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The one-dimensional nonlinear Schrödinger (NLS) equation

iut + uxx + |u|2u = 0

models the propagation of the envelopes of oscillatory pulses in a
homogenous medium. In many applications, a more suitable model
equation is

iut + d(t)uxx + |u|2u = 0.

For example, in dispersion-managed optical fibers, one would take
d(t) to be a periodic function of the spatial variable t.

2 / 17



For the NLS equation with periodic coefficient d(t), Antonelli,
Saut, & Sparber (2012) proved global well-posedness of the
initial-value problem in L2(R), assuming d(t) is piecewise constant.

The NLS equation is known to have bound-state solutions of
the form u(x , t) = e iωtφ(x) where ω ∈ R is arbitrary and φ(x) is a
localized (hyperbolic secant) function. Numerical studies suggest
that the periodic-coefficient equation has solutions which are
similar in that they are localized in x and periodic in t. (See, e.g.,
Bronski & Kutz 1997; or Grigoryan et al. 1997.)

Figure: Numerical simulation of solitons in dispersion managed fibers;
due to A. Berntson at Chalmers U., Sweden.
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DMNLS equation

For the equation

iut + d(t)uxx + |u|2u = 0,

if d(t) = 1
ε δ( tε ) + α, where δ(t) is periodic and has mean value

zero, then in the limit as ε→ 0, the solution with given initial data
u(x , 0) is well approximated in rescaled variables by the solution of
the dispersion-managed NLS equation (Gabitov & Turitsyn 1996,
Zharnitsky et al., 2001):

iut + αuxx +

∫ 1

0
T (s)−1

[
|T (s)u|2T (s)u

]
ds = 0

with the same initial data. Here T (t) = e−i(
∫ t

0 δ(t′)dt′)∂2
x is the

solution operator for the initial-value problem for the linear
Schrödinger equation

iut + δ(t)uxx = 0.
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In fact, the DMNLS equation can be written in Hamiltonian
form ut = −i∇E (u), with Hamiltonian

E (u) =
α

2

∫ ∞
−∞
|ux |2 dx − 1

4

∫ 1

0

∫ ∞
−∞
|T (s)u|4 dx ds.

Thus the energy space is H1(R) in case α 6= 0, but is L2(R) in
case α = 0.

Note that the value α = 0 is consistent with the assumptions
underlying the derivation of DMNLS as a model equation, and is
within the range of values of α one would expect to see in
applications.

We assume throughout this talk that δ(t) is piecewise C 1 and
bounded away from zero.
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We can ask:

• Does DMNLS have bound-state solutions like those of NLS,
of the form u(x , t) = e iωtφ(x) for localized φ?

• If so, what can we say about the stability of these solutions?
In particular, is DMNLS well-posed in energy space? (In case
α > 0, energy space is H1, so well-posedness is easy.)
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Bound-state solutions u(x , t) = e iωtφ(x) correspond to critical
points φ for the variational problem

inf
{
E (f ) : f ∈ X , ‖f ‖L2(R2) = λ

}
,

where X is energy space (H1 if α 6= 0, L2 if α=0.) Minimizers of
this problem are called ground states.

In case α > 0, Zharnitsky et al. (2001) proved that the set S of
minimizers is nonempty, and in fact every minimizing sequence fj
has a subsequence which converges in H1 to S . It follows that S is
a stable set for the initial-value problem for DMNLS in H1.

In case α < 0, Zharnitsky et al. showed bound states (if they
exist) cannot be minimizers, and did numerical experiments
suggesting that either bound states do not exist or are not stable.
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CR equation

Faou, Germain, & Hani (2016) considered solutions of the cubic
nonlinear Schrodinger equation in R2,

iut + ∆u + |u|2u = 0,

which have small amplitude ε and are periodic with large period L
in both spatial variables. They showed that as ε→ 0 and L→∞
with εL2 ∼ 1, solutions are well approximated by those of the
continuous resonant (CR) equation,

iut +

∫ ∞
−∞

U2(s)−1
[
|U2(s)u|2U2(s)u

]
ds = 0,

in which U2(t) = e−it∆ is the solution operator for the linear
Schrödinger equation

iut + ∆u = 0 on R2.
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This equation is of Hamiltonian form ut = −i∇E2(u), with
Hamiltonian

E2(u) = −1

4

∫ ∞
−∞

∫
R2

|U2(s)u|4 dx ds.

Bound-state solutions u(x , t) = e iωtφ(x) correspond to critical
points φ for the variational problem

inf
{
E2(f ) : ‖f ‖L2(R2) = λ

}
.

Minimizers are the functions φ which attain the best constant S2

in the Strichartz inequality(∫ ∞
−∞

∫
R2

|U2(s)f |4 dx ds

)1/4

≤ S2

(∫
R2

|f |2 dx

)1/2

.

Thus ground states of CR correspond to maximizers for the
Strichartz inequality.
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In fact, it is known that φ is a maximizer for the Strichartz
inequality if and only if φ(x) = αe−β|x−a|

2+b·x , where α 6= 0,
β > 0, a ∈ R2, and b ∈ R2 are arbitrary. Hence S2 = (1/2)1/2

(Foschi, 2007).
Hundertmark and Zharnitsky (2006) gave a beautiful proof of

this fact based on the following geometric interpretation of E2(f ):

E2(f ) = − 1

16
〈f ⊗ f ,P(f ⊗ f )〉L2(R4),

where (f ⊗ f )(x1, x2, x3, x4) := f (x1, x2)f (x3, x4), and P is the
orthogonal projection of L2(R4) onto the subspace of functions
which are invariant under all rotations of R4 which fix both the
points (1, 0, 1, 0) and (0, 1, 0, 1).

A curious fact is that E2(f ) = E2(f̂ ) for all f ∈ L2(R2). In fact,
u is a solution of the CR equation if and only if û is a solution.
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1DCR equation

A one-dimensional analogue of the CR equation is

iut +

∫ ∞
−∞

U1(s)−1
[
|U1(s)u|4U1(s)u

]
ds = 0,

where U1(t) = e−it∂
2
x is the solution operator for the linear

Schrödinger equation

iut + uxx = 0 on R.

The 1DCR equation would be expected to model the behavior of
small-amplitude solutions with large period L for the
one-dimensional quintic NLS equation

iut + uxx + |u|5ux = 0.

11 / 17



Here the Hamiltonian is

E1(u) = −1

6

∫ ∞
−∞

∫ ∞
−∞
|U2(s)u|6 dx ds.

Bound-state solutions correspond to critical points φ for

inf
{
E1(f ) : ‖f ‖L2(R2) = λ

}
,

and ground states are maximizers for the Strichartz inequality(∫ ∞
−∞

∫ ∞
−∞
|U1(s)f |6 dx ds

)1/6

≤ S1

(∫
R2

|f |2 dx

)1/2

.

Foschi showed that φ is a maximizer iff it is a Gaussian, and
S1 = (1/12)1/12. Hundertmark and Zharnitsky also gave a
geometric interpretation of E1.
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Global well-posedness for DMNLS and 1DCR

Theorem

Suppose r ≥ 0.

For every u0 ∈ H r and every M > 0, the DMNLS equation
(for any α ∈ R) and the 1DCR equation have unique strong
solutions u ∈ C ([0,M];H r ) with initial data u0. We have
u ∈ Lqt ([0,M], Lpx (R)) for every p and q satisfying 2 ≤ p ≤ ∞,
4 ≤ q ≤ ∞, and 2/q = (1/2)− (1/p).

The map taking u0 to u is a locally Lipschitz map from H r to
C ([0,M];H r ).

Remark: the same result holds for iut + uxx + |u|2u = 0, and is
known to be sharp in the sense that it does not hold when r < 0.
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Theorem (Kunze, 2004)

Suppose α = 0. Then for each λ > 0, the variational problem

Iλ := inf {E (f ) : ‖f ‖L2 = λ} (1)

has a non-empty set of minimizers S. Moreover, every minimizing
sequence fj has a subsequence which converges in L2 to S. It
follows that S is a stable set for the initial-value problem in L2.

Remark: this is not yet an orbital stability result, since we do
not yet know the structure of S .
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Kunze’s idea (see also Kunze, Moeser, & Zharnitsky [2005]) is
to apply the concentration compactness lemma both to fj and to

the Fourier transforms f̂j , ruling out “vanishing” and “splitting” by
using the subadditivity and negativity of Iλ as a function of λ. We
conclude that both fj and f̂j , when suitably translated, are “tight”.

Now, since f̂j is tight, we can decompose fj into a low-frequency
part f Lj which is bounded in H1, uniformly in j , and a

high-frequency part which is small in L2, uniformly in j . But since
fj is tight, then so is f Lj . Using the compactness of the embedding

of H1 into L2 on bounded domains, we can then conclude that f Lj
has a subsequence which converges strongly in L2. Hence so also
does fj .
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The global well-posedness result for 1DCR is sharp in the sense
that it does not hold for r < 0.

Theorem

Suppose r < 0 and M > 0. There exists B > 0 and C > 0 such
that for every δ > 0, there exist two solutions u(x , t) and v(x , t) of
1DCR in C ([0,M],H r ), with initial data u0 and v0, for which
‖u0‖Hr ≤ B, ‖v0‖Hr ≤ B,

‖u0 − v0‖Hr < δ, (2)

and
‖u(x ,M)− v(x ,M)‖Hr ≥ C . (3)

This shows that that there cannot exist a locally uniformly
continuous map from initial data to solutions in H r when r < 0.
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This is proved by taking

u0(x) = βω1e
iNxφ(ω1x), v0(x) = βω2e

iNxφ(ω2x),

where φ(x) is a (Gaussian) bound-state solution, and

β = N−r−(1/4),

ω1 =
√
N,

ω2 =
√
N(1 + δ),

and N > 0 is a suitable large number.
Remark: The proof depends on knowing explicitly how the

solution behaves when the initial data is dilated:

u(x , t) = βω1e
iβ4ω2

1te iNxφ(ω1x)

v(x , t) = βω2e
iβ4ω2

2te iNxφ(ω2x).

Such formulas are, however, not available for the DMNLS equation.
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