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Overview

In the previous section, we learned to calculate the instantaneous rate of
change of a function f (x , y) at a point (a, b) in exactly two directions:
parallel to the x-axis and parallel to the y -axis. Believe it or not, just
these two directions are enough to get us to our first application of
derivatives: tangent planes.

Recall that in single-variable calculus, you can use the derivative of a
function f (x) at a point to give an equation of the tangent line to f at
that point. Given a two-variable function f (x , y), the partial derivatives
at a point can be used to specify a similar object: a plane tangent to the
graph of f . In this section we will discuss how to construct such a
tangent plane, and then learn how to give an equation for it. We will
then turn to one of its uses: estimating values of f (x , y).
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What is the Tangent Plane?

Suppose we have a two-variable function f (x , y) whose graph is the
surface S . Recall from the previous section that the partial derivatives
fx(a, b) and fy (a, b) of f give the respective slopes of the lines T1 and T2

that lie tangent to S at the point P = (a, b, c) as in the following figure:



What is the Tangent Plane?, cont.

Note that the lines T1 and T2 generate a unique plane that contains
them both:

This is the plane tangent to S at the point P, i.e., the tangent plane at
P, so called because it contains the two tangent lines. Note that it, too
lies tangent to S .



Toward an Equation

This is a nice definition, but it tells us very little about how to give an
equation for such a plane. That is our next goal.

Recall the generic vector equation for a plane in R3:

#—n · ( #—r − #—r0) = 0

where #—n is a vector orthogonal (essentially, perpendicular) to the plane;
#—r is the vector 〈x , y , z〉 whose tail is placed at the origin and whose head
is a generic point in the plane; and #—r 0 is a vector whose tail is placed at
the origin and whose head is a known point on the plane.

In order to give an equation for the tangent plane on the previous slides,
we need to find suitable vectors to serve as #—n and #—r0 .



Finding #—r0

Let’s begin with #—r0 .

Notice that the tangent lines T1 and T2 pass through the point P on the
graph of f (x , y). Therefore the tangent plane, which contains both
tangent lines, does, too. To work out the vector #—r0 , then, we just need to
know the coordinates of P.

Recall that the graph of f (x , y) is the set of all points (x , y , z) in R3

satisfying z = f (x , y), where (x , y) is in the domain of f . Therefore, we
may construct the graph of f (x , y) point-by-point by choosing a point
(x0, y0) in the domain of f (x , y), plugging (x0, y0) into f (x , y), and then
plotting the resulting point (x0, y0, f (x0, y0)) on the graph of f (x , y).



Finding #—r0 , cont.

We will assume, following our sketch on a previous slide, that the x- and
y -coordinates of P are a and b, respectively. Therefore, by the
construction on the previous slide, P has coordinates (a, b, f (a, b)), so
that we may write:

#—r0 :=
〈
a, b, f (a, b)

〉



A Normal Vector

Now we will find a normal vector #—n .

Since a normal vector is orthogonal to the tangent plane, it must also be
othogonal to the tangent lines T1 and T2, as these lie in the tangent
plane. This observation will help to simplify our efforts.

How can we find a vector orthogonal to these two intersecting lines?
Here’s the key idea: Both lines contain direction vectors. Therefore, if we
find a direction vector for each line, we can find a vector perpendicular to
both of these (and hence both tangent lines, and therefore the tangent
plane) using the cross product!

Let’s get to it.



A Normal Vector, cont.

We begin by finding a direction vector for the line T1.

Recall that the slope of T1 is fx(a, b). That is, for any two points
(x1, b, z1) and (x2, b, z2) on T1, we have:

(z2 − z1)

(x2 − x1)
=

∆z

∆x
= fx(a, b) =

fx(a, b)

1

In particular, if we choose x1 and x2 so that they are one unit apart, the
constant ratio above tells us that z2 − z1 = fx(a, b), and hence the vector
connecting these two points on T1 is:

#—v1 := 〈x2 − x1, b − b, z2 − z1〉 =
〈
1, 0, fx(a, b)

〉
This is a direction vector for T1.



A Normal Vector, cont.

A similar argument to the one on the previous slide tells us that a
direction vector for T2 is:

#—v2 :=
〈
0, 1, fy (a, b)

〉
(convince yourself of this).

Therefore, a vector perpendicular to both, and hence a vector orthogonal
to the tangent plane, is:

#—n := #—v2 × #—v1 =

∣∣∣∣∣∣∣∣
#—
i

#—
j

#—

k

0 1 fy (a, b)

1 0 fx(a, b)

∣∣∣∣∣∣∣∣ =
〈
fx(a, b), fy (a, b),−1

〉



An Equation

Therefore, putting everything together, an equation of the plane tangent
to the graph of f (x , y) at the point (a, b, f (a, b)) is:〈

fx(a, b), fy (a, b),−1
〉
·
(
〈x , y , z〉 −

〈
a, b, f (a, b)

〉)
= 0

which, in scalar form is:

fx(a, b)(x − a) + fy (a, b)(y − b)− (z − f (a, b)) = 0

Most commonly, this is rearranged to:

z = fx(a, b)(x − a) + fy (a, b)(y − b) + f (a, b)



Example

Find an equation of the plane T0 that lies tangent to the surface
2x2 + y2 − z = 0 at the point (1, 3, 11).

On the previous slide, we gave a generic equation for the plane that lies
tangent to the graph of a function f (x , y) at a given point. To utilise
that formula here, we must first work out what function has the surface
2x2 + y2 − z = 0 as its graph.

Note that we may rearrange the equation 2x2 + y2 − z = 0 as follows:

z = 2x2 + y2

Then, recall again that the graph of the function f (x , y) consists of all
points (x , y , z) satisfying z = f (x , y). Therefore, the function

g(x , y) := 2x2 + y2

has the surface z = 2x2 + y2 (i.e. 2x2 + y2 − z = 0) as its graph.



Example, cont.

From the statement of the problem and our work on the previous two
slides, we know that an equation for T0 will have the general form:

z = gx(1, 3)(x − 1) + gy (1, 3)(y − 3) + 11

Let’s calculate the partial derivatives:

gx(x , y) = 4x ⇒ gx(1, 3) = 4

gy (x , y) = 2y ⇒ gy (1, 3) = 6

Therefore, putting all of this together, an equation for T0 is:

z = 4(x − 1) + 6(y − 3) + 11

Or, in linear form:
z = 4x + 6y − 11
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Framing

We went to all this trouble to define the tangent plane and work out an
equation for it, so a question now confronts us: what can we use this for?
We turn back to single-variable calculus for inspiration.



Single-Variable Calculus

Recall that the derivative of a function f (x) at x = a can be used to give
an equation for the line L(x) that lies tangent to the graph of f (x) at the
point (a, f (a)):

Note in particular that the values of L(x) are close to the values of f (x)
when x is near a, so, the values of L(x) can be used to approximate the
values of f (x) near x = a.



Linear Approximation

In many cases, this observation can help us save time and energy.
Suppose f is a computationally expensive function, like, say:

f (x) = ln
(
cos(π(x + 6))−|x − 4|

)
Suppose we want to know a value of f (x) near x = 4; say e.g. f (4.1).
f (4) is relatively easy to compute (try it!), but f (4.1) is decidedly not.
Since f ′(4) is also relatively straightforward to compute, depending on
the level of accuracy needed it may be worth it to instead approximate
f (4.1) with the computationally inexpensive tangent line at x = 4:

L(x) = 4− x

as f (4.1) ≈ L(4.1), and 4− 4.1 = −0.1 is much easier to calculate (by
hand or machine) than f (4.1).



The Picture

In R3 we have an analogous picture.

Below are three images of a surface and the plane tangent to that surface
at a point. From left to right, we gradually zoom in on the point where
the two meet:



The Picture, cont.

As we zoom in, the plane and the surface become almost
indistinguishable from one another. Thus, if this surface is the graph of a
two-variable function f (x , y), we can use the tangent plane to estimate
values of f near the point of intersection.



Linear Approximation

Recall that an equation of the plane tangent to the graph of f (x , y) at
(a, b, f (a, b)) is

z = fx(a, b)(x − a) + fy (a, b)(y − b) + f (a, b)

Since the points on the plane are close to the points on the graph of
z = f (x , y) when (x , y) is near (a, b), we have:

f (x , y) ≈ fx(a, b)(x − a) + fy (a, b)(y − b) + f (a, b)

when (x , y) is near (a, b). This entire expression is called the linear
approximation or tangent plane approximation of f at (a, b). The
right-hand side alone is called the linearization of f at (a, b), often
written:

L(x , y) = fx(a, b)(x − a) + fy (a, b)(y − b) + f (a, b)



Example

We saw above that an equation of the plane that lies tangent to the
graph of g(x , y) = 2x2 + y2 at the point (1, 3, 11) is z = 4x + 6y − 11.
Use this to estimate g(1.1, 2.9).

From the previous slide, we have g(x , y) ≈ 4x + 6y − 11. Therefore:

g(1.1, 2.9) ≈ 4(1.1) + 6(2.9)− 11 = 10.8



Example

Find the linearization L(x , y) of f (x , y) = xexy at (1, 0) and use it to
approximate f (1.1,−0.1).

Recall that the linearization of f at (1, 0) is simply the right side of an
equation of the plane tangent to f at (1, 0). So, we begin by finding the
latter. An equation for the plane that lies tangent to the graph of f (x , y)
at the point (1, 0) is:

z = fx(1, 0)(x − 1) + fy (1, 0)(y − 0) + f (1, 0)

We have:

fx(x , y) = exy + xyexy ⇒ fx(1, 0) = 1

fy (x , y) = x2exy ⇒ fy (1, 0) = 1

f (1, 0) = 1



Example, cont.

Therefore, an equation of the plane that lies tangent to the graph of
f (x , y) at the point (1, 0, 1) is:

z = 1(x − 1) + 1(y − 0) + 1

Thus, the linearization of f at (1, 0) is

L(x , y) = (x − 1) + y + 1

which gives:

f (1.1,−0.1) ≈ L(1.1,−0.1) = (1.1− 1)− 0.1 + 1 = 1



A Final Note

You can also create linear approximations for functions of more variables,
and the equation is wholly analogous. For example, for a function of
three variables, we can approximate it near (a, b, c) using:

f (x , y , z) ≈ f (a, b, c) + fx(a, b, c)(x − a)+

fy (a, b, c)(y − b) + fz(a, b, c)(z − c)



Table of Contents

Tangent Planes

Linear Approximations

Exercises



Exercises

1. Find an equation of the plane T that lies tangent to the graph of
z = (x + 2)2 − 2(y − 1)2 − 5 at (2, 3, 3).

2. Find the linearization L(x , y) of f (x , y) =
√
xy at (1, 4).

3. Use the linearization you found in the previous exercise to estimate
f (1.1, 3.9).



Solutions

1. One possible equation for T is z = 8x − 8y + 11.

2. L(x , y) = x + y
4

3. f (1.1, 3.9) ≈ L(1.1, 3.9) = 2.075
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