Some problems from the *American Mathematical Monthly*

1. The perimeter of a triangle ABC is divided into three equal parts by three points P, Q, R. Show that

$$\text{Area}(\triangle PQR) > \frac{2}{9} \text{Area}(\triangle ABC)$$

and that the constant $2/9$ is the best possible.

2. Find all pairs of positive integers m, n such that $\phi(m)|n$ and $\phi(n)|m$, where ϕ denotes Euler’s function.

3. Let S be the boundary of the unit square $[0,1] \times [0,1]$ in \mathbb{R}^2. Suppose f is a continuous real-valued function on S such that $f(x,0)$ and $f(x,1)$ are polynomial functions of x on $[0,1]$ and such that $f(0,y)$ and $f(1,y)$ are polynomial functions of y on $[0,1]$. Prove that f is the restriction to S of a polynomial function of x and y.

4. Suppose n points are independently chosen at random on the perimeter of a circle. What is the probability that all the points lie in some semicircle?

5. A population consisting of particles of various types evolves in time according to the following rule: Each particle is deemed to belong to a unique generation $n = 1, 2, 3, \ldots$. Each particle produces a certain number of “offspring” particles, and, for each n, generation $n+1$ comprises the totality of offspring of the particles in generation n. A particle of type $i = 0, 1, 2, \ldots$ produces exactly $i+2$ offspring, one each of types $0, 1, 2, \ldots, i+1$. Let $N(n,k)$ denote the number of particles in the nth generation when the first generation consists of a single particle of type k. Find a formula for $N(n,k)$.

1