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My research is in the areas of geometric group theory and low-dimensional topology. Broadly
speaking, I am interested in groups that arise naturally in geometry and topology and in ways that
geometry and topology can be used to answer algebraic questions about groups. Much of my work
has involved stable commutator length and quasimorphisms, notions that will be defined shortly.
These notions have topological, algebraic, and analytic interpretations, and in studying them I have
used tools from these areas as well as from combinatorics, number theory, and optimization.

One type of problem I find interesting is that of finding the “simplest” surface with a prescribed
boundary. As a simple example, consider the surface of genus 3, with the curve γ as shown.

γ

Here the curve γ bounds a surface of genus two (the left-hand side of the figure) and a surface of
genus one (the right-hand side of the figure). The surface on the right-hand side of γ is “simpler”
because it has smaller genus.

More generally, given a space X and a closed curve γ in X, one can ask which surfaces S with
one boundary component can be mapped to X in such a way that the boundary of S is mapped to
γ with degree 1. (Such maps can exist only if γ represents the trivial element of H1(X).) This is
usually a hard problem. However, it turns out to become more tractable if one also allows surfaces
whose boundary maps to γ with degree greater than 1 and normalizes the complexity of the surface
accordingly. Since Euler characteristic is multiplicative under taking covers, whereas genus is not, it
is most natural to keep track of the complexity of such surfaces in terms of Euler characteristic.

This perspective gives rise to a topological definition of stable commutator length. For fixed X
and γ, consider all maps f : S → X of a connected surface S to X such that the boundary of S is
mapped to γ with positive degree. Let χ(S) denote the Euler characteristic of S, and let n(S, f)
denote the total degree of the map from the boundary of S to γ. Then the stable commutator length
of γ is

scl(γ) := inf
(S,f)

−χ(S)

2n(S, f)
. (1)

If G is the fundamental group of X and g is the element of G represented by γ, we can also define
scl(g) := scl(γ). If (S, f) achieves the infimum in (1), it is said to give an extremal surface for g (or
for γ).

While it is natural to study efficient surfaces with a prescribed boundary, it might seem quite
mysterious from this topological perspective why this notion is called stable commutator length.
This terminology comes from an equivalent algebraic definition. Given a group G, its commutator
subgroup, denoted [G,G], is generated by commutators, i.e. elements of the form xyx−1y−1 for
x, y ∈ G. Thus every element g ∈ [G,G] can be written as a product of commutators. Define the
commutator length of g, denoted cl(g), to be the smallest number of commutators in a product of
commutators that equals g. Then the stable commutator length of g is

scl(g) = lim
n→∞

cl(gn)

n
.
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Details of the equivalence between the topological and algebraic definitions of stable commutator
length are given in [9]. To summarize, a closed curve γ bounds a surface of genus k if and only if the
corresponding element g is a product of k commutators. Therefore the original problem of finding
the most efficient surface with a prescribed boundary is equivalent to computing commutator length.
The relationship χ(S) = 2− 2 genus(S) is used to convert between the problem in terms of genus
and the problem in terms of Euler characteristic, and this is the reason for the 2 in the demoninator
of (1).

Stable commutator length is also closely related to the theory of quasimorphisms; this connection
was discovered by Bavard [2]. A quasimorphism on a group G is a function φ : G→ R satisfying
the property that |φ(gh)− φ(g)− φ(h)| ≤ D for some constant D that is independent of the choice
of g, h ∈ G. Choose the smallest such D and denote it by D(φ), referred to as the defect of φ. A
quasimorphism φ is called homogeneous if φ(gn) = nφ(g) for all g ∈ G,n ∈ Z. Let Q(G) denote the
vector space of all homogeneous quasimorphisms on G. Bavard [2] shows that, if gk ∈ [G,G] for
some k ∈ N,

scl(g) = sup
φ∈Q(G)
D(φ) 6=0

φ(g)

2D(φ)
. (2)

This gives a functional analytic interpretation of stable commutator length. A consequence is
that every homogeneous quasimorphism with nonzero defect gives a lower bound on the stable
commutator length of g. Moreover, it is known that the supremum in (2) is always achieved
(see [9]). A homogeneous quasimorphism φ that achieves this supremum for some g, i.e. that satisfies
scl(g) = φ(g)/2D(φ), is said to be extremal for that g.

One objective in the study of stable commutator length is to compute values it takes for specific
elements. A major breakthrough in this direction was Calegari’s algorithm [10] for computing stable
commutator length in free groups. This algorithm can also be used to compute stable commutator
length in certain classes of groups that are built from free groups in simple ways. However, there
are few other instances in which stable commutator length can be computed explicitly, with the
exception of certain elements and classes of groups for which it is known to vanish. Clay, Forester,
and I [16] have shown how to compute stable commutator length for a certain class of elements
of Baumslag–Solitar groups. Moreover, we have characterized exactly which elements in this class
admit extremal surfaces. This work is discussed in more detail in Section 1.

One can also study the lower bounds on stable commutator length given by (2) for certain
homogeneous quasimorphisms. Clay, Forester, and I [16] have done this for certain naturally defined
quasimorphisms on groups acting on trees. We bound the defect of these quasimorphisms, thus
obtaining lower bounds of 1/12 on the stable commutator length of elements satisfying a certain
condition. Moreover, calculations in Baumslag–Solitar groups show that our bounds are the best
possible. This answers a question of Calegari and Fujiwara (Question 8.4 from [13]). Applying
this work to Baumslag–Solitar groups, we show that there is a spectral gap: no element of a
Baumslag–Solitar group has stable commutator length between 0 and 1/12. This work is discussed
in more detail in Section 2.

One can also ask when the lower bounds on stable commutator length given by a homogeneous
quasimorphism are sharp, i.e. for which elements the quasimorphism is extremal. Although extremal
quasimorphisms are known to exist, few examples of them have been found, due largely to the fact
that the space of all homogeneous quasimorphisms is poorly understood for most groups. Finding
quasimorphisms that can be certified to be extremal is of interest because it gives an indirect way to
compute stable commutator length. Calegari and I [14] studied this question for an important group,
the modular group PSL(2,Z), and a naturally occuring quasimorphism, the rotation quasimorphism.
We showed that, for every element of the modular group, the product of this element with a
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sufficiently large power of a parabolic element is an element for which the rotation quasimorphism
is extremal. This proves the natural analogue of Conjecture 3.16 from [10], with the free group F2

replaced by the modular group PSL(2,Z). This work is discussed in more detail in Section 3.

1 Computing stable commutator length

It is generally difficult to compute values of stable commutator length. One class of groups for which
stable commutator length can be computed explicitly is that of free groups. Calegari [10] showed
how to use linear programming to construct an extremal surface corresponding to any element of
the commutator subgroup of a free group. This gives an algorithm for computing stable commutator
length in free groups and implies that it takes only rational values.

This algorithm can also be used to compute stable commutator length in certain classes of
groups that are built from free groups in simple ways. For example, there is a general relationship
between stable commutator length in a group and a finite-index subgroup (see [9]), and this can
be used to compute stable commutator length in virtually free groups. In my thesis [25], I used
the fact that the modular group PSL(2,Z) has an index-6 subgroup that is free to explain how to
compute stable commutator length in PSL(2,Z).

Clay, Forester, and I have studied stable commutator length in Baumslag–Solitar groups. The
Baumslag–Solitar group BS(m, `) is the one-relator group definied by the presentation 〈a, t |
tamt−1a`〉. It is the fundamental group of its presentation 2–complex X, where one thinks of
X as being constructed by attaching both ends of an annulus to a circle, by covering maps of
degrees m and `, respectively. Interpreting maps of surfaces to X combinatorially, the problem of
computing stable commutator length becomes a problem of minimizing a certain linear functional
on an infinite dimensional vector space subject to certain constraints. When an element has what
we call alternating t–shape, we are able to convert this optimization problem to one over a finite
dimensional space and show that the output of this problem computes stable commutator length.

Theorem 1 (Clay–Forester–L. [16]). Suppose g ∈ BS(m, `), m 6= `, has alternating t–shape. Then
there is a finite dimensional, rational linear programming problem whose solution yields the stable
commutator length of g. In particular, scl(g) is computable and is a rational number.

In some cases the solution to this linear programming problem can be expressed in a closed form.
We show that, if m - i and ` - j, we have

scl(tait−1aj) =
1

2

(
1− gcd(i,m)

|m|
− gcd(j, `)

|`|

)
. (3)

This is interesting, because it is rare that a formula can be found for the stable commutator length
of a class of elements.

We also characterize exactly which elements of alternating t–shape admit an extremal surface.
It turns out many elements have extremal surfaces and many do not.

Theorem 2 (Clay–Forester–L. [16]). Let g =
∏r
k=1 ta

ikt−1ajk ∈ BS(m, `), m 6= `. There is an
extremal surface for g if and only if

`
r∑

k=1

ik = −m
r∑

k=1

jk.
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This allows us to find many examples of elements with rational stable commutator length for
which no extremal surface exists. Previous examples of this phenomenon were found in free products
of abelian groups of higher rank (see [11]).

I hope to be able to extend this work to other elements and other classes of groups. In Baumslag–
Solitar groups, the natural next question is to compute the stable commutator length of elements that
are not of alternating t–shape. Our current methods give a lower bound on the stable commutator
length of such elements, but we have examples that show these bounds are not always sharp. I
would like to modify the linear programming problem to take into account the problems that arise
in these examples, hopefully obtaining a linear programming problem that will compute the stable
commutator length of all elements of Baumslag–Solitar groups.

More generally, it is natural to try to extend these techniques to so-called generalized Baumslag–
Solitar groups, i.e. groups that act on trees with infinite cyclic edge and vertex stabilizers.

Problem 1. Find an algorithm for computing stable commutator length in generalized Baumslag–
Solitar groups.

I also intend to study the problem of computing stable commutator length in other types of
groups. In order for this problem to be tractable, one would like the group in question to be the
fundamental group of a relatively simple space. Perhaps the natural next class of groups to study is
surface groups, i.e. groups that are the fundamental group of a closed surface of genus at least 2.

Problem 2. Find an algorithm for computing stable commutator length in surface groups.

2 Quasimorphisms on groups acting on trees and spectral gaps

The relationship (2) implies that every homogeneous quasimorphism with nonzero defect gives a
lower bound on stable commutator length. Specifically, if f is a homogeneous quasimorphism on
G with f(g) = 1 and defect D, then scl(g) ≥ 1/2D. Therefore one can attempt to study stable
commutator length by constructing homogeneous quasimorphisms and considering the lower bounds
on stable commutator length that they give.

There are relatively few known ways to build quasimorphisms. Perhaps the simplest examples
of quasimorphisms are the counting quasimorphisms on free groups [26, 7, 22]. Let w be a reduced
word in the generators of a free group Fn. Given an element g ∈ Fn, define Cw(g) to be the number
of occurrences of w in the reduced representative of g. Then a quasimorphism Hw on Fn is defined
by setting Hw(g) = Cw(g) − Cw−1(g). Variants of this construction have been used to construct
quasimorphisms on word-hyperbolic groups [18], groups acting on Gromov hyperbolic spaces [19],
amalgamated free products and HNN extensions [20], and mapping class groups [4, 5, 3].

Clay, Forester, and I [16] have studied homogeneous quasimorphisms of this type for groups
acting on trees. We construct such quasimorphisms and show that their defect is at most 6. When
an element of the group is what we call well aligned, we obtain a uniform lower bound on its stable
commutator length. This notion of being well aligned agrees with the double coset condition in [13]
in the case of an amalgamated free product of groups acting on its associated Bass–Serre tree.

Theorem 3 (Clay–Forester–L. [16]). Suppose G acts on a simplicial tree T . If g ∈ G is well aligned
then scl(g) ≥ 1/12.

This is an improvement on a result of Calegari–Fujiwara [13]. Moreover, this bound is optimal.
Formula (3) shows that, in BS(2, 3), we have scl(tat−1a) = 1/12, and this element is well aligned
with respect to the action on the associated Bass–Serre tree. This bound is also optimal if we
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restrict to amalgamated free products of groups because, in the group PSL(2,Z) ∼= Z/2Z ∗ Z/3Z,
the element

(
1 0
1 1

)
has stable commutator length 1/12 (see [25]), and this element is well aligned

with respect to the action on the associated Bass–Serre tree. This answers Question 8.4 from [13].
Not all hyperbolic elements are well aligned. For example, there are 3–manifold groups that split

as amalgamated free products and contain hyperbolic elements with very small stable commutator
length; see [13]. However, by restricting to trees that are acylindrical, we can obtain lower bounds on
stable commutator length that apply to all hyperbolic elements. These bounds are almost universal,
depending only on the acylindricity constant. Alternatively, one can obtain a genuine uniform lower
bound by considering only elements with translation length greater than or equal to the acylindricity
constant.

Theorem 4 (Clay–Forester–L. [16]). Suppose G acts K–acylindrically on a tree T and let N be the
smallest integer greater than or equal to K

2 + 1.

1. If g ∈ G is hyperbolic then either scl(g) = 0 or scl(g) ≥ 1/12N .

2. If g ∈ G is hyperbolic and |g| ≥ K then either scl(g) = 0 or scl(g) ≥ 1/24.

In both cases, scl(g) = 0 if and only if g is conjugate to g−1.

Spectral gaps. We use Theorem 3 to show that there is a gap in the stable commutator length
spectrum for Baumslag–Solitar groups. Results of a similar type have previously been established
for several other classes of groups. Perhaps the first result in this direction is a result of Duncan–
Howie [17] that implies that stable commutator length is always at least 1/2 in free groups. A
result of Calegari–Fujiwara [13] shows that there is a gap above 0 in the stable commutator length
spectrum for word-hyperbolic groups. A recent result of Bromberg–Bestvina–Fujiwara [3] shows
that there is also a gap above 0 in the stable commutator length spectrum for mapping class groups.

We show that, if an element g of a Baumslag–Solitar group is not well aligned with respect to
the action on the associated Bass–Serre tree, then its action on the Bass–Serre tree must be such
that we can conclude that scl(g) = 0. Combining this with Theorem 3, we obtain the following gap
theorem for Baumslag–Solitar groups.

Theorem 5 (Clay–Forester–L [16]). For every element g ∈ BS(m, `), either scl(g) = 0 or scl(g) ≥
1/12.

A natural question is how much more generally it is true that elements that are not well aligned
must have stable commutator length 0.

Problem 3. Determine whether the proof of Theorem 5 can be generalized to groups other than
Baumslag–Solitar groups.

Another interesting problem is to determine the precise size of the spectral gap for mapping
class groups. This would involve understanding the defects of the quasimorphisms used in [3].

Problem 4. Determine the exact size of the spectral gap for mapping class groups. Which mapping
classes have minimal positive stable commutator length?

3 Extremal quasimorphisms

For a fixed group element, it is known that the supremum in (2) is always achieved (see [9]). It
is interesting to study which quasimorphisms achieve this supremum, i.e. when the lower bounds
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on stable commutator length discussed in Section 2 are sharp. Certifying that a quasimorphism is
extremal for certain elements would give an indirect way to compute the stable commutator length
of these elements. Two natural questions can be asked about when homogeneous quasimorphisms
are extremal.

Question 1. Given an element, which homogeneous quasimorphisms are extremal for it?

Question 2. Given a homogeneous quasimorphism, for which elements is it extremal?

I have studied Question 2 for a well-known group, the modular group PSL(2,Z), and a naturally
occuring quasimorphism, the rotation quasimorphism. The rotation quasimorphism on PSL(2,Z) is
equal to the homogenization of the classical Rademacher function, and may therefore be described
in a number of equivalent ways (see [1]). Perhaps the most explicit description is as follows (see [24]).
Define L =

(
1 1
0 1

)
and R =

(
1 0
1 1

)
. Suppose A is a hyperbolic element of PSL(2,Z). Then A is

conjugate to an element of the form Ra1Lb1 . . . RanLbn , ai, bi > 0, and this is unique up to cyclic
permutation. In this case,

rot(A) =

∑n
i=1 ai −

∑n
i=1 bi

6
.

If A is non-hyperbolic, then it either finite order, in which case the rotation quasimorphism takes
the value 0, or parabolic, in which case it is conjugate to Ra or Lb. Define rot(Ra) = a/6 and
rot(Lb) = −b/6.

Progress in understanding the extremality of the rotation quasimorphism on the modular group
has come from a geometric approach. Say that a curve γ in a topological space Y virtually bounds
an immersed surface if there is an immersion S → Y mapping ∂S to a cover of γ in an orientation-
preserving way. The following stability theorem shows that certain families of closed geodesics
virtually bound immersed surfaces.

Theorem 6 (Calegari–L. [14]). For every hyperbolic element of the modular group, the product of
this element with a sufficiently large power of a parabolic element is represented by a geodesic in the
modular surface H2/PSL(2,Z) that virtually bounds an immersed surface.

The rotation quasimorphism is easily seen to be extremal for finite order and parabolic elements,
and it follows from work of Calegari [8] that it is extremal for a hyperbolic element of the modular
group if and only if the corresponding geodesic on the modular surface H2/PSL(2,Z) virtually
bounds an immersed surface. Therefore this theorem implies that the rotation quasimorphism is
extremal for the corresponding elements of PSL(2,Z).

Corollary (Calegari–L. [14]). For every element of the modular group PSL(2,Z), the product of this
element with a sufficiently large power of a parabolic element is an element for which the rotation
quasimorphism is extremal.

It is worth mentioning that this result is surprising, as one expects that generically scl(A) 6=
rot(A)/2. This is because Calegari–Maher [15] show that, in any hyperbolic group, the stable
commutator length of a random word of length k has order k/ log k. On the other hand, the rotation
quasimorphism satisfies a central limit theorem, and hence its value on a random word of length k
has order

√
k (see [12], [6]).

Although we have shown that the rotation quasimorphism is extremal for certain families of
elements of the modular group, the exact condition controlling the extremality of the rotation
quasimorphism is unclear. This is a natural question for further study.

Problem 5. Characterize the elements of the modular group for which the rotation quasimorphism
is extremal.
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Specifically, I hope to characterize these elements in terms of the arithmetic codings of geodesics
on the modular surface given by Katok–Ugarcovici [23].

Since extremal quasimorphisms always exist, when the rotation quasimorphism is not extremal,
there must be some other quasimorphism that is. A number of quasimorphisms on PSL(2,Z) can be
constructed from the counting quasimorphisms Hw on F2 described in Section 2. Given an element
of PSL(2,Z), find the corresponding formal sum of elements of F2, as explained in [25]. Define a
quasimorphism on PSL(2,Z) by setting its value on a particular element equal to the sum of the
values of Hw on the corresponding elements of F2. I have an algorithm for computing the elements
of F2 corresponding to an element of PSL(2,Z) and have written a program that implements this
algorithm. I will use this to calculate values of various such quasimorphisms on PSL(2,Z) and
will compare these values with values of stable commutator length on PSL(2,Z) in an attempt to
understand when these quasimorphisms are extremal.

Since the three-strand braid group is a central extension of the modular group, our procedure for
computing stable commutator length in the modular group extends to the three-strand braid group.
The rotation quasimorphism lifts from PSL(2,Z) to B3, and our result gives information about
when this lifted quasimorphism is extremal. The procedure for computing stable commutator length
does not generalize to higher-strand braid groups, however, and therefore I would like to understand
why certain quasimorphisms are extremal for three-strand braids, with the goal of carrying these
reasons over to higher-strand braid groups. This would give an indirect method for computing the
stable commutator length of higher-strand braids.

Another interesting family of quasimorphisms on braid groups are the signature quasimorphisms
defined by Gambaudo–Ghys [21]. One can compute values of these quasimorphisms in certain
special cases, but it seems difficult to do this in general. I have been working with a homological
description of these quasimorphisms in which the computation may be more tractable, and hope to
be able to determine when these quasimorphisms are extremal.

Problem 6. Characterize the braids for which the signature quasimorphisms defined by Gambaudo–
Ghys are extremal.
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