Congruence

Putnam practice

November 12, 2003

We say a is congruent to b modulo n and write $a \equiv b \pmod{n}$ if n | (a - b). Let p be a prime and \mathbb{Z}_p denote the set $\{0, 1, \dots, p-1\}$. Define + and \cdot on \mathbb{Z}_p using congruence modulo p. The system $(\mathbb{Z}_p, +, \cdot)$ is a finite field.

Example 1 Prove that $36^{36} + 41^{41}$ is divisible by 77.

Solution: Note $41 \equiv -36 \pmod{77}$. Thus

$$36^{36} + 41^{41} \equiv 36^{36} + (-36)^{41} \equiv 36^{36}(1 - 36^5) \pmod{77}$$

Also note

 $36 \equiv 1 \pmod{7}$

and

$$36^5 \equiv 3^5 \equiv 1 \pmod{11}$$

Thus

$$36^5 \equiv 1 \pmod{77}$$

and we are done.

Theorem 1 (Fermat's Little Theorem) If p is prime and a is not divisible by p, then

 $a^{p-1} \equiv 1 (mod \ p)$

Euler's function is given by $\phi(m) = m \prod_{p|m} (1 - 1/p)$.

Theorem 2 (Euler's Theorem) If (a, m) = 1, then $a^{\phi(m)} \equiv 1 \pmod{m}$.

Example 2 Find the last three digits of 7^{9999} .

Solution: Since $\phi(1000) = 1000(1/2)(4/5) = 400$, we know from Euler's Theorem that

$$7^{1000} = (7^{400})^{25} \equiv 1 \pmod{1000}$$

Note that $7 \cdot 143 = 1001 \equiv 1 \pmod{1000}$. Then

$$7^{9999} \equiv 143 \cdot 7 \cdot 7^{9999} = 143 \cdot 7^{10000} \equiv 143 \pmod{1000}$$

Example 3 Prove that there is no integer n > 1 for which $n|(2^n - 1)$.

Solution: We use the Well-Ordering Principle. Suppose that the set

$$S = \{n|n > 1, n|(2^n - 1)\}$$

is non-empty and let m be its smallest element. Clearly m must be odd. Then by Euler's Theorem $m|(2^{\phi(m)}-1)$. Let $m = \phi(m)q + r, 0 \le r < \phi(m)$, then

$$2^m - 1 = (2^{\phi(m)} - 1)(2^{m - \phi(m)} + \dots + 2^{m - q\phi(m)}) + 2^r - 1$$

Thus

$$(2^m - 1, 2^{\phi(m)} - 1) = (2^{\phi(m)} - 1, 2^r - 1)$$

Let $d = (m, \phi(m))$. By applying the equation above possibly several times we get

$$(2^m - 1, 2^{\phi(m)} - 1) = 2^d - 1$$

Then $m|2^d - 1$. Note that then d > 1. Also $d|(2^d - 1)$ because d|m and $m|(2^d - 1)$. Since $d \le \phi(m) \le m$ we reached a contradiction by producing an element $d \in S$ that is smaller than m.

Theorem 3 Let P be a polynomial with integral coefficients, and let a and b be arbitrary integers. Then P(a) - P(b) is divisible by a - b.

Theorem 4 Let s(n) denote the sum of the digits in the decimal representation of n. Then $n \equiv s(n) \pmod{9}$.

Theorem 5 (Chinese Remainder Theorem) Suppose that $m_1, m_2, ..., m_k$ are pairwise relatively prime and $a_1, a_2, ..., a_k$ are arbitrary integers. Then there exist solutions of the simultaneous congruences

$$x \equiv a_i (mod \ m_i)$$

Any two solutions are congruent modulo $M = m_1 m_2 \dots m_k$.

1 Problems

- 1. Prove that $19^{19} + 69^{69}$ is divisible by 44.
- 2. Find the last 3 digits of 13^{398} .
- 3. What powers of 2 give a remainder of 15 when divided by 17?
- 4. Denote by S(m) the sum of the digits of the positive integer m. Prove that there does not exist a number N such that $S(n) \leq S(n+1)$ for all $n \geq N$.
- 5. Find the fifth digit from the end of the number $5^{5^{5^5}}$.