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We fix G C GLc(N) to be a reductive linear algebraic group.

e By [G] we denote the set of equivalence classes of irreducible
representations of G.

e On the other hand, G will denote the subset of [G] of
equivalence classes of finite-dimensional irreducible
representations of G.

e The corresponding sets of equivalence classes of
representations of an associative algebra A will be denoted by

[A] or A.
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Remark

We write p* : G — End(F?)

for a representative of the class A, for each \ € [G] and denote this
representative by (p*, F*).

Definition
By A(G) (or, by C[G]) we denote the group algebra associated
with the group G.

Remark

Every G-module is considered as an A(G)-module and vice-versa.
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Example

Fix {e;} to be a basis of V = C%. _
Then define {¢'} to be a basis of V* such that Q(e;, /) = 4,
where € is a non-degenerate skew-symmetric bilinear form.

Definition

On A V, define the exterior product & : ANKC?* — AKF1C? and the
interior product 1 : NKC?¢ — NK—1C2¢

Remark

Then we have the following relations:

{e(x),e(y)} =0,
{o(x7),(y")} =
{e(x),u(x")} = Q(X x)ld \kcae .
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Example Continued

Definition

Let E = Z?ﬁl e(e)t(¢’) denote the skew-symmetric Euler
operator on A V.

Remark
For u € AKV, Eu = ku.

Definition
Let Y =¢(3/d), X = —Y*, and H=(Id — E.

Remark

[E,X] = —2X, [E,Y]=2Y, [Y,X]=E — tld
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Recall that for any vector space V,
End(V) is an associative algebra with unity Iy,
the identity map on V.

Definition
For any subset U C End(V),

let Comm(U) :={T € End(V)|TS = ST for any S € U}
denote the commutant of U.

The set Comm(U) forms an associative algebra with unity /.
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Example Continued

On NC%,

Comm(Sp(C%)) = Spanc{X, H, Y} = slc(2).

Definition

A k-vector u € AKC?" is called Q-harmonic when Xu = 0.

The k-homogeneous space of Q2-harmonic elements is denoted by
H(AKC?) = {u € AKC?|Xu = 0}.

The space of Q-harmonic is denoted by H(A C%, Q).
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o Let R be a subalgebra of End(W) such that

@ R acts irreducibly on W.
@IfgeGand T €R, then (g, T)— p(g)Tp(g ') eR
defines an action of G on R.

e Then we denote by
RC ={T e Rlp(g)T = Tp(g) forall g € G}

the commutant of p(G) in R.
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Remark

Since elements of R® commute with elements from A(G),
we may define a R¢ ® A(G)-module structure on W.
Alternatively, we may consider W as a (R¢, .A(G))-bimodule.

Definition
Let EX = Homg(F*, W) for A € G.

Remark
Then E* is an RC-module satisfying

Tu(m(g)v) = Tp(g)u(v) = p(g)(Tu(v)),

where u € E» ve F), T e R, and g € G.
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As an R® ® A(G)-bimodule, the space W decomposes as

W= ERF (1)
AeG

In the above theorem E Xl F stands for the outer (external) tensor
product of the R¢-module E and of the A(G)-module F.
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Example Continued

Let F(’~K) denote the irreducible representation of slc(2) with
dimension ¢ — k + 1.

Then, there exists a canonical decomposition of A\ C?* as a
(slc(2), Sp(C?Y))-bimodule,

/\(324 @F(f k) IZH( chﬁ Q)
k=0
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Theorem (Duality)

Each multiplicity space E> is an irreducible R -module.
Further, if A\, i € G and E> = EF as an RC-module, then \ = L.

Theorem (Duality Correspondence)

Let o be the representation of R¢ on W and let G denote the set
of equivalence classes of the irreducible representation {E*} of the
algebra R® occurring in W. Then the following hold:

e The representation (o, W) is a dirrect sum of irreducible
RC-modules, and each irreducible submodule E* occurs with
finite mulitplicity, dim(F™).

e The map F* — E* is a bijection.
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Example Continued

Corollary (Duality)

e As a G-module,

AV =@ F® @Home (F(A), A v) .

G

o FM @ Homg (FMN, A V) is an irreducible
Endg (A V)-module.
e (p, \ V) is the direct sum of irreducible Endg( V)-module
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Example Continued

Corollary

k [k/2] k—2i
Ac* = @/d'AH </\ (CM,Q)

e The space H(/N C%,Q) has dimension (2f) — (124) for
j=1,...,L
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Thank you.
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