Partial Fractions

Split the following into partial fractions. Solve for the coefficients in the first problem.

•
$$\frac{4+x}{(1+2x)(3-x)}$$
 *

$$\bullet \ \frac{x^4}{x^3 + x^4}$$

$$\bullet \ \frac{x-6}{x^2+x-6}$$

$$\bullet \ \frac{x^4}{(x^2 - x + 1)(x^2 + 2)^2}$$

$$\bullet \ \frac{x^5 + 1}{(x^2 - x)(x^4 + 2x^2 + 1)}$$

Long Division with Polynomials

Reduce the following rational expressions:

$$\bullet \ \frac{x^4}{x-1}$$

$$\bullet \ \frac{x^5 + x - 1}{x^3 + 1}$$

$$\bullet \ \frac{3x^2 + 6x + 2}{x^2 + 3x + 2}$$

Perform the following integration:

$$\bullet \int \frac{2}{x^2 - 1} \, dx$$

Strategy for Integration

Steps:

- Simplify
- U-Substitution?
- Other Techniques based on its Form (e.g. does it look like Trig Substitution?)
- Didn't work? Try Again.

Solve the following problems:

$$\bullet \int \sqrt{3-2x-x^2} dx$$

$$\bullet \int \frac{1+\sin x}{1+\cos x} \, dx$$

$$\bullet \int x\sqrt{2-\sqrt{1-x^2}}\,dx$$

•
$$\int (x + \sin x)^2 dx$$

$$\bullet \int \frac{dx}{\sqrt{x} + x\sqrt{x}}$$

$$\bullet \int \frac{1}{x^7 - x} \, dx$$

This last one is incredibly tricky, but if you're on the right track, the answer is very short. Hint: Don't use partial fractions.

Improper Integrals

Solve the following integrals:

$$\bullet \int_2^\infty e^{-5p} dp$$

$$\bullet \int_{-\infty}^{\infty} x e^{-x^2} dx$$

$$\bullet \int_0^\infty \frac{x^2}{\sqrt{1+x^3}} \ dx$$

$$\bullet \int_0^1 \frac{1}{x} \, dx$$

•
$$\int_{-2}^{14} \frac{dx}{\sqrt[4]{x+2}}$$

$$\bullet \int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx$$