- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- <u>15 Problem 15</u>
- 16 See also

Problem 1

In quadrilateral ABCD, $\angle B$ is a right angle, diagonal \overline{AC} is perpendicular to \overline{CD} , AB=18, BC=21, and CD=14. Find the perimeter of ABCD.

Solution

Problem 2

Let set \mathcal{A} be a 90-element subset of $\{1, 2, 3, \dots, 100\}$, and let \mathcal{S} be the sum of the elements of \mathcal{A} . Find the number of possible values of \mathcal{S} .

Solution

Problem 3

Find the least positive integer such that when its leftmost digit is deleted, the resulting integer is 1/29 of the original integer.

Solution

Problem 4

Let N be the number of consecutive 0's at the right end of the decimal representation of the product $1!2!3!4!\cdots 99!100!$. Find the remainder when N is divided by 1000.

Solution

Problem 5

The number $\sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}$ can be written as $a\sqrt{2}+b\sqrt{3}+c\sqrt{5}$, where a,b, and c are positive integers. Find $a\cdot b\cdot c$. Solution

Problem 6

Let \mathcal{S} be the set of real numbers that can be represented as repeating decimals of the form $0.\overline{abc}$ where a,b,c are distinct digits. Find the sum of the elements of \mathcal{S} .

Solution

Problem 7

An angle is drawn on a set of equally spaced parallel lines as shown. The ratio of the area of shaded region $\mathcal C$ to the area of shaded region $\mathcal B$ is 11/5. Find the ratio of shaded region $\mathcal D$ to the area of shaded region $\mathcal A$.

• The cube immediately on top of a cube with edge-length k must have edge-length at most k+2.

Let T be the number of different towers than can be constructed. What is the remainder when T is divided by 1000?

Solution

Problem 12

Find the sum of the values of x such that $\cos^3 3x + \cos^3 5x = 8\cos^3 4x\cos^3 x$, where x is measured in degrees and 100 < x < 200.

Solution

Problem 13

For each even positive integer x, let g(x) denote the greatest power of 2 that divides x. For example, g(20) = 4 and g(16) = 16. For each positive integer

 n_1 let $S_n = \sum_{k=1}^{n} g(2k)$. Find the greatest integer n less than 1000 such that S_n is a perfect square.

Solution

Problem 14

A tripod has three legs each of length 5 feet. When the tripod is set up, the angle between any pair of legs is equal to the angle between any other pair, and the top of the tripod is 4 feet from the ground In setting up the tripod, the lower 1 foot of one leg breaks off. Let h be the height in feet of the top of the tripod from the ground when the broken tripod is set up. Then h can be written in the form $\frac{m}{\sqrt{n}}$, where m and n are positive integers and n is not

divisible by the square of any prime. Find $\lfloor m + \sqrt{n} \rfloor$. (The notation $\lfloor x \rfloor$ denotes the greatest integer that is less than or equal to x.)

Solution

Problem 15

Given that a sequence satisfies $x_0 = 0$ and $|x_k| = |x_{k-1} + 3|$ for all integers $k \ge 1$, find the minimum possible value of $|x_1 + x_2 + \cdots + x_{2006}|$.

Solution

See also

- American Invitational Mathematics Examination
- AIME Problems and Solutions
- 2006 AIME | Math Jam Transcript
- Mathematics competition resources

Retrieved from "http://www.artofproblemsolving.com/Wiki/index.php/2006_AIME_I_Problems"

This page was last modified on 2 January 2009, at 22:21. This page has been accessed 8,919 times.

Privacy policy

About AoPSWiki

Disclaimers

Art of Problem Solving's <u>Introduction to Counting & Probability</u> course starts on Oct. 8. An introduction to many discrete math fundamentals, including many strategies for