩ V1).

Example

k2|3 is a subsuperspace of k3|3 but is not a subsuperspace of k5|1.
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Superspaces

Definition
A linear map f between superspaces V,W is homogeneous of
degree i if f(Vj) ⊂Wi+j for i, j ∈ Z2.
A general homomorphism of superspaces is a sum of homogenous
maps.

Example

Endow C(1) with C-superspace structure 〈1〉 ⊕ 〈x〉. We can define
a linear map on a basis by 1 7→ 1 and x 7→ 1.
This map is NOT homogeneous. It is the sum{

1 7→ 1

x 7→ 1
=

{
1 7→ 1

x 7→ 0
+

{
1 7→ 0

x 7→ 1

Notice that the kernel is 〈1− x〉 which is NOT a subsuperspace!
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Superalgebras

Definition
A superalgebra over a field k is a superspace B = B0 ⊕B1 along
with a bilinear map

m : B ×B → B

such that m(Bi ×Bj) ⊂ Bi+j for i, j ∈ Z2.



Superalgebra Examples

The following are all examples of superalgebras over C
• Any algebra A over C where A0 = A

• C[x] where x ∈ C[x]1
• The Clifford superalgebra on one generator
C(1) := C[x]/(x2 − 1) where x ∈ C(1)1.

• The general linear Lie superalgebra
glm|n(C) := (Mm,n(C), [ , ])
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Modules

Definition
A module for an algebra A over a field k is a k-vector space V
equipped with an A-action, i.e. a unital ring homomorphism

A→ Endk(V )

Definition
A submodule of a module V for an algebra A is a subspace
W ⊂ V which is closed under the A-action.

Definition
A nonzero module is simple if it has no proper submodules.
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Modules

Definition
A module homomorphism between two A-modules V,W is a
k-linear map

ϕ : V →W

such that ϕ(av) = aϕ(v) for all a ∈ A and v ∈ V .

Example

• Any algebra A is a module over itself (via left multiplication).

• The kernel of any module homomorphism is a submodule.
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Supermodules

Definition
A supermodule for a superalgebra B over k is a superspace M
which is a module for B in the usual sense such that
BiMj ⊂Mi+j for i, j ∈ Z2.

Definition
A subsupermodule of a B-supermodule M is a submodule in the
usual sense which is also a subsuperspace.

Definition
A nonzero supermodule is simple if it has no proper
subsupermodules.
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Supermodules

Definition
A supermodule homomorphism between two B-supermodules
M,N is a (not necessarily homogeneous) k-linear map

ϕ :M → N

such that ϕ(bm) = (−1)ϕ·bbϕ(m) for all b ∈ B and m ∈M .

Note that since the kernel of a linear map between superspaces
may not be a subsuperspace, the kernel of a supermodule
homomorphism need not be a subsupermodule in general.
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A Closer Look at C(1)

We claim that C(1) is simple as a supermodule over itself.

• Any proper subsupermodule is 1-dimensional, so looks like
〈α1 + βx〉.

• Being closed under the action of C(1) ⇒ 〈1 + x〉 or 〈1− x〉.
• Neither of these spaces is a subsuperspace, hence cannot be a

subsupermodule.
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A Closer Look at C(1)

• Forgetting the Z2-grading on C(1) gives an algebra.

• 〈1 + x〉 and 〈1− x〉 are both closed under multiplication in
C(1).

• Hence in the non-super case, C(1) is NOT simple as a module
over itself.
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A Closer Look at C(1)

In fact, back in the super setting, EndC(1)(C(1)) ∼= C(1) which is
2-dimensional as a usual vector space over C!

This endomorphism space is spanned by

id :

{
1 7→ 1

x 7→ x
and J :

{
1 7→ x

x 7→ −1



Schur’s Lemma

Definition
a simple B-supermodule M is absolutely irreducible if M is
simple when viewed as an ordinary B-module.

Definition
a simple B-supermodule M is self-associate if M is not simple
when viewed as an ordinary B-module.

Theorem (Schur’s Lemma)

Let M be a finite-dimensional simple B-supermodule over an
algebraically closed field. Then

EndB(M) =

{
span{idM} if M is absolutely irreducible

span{idM , JM} if M is self-associate
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Takeaways

• Superalgebras generalize algebras.

• Superspaces have a richer structure than ordinary vector
spaces.

• Superalgebras have a strictly richer representation theory than
algebras.

• Superalgebras and graded algebras not only are interesting
objects to study on their own, they also appear naturally in
many areas of math.
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THANK YOU!


