Review

- Evaluate the integral.

1. $\int_{1}^{5} \frac{d t}{(t-4)^{2}}$
2. $\int_{0}^{1} v^{2} \cos v^{3} d v$
3. $\int_{0}^{4}|\sqrt{x}-1| d x$
4. $\int_{0}^{4}\left|x^{3}-5 x^{2}+6 x\right| d x$

- If f^{\prime} is continuous on $[a, b]$, show that

$$
2 \int_{a}^{b} f(x) f^{\prime}(x) d x=[f(b)]^{2}-[f(a)]^{2}
$$

- Find the derivative of

$$
g(x)=\int_{0}^{x^{4}} \cos \left(t^{2}\right) d t
$$

- If f is a continuous function such that

$$
\int_{0}^{x} f(t) d t=x \sin x+\int_{0}^{x} \frac{f(t)}{1+t^{2}} d t
$$

for all x, find an explicit formula for $f(x)$.

- Find $\lim _{h \rightarrow 0} \frac{1}{h} \int_{2}^{2+h} \sqrt{1+t^{3}} d t$.
- Find the area of the shaded region.

- Find the volume of the solid obtained by rotating the region bounded by the given curves around the specified line. Sketch the region, the solid, and a typical disk or washer.
$y^{2}=x, x=2 y ;$ about the y-axis
- Use cylindrical shells to find the volume of the solid.

A right circular cone with height h and base radius r.

