Rational and Irrational Numbers

Putnam Practice

September 7, 2004

A rational number is one that can be expressed in the form a / b, where a, b are integers and $b \neq 0$. To represent a given non-zero rational number, we can choose a / b such that a is an integer, b is a natural number, and $(a, b)=1$. We shall say then that the representative fraction is in lowest terms. An easy consequence of the definition is that any rational number has a periodic decimal expansion. Real numbers with non-repeating decimal expansions cannot be expressed in the form a / b and are called irrational.

A number that satisfies an equation of the form

$$
c_{0} x^{n}+c_{1} x^{n-1}+\ldots+c_{n-1} x+c_{n}=0 ;
$$

where c_{0}, \ldots, c_{n} are integers and $c_{0} \neq 0$ is called algebraic. A number that is not algebraic is called transcendental. It is known that π and e are transcendental numbers.

Theorem 1 (Rational Root Theorem) If $c_{0}, c_{1}, \ldots c_{n}$ are integers, a / b is in lowest terms and $x=a / b$ is a root of the equation

$$
c_{0} x^{n}+c_{1} x^{n-1}+\ldots+c_{n-1} x+c_{n}=0
$$

then $a \mid c_{n}$ and $b \mid c_{0}$.
Example 1 Prove that $\sqrt{2}+\sqrt{3}$ is irrational.
Solution: Set $x=\sqrt{2}+\sqrt{3}$. Squaring, we find $x^{2}=5+2 \sqrt{6}$ and $\left(x^{2}-5\right)^{2}=24$. Thus x is a root of equation $x^{4}-10 x^{2}+1=0$. However, according to the Rational Root Theorem, the only possible rational roots of this equation are $x=1,-1$. Neither 1 nor -1 satisfies the equation, so all its roots are irrational. In particular, $\sqrt{2}+\sqrt{3}$ is irrational.

Example 2 (1974 Putnam) Prove that if α is a real number such that $\cos (\alpha \pi)=1 / 3$ then α is irrational.

Solution: From the addition formula for the cosine we have

$$
\cos (n+1) \theta+\cos (n-1) \theta=2 \cos \theta \cos n \theta
$$

Set $x=2 \cos \theta$ and $P_{n}(x)=2 \cos n \theta$, then

$$
P_{n+1}(x)=x P_{n}(x)-P_{n-1}(x)
$$

with $P_{0}(x)=2$ and $P_{1}(x)=x$. By induction we can see that $P_{n}(x)$ is a monic polynomial. Suppose $\cos (m \pi / n)=a / b$ where a, b, m, n are integers. Then

$$
P_{n}(2 a / b)=2 \cos (m \pi)=2(-1)^{m}
$$

so $x=2 a / b$ is a root of the equation

$$
x^{n}+\ldots+c_{n-1} x+c_{n}=0 .
$$

By Rational Root Theorem, $2 a / b=2 \cos (m \pi / n)$ must be an integer, and since $|\cos \theta| \leq 1$ for all θ, the only possibilities are $2 a / b=0, \pm 1, \pm 2$. Thus $0, \pm 1 / 2, \pm 1$ are the only possible rational values for $\cos (\alpha \pi)$ if α is rational. In particular, if $\cos (\alpha \pi)=1 / 3$ then α is irrational.

Example 3 (1949 Putnam) Let a / b (in lowest terms) represent a rational number that lies in the open interval $(0,1)$. Prove that

$$
|a / b-\sqrt{2} / 2|>\frac{1}{4 b^{2}}
$$

Solution: Since $\sqrt{2}$ is irrational, we know that $2 a^{2}-b^{2} \neq 0$. But $2 a^{2}-b^{2}$ is an integer, so in fact $\left|2 a^{2}-b^{2}\right| \geq 1$. It follows that

$$
|(a / b-\sqrt{2} / 2)(a / b+\sqrt{2} / 2)|=\frac{\left|2 a^{2}-b^{2}\right|}{2 b^{2}} \geq \frac{1}{2 b^{2}} .
$$

But a / b and $\sqrt{2} / 2$ are each in $(0,1)$, so

$$
a / b+\sqrt{2} / 2<2
$$

Consequently,

$$
|a / b-\sqrt{2} / 2|>\frac{1}{4 b^{2}}
$$

1 Problems

1. In the process of expanding the rational number a / b, where $0<b<$ 100, a student obtained the block of digits 143 somewhere beyond the decimal point. Prove that he made a mistake.
2. Prove that each of the following numbers is irrational.

- $\sqrt{2}+\sqrt[3]{3}$
- $\log _{10} 2$
- $\pi+\sqrt{2}$

Hint: to prove the last item, show that if $x+\sqrt{2}$ is rational, then x is algebraic.
3. Show that $x=2 \cos (\pi / 7)$ satisfies the equation

$$
x^{3}+x^{2}-2 x-1=0
$$

Using this fact, show that $\cos (\pi / 7)$ is irrational.
4. Prove that there is no set of integers m, n, p except $0,0,0$ for which $m+n \sqrt{2}+p \sqrt{3}=0$. [1955 Putnam]

