Estimating Sums June 27, 2006

- 1. Given positive real numbers x_1, x_2, \ldots, x_n whose sum is an integer, prove that one can choose a nonempty proper sublist of the x_i such that the fractional part of the sum of this sublist is at most 1/n.
- 2. (IMO, 1987) Let x_1, x_2, \ldots, x_n be real numbers satisfying $x_1^2 + x_2^2 + \cdots + x_n^2 = 1$. Prove that for every integer $k \ge 2$ there are integers a_1, a_2, \ldots, a_n , not all zero, such that $|a_i| \le k - 1$ for all i, and $|a_1x_1 + a_2x_2 + \cdots + a_nx_n| \le (k - 1)\sqrt{n}/(k^n - 1)$.
- 3. Given a set of n nonnegative numbers whose sum is 1, prove that there exist two disjoint subsets, not both empty, whose sums differ by at most $1/(2^n 1)$. Is this bound optimal for every n?
- 4. Let n be an odd positive integer and let $x_1, \ldots, x_n, y_1, \ldots, y_n$ be nonnegative real numbers satisfying $x_1 + \cdots + x_n = y_1 + \cdots + y_n$. Show that there exists a proper, nonempty subset $J \subset \{1, \ldots, n\}$ such that

$$\frac{n-1}{n+1}\sum_{j\in J}x_j \le \sum_{j\in J}y_j \le \frac{n+1}{n-1}\sum_{j\in J}x_j.$$

- 5. Fix c with 1 < c < 2 and, for $x_1 < x_2 < \cdots < x_n$, call the (unordered) set $\{x_1, x_2, \ldots, x_n\}$ "biased" if there exist $1 \le i, j \le n-1$ such that $x_{i+1}-x_i > c(x_{j+1}-x_j)$. Suppose s_1, s_2, \ldots are distinct real numbers and $0 \le s_i \le 1$ for all *i*. Prove that there are infinitely many *n* such that the set $\{s_1, s_2, \ldots, s_n\}$ is biased.
- 6. (Poland, 1998) For i = 1, 2, ..., 7, a_i and b_i are nonnegative numbers such that $a_i + b_i \leq 2$. Prove that there exist distinct indices i, j such that $|a_i a_j| + |b_i b_j| \leq 1$.
- 7. Let $n \ge 3$ be odd. Given numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$ from the interval [0, 1], show that there exist distinct indices i, j such that $0 \le a_i b_j b_i a_j \le 2/(n-1)$.
- 8. (Hungary, 1997) We are given 111 unit vectors in the plane whose sum is zero. Show that there exist 55 of the vectors whose sum has length less than 1.
- 9. (IMO, 1997) Let x_1, x_2, \ldots, x_n be real numbers satisfying $|x_1 + \cdots + x_n| = 1$ and $|x_i| \le (n+1)/2$ for all *i*. Show that there exists a permutation (y_i) of (x_i) such that $|y_1 + 2y_2 + \cdots + ny_n| \le (n+1)/2$.
- 10. (Spain, 1997, adapted) The real numbers x_1, \ldots, x_n have a sum of 0. Prove that there exists an index *i* such that $x_i + x_{i+1} + \cdots + x_j \ge 0$ for all $i \le j < i + n$, where the indices are defined modulo *n*.

- 11. (Austria-Poland, 1995) Let v_1, v_2, \ldots, v_{95} be three-dimensional vectors with all coordinates in the interval [-1, 1]. Show that among all vectors of the form $s_1v_1 + s_2v_2 + \cdots + s_{95}v_{95}$, where $s_i \in \{-1, 1\}$ for each *i*, there exists a vector (a, b, c) satisfying $a^2 + b^2 + c^2 \leq 48$. Can the bound of 48 be improved?
- 12. (Iran, 1999) Suppose that r_1, r_2, \ldots, r_n are real numbers. Prove that there exists $S \subset \{1, 2, \ldots, n\}$ such that $1 \leq |S \cap \{i, i+1, i+2\}| \leq 2$ for $1 \leq i \leq n-2$, and

$$\left|\sum_{i\in S} r_i\right| \ge \frac{1}{6} \sum_{i=1}^n |r_i|.$$

- 13. (USA, 1996) For any nonempty set S of real numbers, let $\sigma(S)$ denote the sum of the elements of S. Given a set A of n positive numbers, consider the collection of all distinct sums $\sigma(S)$ as S ranges over the nonempty subsets of A. Prove that this collection of sums can be partitioned into n classes so that, in each class, the ratio of the largest sum to the smallest sum does not exceed 2.
- 14. (Russia, 1997) 300 apples are given, no one of which weighs more than 3 times any other. Show that the apples may be divided into groups of 4 such that no group weighs more than 3/2 times any other group.
- 15. (Iran, 1999) Suppose that $-1 \le x_1, \ldots, x_n \le 1$ are real numbers such that $x_1 + \cdots + x_n = 0$. Prove that there exists a permutation σ such that, for every $1 \le p \le q \le n$,

$$|x_{\sigma(p)} + x_{\sigma(p+1)} + \dots + x_{\sigma(q-1)} + x_{\sigma(q)}| \le 2 - \frac{1}{n}.$$

- 16. (Iran, 1996) For $S = \{x_1, \ldots, x_n\}$ a set of *n* real numbers, all at least 1, we count the number of reals of the form $\sum_{i=1}^{n} \epsilon_i x_i$, $\epsilon \in \{0, 1\}$ lying in an open interval *I* of length 1. Find the maximum value of this count over all *I* and *S*.
- 17. (Beatty's Theorem) If α and β are positive irrationals satisfying $1/\alpha + 1/\beta = 1$, show that every interval (n, n+1), where n is a positive integer, contains exactly one integer multiple of either α or β .
- 18. (Putnam, 1994) Let (r_n) be a sequence of positive reals with limit 0. Let S be the set of all numbers expressible in the form $r_{i_1} + \cdots + r_{i_{1994}}$ for positive integers $i_1 < i_2 < \cdots < i_{1994}$. Prove that every interval (a, b) contains a subinterval (c, d) whose intersection with S is empty.
- 19. Let x_1, \ldots, x_n be arbitrary real numbers. Prove that the number of pairs $\{i, j\}$ satisfying $1 < |x_i x_j| < 2$ does not exceed $n^2/4$.