1. (This is a Putnam problem, but I’m not sure from what year:)
 Consider the sequence u_n defined by $u_0 = u_1 = u_2 = 1$, and

 $$\det \begin{pmatrix} u_{n+3} & u_{n+2} \\
 u_{n+1} & u_n \end{pmatrix} = n!,$$

 for $n \geq 0$. Prove that u_n is an integer for all n.

2. (Not actually a Putnam problem:)
 Define

 $$x_n = \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots + \sqrt{1}}}},$$

 where there are n 1’s on the right-hand side. Show that the sequence x_n converges to a limit, and find the limit.