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The one-dimensional nonlinear Schrodinger (NLS) equation
Uy 4 Uy + ]u]2u =0

models the propagation of the envelopes of oscillatory pulses in a
homogenous medium. In many applications, a more suitable model
equation is

iug + d(t)txx + u)?u = 0.
For example, in dispersion-managed optical fibers, one would take
d(t) to be a periodic function of the spatial variable t.
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For the NLS equation with periodic coefficient d(t), Antonelli,
Saut, & Sparber (2012) proved global well-posedness of the
initial-value problem in L2(RR), assuming d(t) is piecewise constant.

The NLS equation is known to have bound-state solutions of
the form u(x, t) = e™f¢(x) where w € R is arbitrary and ¢(x) is a
localized (hyperbolic secant) function. Numerical studies suggest
that the periodic-coefficient equation has solutions which are
similar in that they are localized in x and periodic in t. (See, e.g.,
Bronski & Kutz 1997; or Grigoryan et al. 1997.)
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Figure: Numerical simulation of solitons in dispersion managed fibers;
due to A. Berntson at Chalmers U., Sweden.
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DMNLS equation

For the equation
iug + d(t) e + |u)?u =0,

if d(t) = %6(%) + «, where §(t) is periodic and has mean value
zero, then in the limit as ¢ — 0, the solution with given initial data
u(x,0) is well approximated in rescaled variables by the solution of
the dispersion-managed NLS equation (Gabitov & Turitsyn 1996,
Zharnitsky et al., 2001):

) ! -1 2 _
lut+auxx+/0 T(s) "t [|T(s)ul*T(s)u] ds=0

. t
with the same initial data. Here T(t) = e~/(Jo 8(t)dt)3% s the
solution operator for the initial-value problem for the linear
Schrodinger equation

ilJt + 5(t)uxx =0.



In fact, the DMNLS equation can be written in Hamiltonian
form uy = —iVE(u), with Hamiltonian

E(u)zj/ luy|? dx — = // * dx ds.

Thus the energy space is H*(R) in case a # 0, but is L?(R) in
case a = 0.

Note that the value a = 0 is consistent with the assumptions
underlying the derivation of DMNLS as a model equation, and is
within the range of values of o one would expect to see in
applications.

We assume throughout this talk that §(t) is piecewise C' and
bounded away from zero.
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We can ask:

e Does DMNLS have bound-state solutions like those of NLS,
of the form u(x, t) = e™“t¢(x) for localized ¢?

e If so, what can we say about the stability of these solutions?

In particular, is DMNLS well-posed in energy space? (In case
a > 0, energy space is H', so well-posedness is easy.)
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Bound-state solutions u(x, t) = e™“f¢(x) correspond to critical
points ¢ for the variational problem

inf {E(F) : £ € X, [|Fli2gey = A}

where X is energy space (H if a # 0, L? if @=0.) Minimizers of
this problem are called ground states.

In case a > 0, Zharnitsky et al. (2001) proved that the set S of
minimizers is nonempty, and in fact every minimizing sequence f;
has a subsequence which converges in H! to S. It follows that S is
a stable set for the initial-value problem for DMNLS in H?.

In case o < 0, Zharnitsky et al. showed bound states (if they
exist) cannot be minimizers, and did numerical experiments
suggesting that either bound states do not exist or are not stable.
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Faou, Germain, & Hani (2016) considered solutions of the cubic
nonlinear Schrodinger equation in R?,

ive + Au+ |ulPu =0,

which have small amplitude € and are periodic with large period L
in both spatial variables. They showed that as ¢ —+ 0 and L — oo
with eL? ~ 1, solutions are well approximated by those of the
continuous resonant (CR) equation,

/ut+/ Us(s |U2( )u|2U2(s)u] ds =0,

in which Us(t) = =2 is the solution operator for the linear
Schrodinger equation

ius +Au=0 on R?



This equation is of Hamiltonian form uy = —iVEy(u), with
Hamiltonian

Ex(u) = —4/ o |Us(s)ul* dx ds.

Bound-state solutions u(x, t) = e™f¢(x) correspond to critical
points ¢ for the variational problem

mf{Eg ||f”L2 ]R2 —)\}

Minimizers are the functions ¢ which attain the best constant S,
in the Strichartz inequality

) 1/4 1/2
</ |Ua(s)F]* dx ds) <S </ |2 dx) :
—oo JRR? R2

Thus ground states of CR correspond to maximizers for the
Strichartz inequality.
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In fact, it is known that ¢ is a maximizer for the Strichartz
inequality if and only if ¢(x) = ae Bx—a*+bx \where o # 0,
B>0,acR? and b € R? are arbitrary. Hence S, = (1/2)/2
(Foschi, 2007).

Hundertmark and Zharnitsky (2006) gave a beautiful proof of
this fact based on the following geometric interpretation of Ex(f):

e

E(f) =1

(F@f, P(f ® f))12rey,
where (f ® )(x1, x2, x3,xa) := f(x1,x2)f(x3,xa), and P is the
orthogonal projection of L?(R*) onto the subspace of functions
which are invariant under all rotations of R* which fix both the
points (1,0,1,0) and (0,1,0,1).

A curious fact is that Ex(f) = Ex(F) for all f € [2(R?). In fact,
u is a solution of the CR equation if and only if & is a solution.
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1DCR equation

A one-dimensional analogue of the CR equation is
iug —I—/ Ui(s |U1( )u|4U1(s)u] ds =0,

where Uy(t) = e~/t% is the solution operator for the linear
Schrodinger equation

ity + Uy =0 on R.

The 1DCR equation would be expected to model the behavior of
small-amplitude solutions with large period L for the
one-dimensional quintic NLS equation

iUy + Uy + |u|5uX =0.
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Here the Hamiltonian is

_—/ / |Ua(s)ul® dx ds.

Bound-state solutions correspond to critical points ¢ for
Inf{E]_ Hf”LQ ]RQ —)\}

and ground states are maximizers for the Strichartz inequality

0o oo 1/6 1/2
(/ / (Un(s)FI° dx ds) <5 (/ P dx> .
Y S R2

Foschi showed that ¢ is a maximizer iff it is a Gaussian, and
S; = (1/12)*/12. Hundertmark and Zharnitsky also gave a
geometric interpretation of Ej.
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Global well-posedness for DMNLS and 1DCR

Suppose r > 0.

@ For every ug € H" and every M > 0, the DMNLS equation
(for any o € R) and the 1DCR equation have unique strong
solutions u € C([0, M]; H") with initial data ug. We have
u € L{([0, M], LE(R)) for every p and q satisfying 2 < p < o0,
4<q<oo and2/q=(1/2) - (1/p).

@ The map taking ug to u is a locally Lipschitz map from H" to
C([0, M]; H").

Remark: the same result holds for iu; + uxx + |u|?u =0, and is
known to be sharp in the sense that it does not hold when r < 0.
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Theorem (Kunze, 2004)
Suppose o« = 0. Then for each X\ > 0, the variational problem

I :=inf{E(f) : |||l 2 = \} (1)

has a non-empty set of minimizers S. Moreover, every minimizing
sequence f; has a subsequence which converges in [>toS. It
follows that S is a stable set for the initial-value problem in L2.

Remark: this is not yet an orbital stability result, since we do
not yet know the structure of S.
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Kunze's idea (see also Kunze, Moeser, & Zharnitsky [2005]) is
to apply the concentration compactness lemma both to f; and to
the Fourier transforms Af, ruling out “vanishing” and “splitting” by
using the subadditivity and negativity of /\ as a function of \. We
conclude that both f; and Af, when suitably translated, are “tight”.

Now, since f is tight, we can decompose f; into a low-frequency
part C-L which is bounded in H!, uniformly in j, and a
high-frequency part which is small in L2, uniformly in j. But since
f; is tight, then so is GL. Using the compactness of the embedding
of H! into L? on bounded domains, we can then conclude that GL
has a subsequence which converges strongly in L2. Hence so also
does f;.
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The global well-posedness result for IDCR is sharp in the sense
that it does not hold for r < 0.

Theorem

Suppose r < 0 and M > 0. There exists B > 0 and C > 0 such
that for every 6 > 0, there exist two solutions u(x, t) and v(x,t) of
IDCR in C([0, M], H"), with initial data uy and vy, for which
[luo||r < B, ||vollnr < B,

||U() = V0||Hr < 5, (2)

and
||lu(x, M) — v(x, M)||yr > C. (3)

This shows that that there cannot exist a locally uniformly
continuous map from initial data to solutions in H" when r < 0.
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This is proved by taking
uo(x) = Bwre™ p(wix), vo(x) = Bune™ P(wax),

where ¢(x) is a (Gaussian) bound-state solution, and

8= N-r(1/4),
w1 = \/Nv
wr = VN(1 +9),

and N > 0 is a suitable large number.
Remark: The proof depends on knowing explicitly how the
solution behaves when the initial data is dilated:

u(x, t) = Bwre’“ite™ p(wx)

v(x,t) = szei64w§teiNX¢(w2x).

Such formulas are, however, not available for the DMNLS equation.
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