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Abstract. We consider systems of equations which arise in modelling strong interactions
of weakly nonlinear long waves in dispersive media. For a certain class of such systems, we
prove the existence and stability of localized solutions representing coupled solitary waves
travelling at a common speed. Our results apply in particular to the systems derived by
Gear and Grimshaw and by Liu, Kubota, and Ko as models for interacting gravity waves in
a density-stratified fluid. For the latter system, we also prove that any coupled solitary-wave
solution must have components which are all symmetric about a common vertical axis.

1. Introduction.

Model equations for long, weakly nonlinear waves in fluids are typically derived by

expanding the full equations of motion to first order in a small parameter ε determining

the size of the wave amplitude and inverse wavelength. (The use of one small parameter

to describe these two small quantities implicitly assumes a certain balance between them.)

The solutions of the model equations describe the slow evolution, due to weak dispersive

and nonlinear effects, of a wave which in the linear, non-dispersive limit corresponds to a

mode of a linear eigenvalue problem.

The well-known Korteweg-de Vries equation, for example, was derived in this way by

Benney [7] as a model for internal waves in a vertically stratified fluid. To zeroth order in ε,

the full equations of motion are separable in the horizontal and vertical space coordinates,

giving rise to a Sturm-Liouville problem in the vertical coordinate and the linear wave

equation utt− c2
juxx = 0 in the horizontal coordinate, where the wavespeed cj corresponds

to the jth eigenvalue of the Sturm-Liouville problem. Each individual eigensolution of

the Sturm-Liouville problem thus gives rise to a wave with fixed vertical structure and

horizontal speed ±cj . The Korteweg-de Vries equation describes the effects of weak non-

linearity and weak dispersion on such a wave in the case when the horizontal motion is

unidirectional.
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In this paper, we consider systems of equations which have been derived as models

for the interaction of two (or more) long waves, each of which corresponds to a different

underlying mode or vertical structure. Such systems generally take the form

ht + D−1(∇N(h)− Lh)x = 0, (1.1)

where h is an Rn-valued function of x and t, D is a positive n× n diagonal matrix, ∇N is

the gradient of a homogeneous function N : Rn → R, and L is a Fourier multiplier operator

which acts self-adjointly on the Sobolev space in which (1.1) is posed. The interesting case

is when the wavespeeds corresponding to two different modes have nearly the same value,

so that the modes interact on a time scale long enough for nonlinearity and dispersion to

have a significant effect.

In particular we are interested in solitary waves, or localized travelling-wave solutions

of (1.1) of permanent form. More precisely, by a solitary wave we mean a function g(x) =

(g1(x), . . . , gn(x)) such that g1, . . . , gn are in L2(R) and h(x, t) = g(x − ct) is a solution

of (1.1), for some real number c. In the scalar case n = 1 (which includes the Korteweg-

de Vries equation as a specific example), it is well known that such waves often play an

important or even dominant role in the evolution of general solutions of nonlinear dispersive

wave equations (cf. [9]). This is due in large part to the remarkable stability properties of

solitary waves, which enable them to retain their identity even under large perturbations.

Theoretical explanations of the stability of solitary-wave solutions of (1.1) have undergone

active development in the past three decades, but has so far been restricted to the scalar

case (for a brief overview and some references, see [2]). It is our intention here to extend

some of this work to the case n > 1.

The approach we take to stability theory here is the same that has underlain all proofs

of stability of solitary waves (dating back to one given by Boussinesq himself in 1872 [12]).

First, we observe that equation (1.1) can be put in Hamiltonian form, and hence has the

Hamiltonian functional E itself as a conserved functional. Another conserved functional

Q is defined by Q(h) =
∫∞
−∞

1
2 〈h,Dh〉 dx. It turns out (see Section 2 below) that g is

a solitary-wave solution of (1.1) if and only if g is a critical point for the constrained

variational problem of minimizing E over a level set of Q. Moreover, a standard argument
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shows that if g is actually a local minimizer for E under this constraint, then G, the

intersection of the level sets of E and Q containing g, is a stable set of solitary waves.

This means that for every ε > 0, there exists δ > 0 such that if h is within δ of G (in an

appropriate norm) at time t = 0, then h remains within ε of G for all times t ≥ 0.

In Theorem 2.1 below, we give sufficient conditions for the existence of stable sets of

solitary-wave solutions of (1.1). The conditions include one which is phrased in terms

of the above-mentioned variational problem, but as pointed out in Theorem 2.2, in some

important situations all the conditions can be reduced to simple properties of the func-

tion N and the symbol of the operator L. The proof of Theorem 2.1, which is given in

Section 3, proceeds by using P. Lions’ method of concentration compactness to show the

existence of a non-empty set of global minimizers of E on each level set of Q. The use of

concentration compactness to prove existence and stability of solitary waves goes back to

a paper of Cazenave and Lions on the nonlinear Schrödinger equation [13], and has since

been developed by a number of authors (see, e.g., [3,6,14,18,31]. Our point of departure is

the method of [2], which was easily adapted to handle the systems considered here.

In Section 4, we apply Theorems 2.1 and 2.2 to prove the existence of stable sets of

solitary-wave solutions to systems modelling the strong interaction of long internal waves

in stratified fluids. In the first of these systems, derived by Gear and Grimshaw in [20],

the components h1(x, t) and h2(x, t) of h(x, t) represent the slow horizontal variations, due

to weak nonlinearity and dispersion, of two long waves which in the linear, non-dispersive

limit correspond to two different vertical modes. In the other system, derived by Liu,

Kubota, and Ko in [27], h1 and h2 represent small, long-wavelength disturbances at two

pycnoclines separated by a region of constant density. (The question of how exactly the

situations governed by the two systems relate to each other physically is an interesting

one, to which the present authors do not yet know the answer. In particular, there is no

way to obtain one equation as a scaling limit of the other.)

For reasons mentioned earlier, the derivations of both systems assume that the waves

represented by h1 and h2 travel at nearly the same speed. It is also possible to derive

systems with n ≥ 3, describing the strong simultaneous interactions of three or more

underlying modes, and Theorem 2.1 applies to such systems as well. However, these
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systems are of limited physical interest, since in a given fluid it is relatively unlikely that

one can find three linear modes whose corresponding wavespeeds are close enough for such

interactions to occur.

We note that an existence result for Liu-Kubota-Ko solitary waves appears in [3], and

an existence result for Gear-Grimshaw solitary waves appears in [10]. Both these papers

use the concentration compactness technique to obtain solitary waves as global minimizers

to constrained variational problems. However, since the minimized functional and the

constraint functional are not constants of the motion, these results do not yield the stability

of the solitary waves which are found to exist.

One motivation for the present study was provided by the numerical experiments con-

ducted in [20] and [27]. Interestingly, Liu, Kubota, and Ko did not observe anything

close to a steady travelling-wave solution of their system: instead, they found “leap-frog”

solutions in which localized disturbances in h1 and h2 took turns overtaking and falling

behind each other. Gear and Grimshaw, on the other hand, found that for typical val-

ues of the parameters in their equation, general initial data would quickly give rise to

steady travelling-wave solutions which maintained their identity even after colliding with

each other. They also were able to duplicate the leap-frogging behavior observed in [27]

by choosing their parameters so as to decouple the nonlinear terms in their system. The

stability results in the present paper validate the numerical observations of stable solitary

waves made by Gear and Grimshaw, and also show that the observed leap-frog solutions

do not arise due to lack of stability of solitary waves.

One issue which our stability result does not resolve, however, is that of the structure of

the stable sets of solitary waves. Indeed, this is a general drawback of the concentration-

compactness approach to stability as compared with other approaches involving finer anal-

ysis (cf. the discussion in [2]). This issue has bearing on the leap-frog solutions mentioned

in the preceding paragraph: if, for example, it were the case that the stable set of solitary

waves included functions g = (g1, g2) such that the maxima of g1 and g2 are located at

different points on the x-axis, then a leap-frog solution might actually represent a solution

which stays at all times very close to the stable set.

To shed light on this latter question, we investigate the symmetry properties of solitary-
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wave solutions to the Liu-Kubota-Ko system in Section 5. In Theorem 5.4 we show that,

in case the coefficients of the nonlinear terms in the system are positive, then the solitary

waves in the stable sets found in Section 4 must have components which are both symmetric

about the same value of x and which decay monotonically to zero away from their common

axis of symmetry. Hence, if a leap-frog solution exists in this case, it cannot be said to

closely resemble a solitary wave at any given time. This would suggest that while solitary

waves are stable in the sense of Theorem 2.1, they may not be asymptotically stable in the

sense of Lyapunov. (This would contrast with the strong asymptotic stability properties

of KdV solitary waves [30].) Unfortunately, there remains a gap in the evidence: since

the leap-frog solutions observed in [27] were for a system in which the coefficients of the

nonlinear term were of mixed sign, it is not clear yet whether such solutions exist in the case

of positive coefficients. On the other hand, we note that the leap-frog solutions observed

in [20] were obtained in the case in which the coefficients of the nonlinear terms were both

positive.

Theorem 5.4 is actually closely related to a result of Maia [29] for the full equations

of motion of an incompressible, inviscid stratified fluid. Maia’s work in turn represents a

development of the symmetry theory for solitary waves initiated by Craig and Sternberg

[16,17], in particular incorporating into the arguments of [17] some simplifications suggested

by the work of Congming Li [25]. Our proof essentially follows the lines of Maia’s, with

some modifications and further simplifications appropriate to the present situation.

Finally, we also obtain, in Theorems 5.5 and 5.6, a monotonicity result for bore-like

solutions to the problem modeled by the Liu-Kubota-Ko system, and a symmetry result

for solitary-wave solutions of a scalar equation derived by Kubota, Ko, and Dobbs [24] as

a model for long internal waves in a stratified fluid.

A preliminary version of Theorem 2.1 was announced in [4].

Notation. We use 〈·, ·〉 to denote the usual inner product in Cn; i.e., for v = (v1, . . . , vn)

and w = (w1, . . . wn) in Cn we set 〈v, w〉 = v1w1 + · · ·+ vnwn, where bars denote complex

conjugation. For v in Cn (or in Rn) we define |v| = 〈v, v〉1/2.

Let I be an interval in R. As usual, for 1 ≤ p < ∞, Lp(I) denotes the set of all

measurable functions f : R → R such that (
∫∞
−∞ |f(x)|p dx)1/p < ∞. We define Xp(I) to
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be the Banach space of all measurable functions f : I → Rn such that |f |Xp(I) < ∞, where

|f |Xp(I) =
(∫

I

|f(x)|p dx

)1/p

.

For s ∈ R, let Hs(I) denote the L2-based Sobolev space of order s on I, and define

Ys(I) = (Hs(I))n = {f = (f1, . . . , fn) : fi ∈ Hs(I) for i = 1, . . . , n}, with norm given by

‖f‖Ys(I) = ‖f1‖Hs(I) + · · ·+ ‖fn‖Hs(I).

In case I = R, the spaces Xp(I) and Ys(I) will be denoted by Xp and Ys, and the corre-

sponding norms will be denoted by |f |p and ‖f‖s. We define Y∞ to be the intersection of

all the spaces Ys as s ranges over the set of all real numbers.

If H is any Hilbert space then l2(H) will denote the Hilbert space of all infinite sequences

x = (x1, x2, . . . ), xi ∈ H, such that

‖x‖l2(H) =




∞∑

j=1

‖xj‖2H




1/2

< ∞.

If Ω is any open subset of Rn, Ck(Ω) denotes the set of all functions on Ω whose partial

derivatives up to order k exist on Ω, and Ck(Ω̄) denotes the set of all functions whose

partial derivatives up to order k exist on Ω and can be continuously extended to Ω̄. We

also define C∞(Ω) = ∩∞k=0C
k(Ω) and C∞(Ω̄) = ∩∞k=0C

k(Ω̄).

If X is a Banach space and G is a subset of X, we say that a sequence {xn} in X

converges to G if

lim
n→∞

inf
g∈G

‖xn − g‖X = 0.

Also, for each T > 0, C([0, T ];X) will denote the Banach space of all continuous maps h

from [0, T ] to X, with norm defined by ‖h‖C([0,T ];X) = sup
t∈[0,T ]

‖h(t)‖X .

Hats will always denote Fourier transforms with respect to x: ζ̂(k) =
∫∞
−∞ eikxζ(x) dx,

where the integral is interpreted in the usual way for vector-valued functions ζ.

2. Sufficient conditions for stability of solitary waves.

Consider a vector-valued nonlinear dispersive wave equation of the form

ht + D−1(∇N(h)− Lh)x = 0, (2.1)
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in which the unknown h is an Rn-valued function of the variables x and t. The operators

D, ∇N , and L in (2.1) are defined as follows:

• D is an n× n diagonal matrix with positive entries βi along the diagonal.

• ∇N is the gradient of a function N : Rn → R. We assume that N is homogeneous of

degree p + 2, where p is any positive number; or, in other words,

N(θv) = θp+2N(v)

for every v ∈ Rn and every θ > 0. Further, we require N to be twice continuously

differentiable on the unit sphere Σ in Rn (and hence everywhere on Rn). In particular, it

follows from our assumptions on N that
∣∣∣∣
∫ ∞

−∞
N(f) dx

∣∣∣∣ ≤ C|f |p+2
p+2

for all f ∈ Xp+2, where C is independent of f : to see this, notice that |N(f)| =

|f |p+2N(f/|f |) ≤ C|f |p+2, where C is the supremum of N on Σ.

• The dispersion operator L is a matrix Fourier multiplier operator defined by

L̂h(k) = A(k)ĥ(k)

for k ∈ R, where A(k), the symbol of L, is for each k ∈ R a symmetric n× n matrix with

real entries, and A(k) satisfies A(−k) = A(k) for all k ∈ R.

Further, we make the following assumptions on A(k):

(A1) There exist positive constants C1, C2 and a number s > p/4 such that

C1|k|2s|v|2 ≤ 〈A(k)v, v〉 ≤ C2|k|2s|v|2

for all vectors v in Rn and all sufficiently large values of |k|.

(A2) For each i and j between 1 and n, the matrix components aij(k) are four times

differentiable on {k 6= 0}. Moreover, there exist constants C and K such that for all

m ∈ {1, 2, 3, 4},
∣∣∣∣
(

d

dk

)m (
aij(k)− aij(0)

k

)∣∣∣∣ ≤ C|k|−m for 0 < |k| ≤ K,
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and ∣∣∣∣∣
(

d

dk

)m
(√|aij(k)|

ks

)∣∣∣∣∣ ≤ C|k|−m for |k| ≥ K.

We remark that the condition in assumption (A2) on the behavior of aij near the origin

is satisfied whenever the derivatives up to order five of aij(k) exist and are bounded on

(0,K].

A somewhat stronger condition on A(k), which implies both (A1) and (A2) and has the

advantage of being more convenient to verify, is the following:

(A3) The symmetric matrix A(k) has n distinct eigenvalues λ1(k), . . . , λn(k) which, to-

gether with their derivatives up to order five, are bounded on 0 < k < 1 and contin-

uous on 0 < k < ∞. Furthermore, there exist positive constants C1, C2, and K such

that for 1 ≤ i ≤ n and 0 ≤ m ≤ 4 one has

C1|k|2s−m ≤
(

d

dk

)m

λi(k) ≤ C2|k|2s−m for |k| > K.

That (A3) implies (A1) and (A2) follows from the perturbation theory expounded in

chapter II of [23] (see in particular Section II.5.3). Note also that if the λi(k) are assumed

to be analytic functions of k for k > 0, then the assumption that the eigenvalues are

distinct may be dropped (cf. Theorem II.1.10 of [23]).

We will assume in what follows that equation (2.1) is globally well-posed in Yr for some

r ≥ s. In other words, we assume that for every h0 ∈ Yr and every T > 0, there exists

a unique weak solution h of (2.1) in C([0, T ];Yr), and the correspondence h0 7→ h defines

a continuous map from Yr to C([0, T ];Yr). Here “weak solution” means any element h of

C([0, T ];Yr) such that for all t ≥ 0, ht exists in Yr (in the usual sense of the derivative

of a Banach-space valued function), and is equal to −D−1(∇N(h) − Lh)x. Notice that

our assumption on N guarantees that, for fixed t, ∇N(h(t)) is in L2/(p+1)(R), and hence

that −D−1(∇N(h)−Lh)x exists as a tempered distribution on R, so that the equality has

sense.

In particular, we are concerned with solitary-wave solutions of (2.1), which by definition

are solutions of the form h(t) = φ(· − ct), where φ ∈ Yr and c is a real number called the
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wavespeed of the solitary wave. We also refer to the profile φ itself as a solitary wave. Thus

φ ∈ Yr is a solitary wave if and only if it satisfies the equation

−cDφ = Lφ−∇N(φ). (2.2)

We now define functionals Q and E on Ys which are constants of the motion for (2.1)

and which play a crucial role in the stability theory for solitary-wave solutions. Let

Q(f) =
∫ ∞

−∞

1
2
〈f, Df〉 dx

and

E(f) =
∫ ∞

−∞

1
2
〈f, Lf〉 −N(f) dx.

We claim that if h is a solution of (2.1) in C([0, T ]; Yr) then Q(h(x, t)) and E(h(x, t)) are

independent of t. Indeed, taking the inner product of (2.1) with Dh and integrating over

R, one sees that d
dtQ(h(x, t)) = 0, at least if h is in C([0, T ];Yr′) for r′ sufficiently large.

Hence Q(h(x, t)) = Q(h(x, 0)) for all t if h is a solution in C([0, T ];Yr′), and the result

for solutions h in C([0, T ];Yr) then follows from the assumed well-posedness properties

of (2.1) and the fact that Yr′ is dense in Yr. Next, observe that (2.1) may be written in

Hamiltonian form as

ht = J δE(h),

where δE denotes the Fréchet derivative of E and

J = ∂xD−1

is antisymmetric with respect to the inner product in Yr. It follows that E plays the role

of a Hamiltonian functional for (2.1), and in particular is a constant of the motion.

The importance of the functionals E and Q for our purposes rests on the fact that (2.2)

can be written in the form

δE(φ) = −c δQ(φ). (2.3)

We will show that, under the assumptions stated below in Theorem 2.1, the problem of

minimizing E subject to constant Q always has a non-empty solution set. But since each
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element of the solution set must satisfy the Euler-Lagrange equation (2.3), the solution set

must consist of solitary waves.

Actually, in what follows it will be more convenient to work with a modified functional

E0 than with the functional E defined above. To define E0, first consider the operator

σD+L, where σ ranges over the set of real numbers. From the perturbation theory of sym-

metric matrices (see Theorem II.6.8, p. 122 of [23]), it follows that there exist n functions

λ1(k, σ), . . . , λn(k, σ), representing the (unordered, and possibly repeated) eigenvalues of

σD+A(k), which depend smoothly on σ and, for a given σ, have the same differentiability

and continuity properties with respect to k as do the functions aij(k).

From the variational characterization of eigenvalues, we have that the least eigenvalue

of σD + A(k) is the infimum of the set of values of 〈(σD + A(k))v, v〉 as v ranges over the

set of vectors in Rn such that ‖v‖ = 1. It follows easily that the function b(σ) defined by

b(σ) = inf {λi(k, σ) : 0 ≤ k < ∞ and 1 ≤ i ≤ n}

is a strictly decreasing function of σ. Moreover, since

b(σ) ≥ σ

(
min

1≤i≤n
βi

)
+ b(0),

and b(0) > −∞ as a consequence of (A1) and (A2), then b(σ) > 0 for σ sufficiently large.

Also, since for any given k one has

b(σ) ≤ sup
‖v‖=1

〈(σD + A(k))v, v〉 ≤ σ

(
max

1≤i≤n
βi

)
+ max

1≤i≤n
λi(k, 0),

it follows that b(σ) < 0 for σ sufficiently large and negative. We conclude that there exists

a unique σ0 such that b(σ0) = 0.

The number σ0 can be characterized as the smallest value of σ such that the matrix

σD + A(k) is non-negative for all k ∈ R. Alternatively, we can view σ0 as the greatest

possible eigenvalue of −D−1A(k), as k ranges over R. Hence σ0 is the largest possible

wavespeed of infinitesimal sinusoidal waves, i.e., σ0 is the largest value of σ such that the

linearized equation

ht −D−1(Lh)x = 0

has a solution of the form h(x, t) = veik(x−σt) with nonzero v ∈ Rn.
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We now define Λ = σ0D + L, and define the functional E0 by

E0(f) =
∫ ∞

−∞

1
2
〈f, Λf〉 −N(f) dx,

so that E0 = σ0Q + E. Notice that replacing L by σ0D + L in (2.1) amounts to nothing

more than changing to new coordinates x′ and t′ given by x′ = x− σ0t and t′ = t. Thus,

up to a Galilean coordinate change, one can always assume that Λ = L and E0 = E.

Define the number Iq by

Iq = inf{E0(f) : f ∈ Ys and Q(f) = q}

The set of minimizers for Iq is

Gq = {g ∈ Ys : E0(g) = Iq and Q(g) = q},

and the Euler-Lagrange equation for the constrained minimization problem solved by the

functions in Gq is

δE0(g) = δE(g) + σ0 δQ(g) = λ δQ(g),

where λ is the Lagrange multiplier. Comparing this equation with (2.3), we see that if

g ∈ Gq, then g is a solitary-wave solution of (2.1) with wavespeed c = σ0−λ. (Notice that

the multiplier λ could, in principle, vary from one element of Gq to the next).

We can now state the following result, giving a sufficient condition for the existence of

a stable set of solitary-wave solutions of (2.1).

Theorem 2.1. Suppose that s, p, and L are such that (A1) and (A2) hold. If the solution

Iq of the variational problem defined above satisfies Iq < 0 for all q > 0, then for each

q > 0 the set Gq of minimizers for the variational problem is non-empty, and each g ∈ Gq

is a solitary-wave solution of (2.1) with wavespeed c > σ0. Moreover, Gq is a stable set

of initial data for (2.1), in the following sense: for every ε > 0 there exists δ such that if

h0 ∈ Yr and

inf
g∈Gq

‖h0 − g‖s < δ,

then the solution h(x, t) of (2.1) with h(x, 0) = h0 satisfies

inf
g∈Gq

‖h(x, t)− g‖s < ε
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for all t ∈ R.

The proof of Theorem 2.1 is given in Section 3 below.

The next result, which is a corollary of Theorem 2.1, will apply to the model equations

considered in Section 4.

Theorem 2.2. Suppose that s, p, and L are such that (A1) and (A2) hold. Suppose also

that there exists a vector v0 ∈ Rn such that N(v0) > 0 and

|〈v0, (σ0D + A(k))v0〉| ≤ C|k|s0 for all |k| ≤ 1, (2.4)

where C > 0 and s0 > p/2. Then for each q > 0, the set Gq is non-empty and the elements

g of Gq are solitary waves with wavespeeds c greater than σ0. Moreover, Gq is stable in

the sense of Theorem 2.1.

Remarks.

(i) In particular, inequality (2.4) holds in the important special case when σ0D + A(k)

has the eigenvalue 0 at k = 0. This may be seen by taking v0 to be an eigenvector

for the eigenvalue 0 of σ0D + A(0); then 〈v0, (σ0D + A(k))v0〉 defines a function of

k which has the value 0 at k = 0 and has bounded derivative on 0 ≤ k ≤ 1, and it

follows that (2.4) holds for s0 at least 1.

(ii) If N(−v) = −N(v) for v ∈ Rn, then we can drop the condition that N(v0) > 0, since

v0 may be replaced by −v0 if necessary.

Proof. We claim that the existence of a vector v0 with the stated properties implies that

Iq < 0 for each q > 0. To see this, let w(x) = v0φ(x), where φ(x) is any non-negative

smooth function with compact support, normalized so that Q(w) = q. For any θ > 0 let

wθ(x) =
√

θ w(θx). Then by assumption there exists a constant C such that for |k| ≤ 1

and θ < 1/K, where K is as in (A2),
∣∣∣∣
∫ ∞

−∞
〈wθ,Λwθ〉 dx

∣∣∣∣ =
1
θ

∫ ∞

−∞
〈v0, (σ0D + A(k))v0〉|φ̂(k/θ)|2dk

=
∫ ∞

−∞
〈v0, (σ0D + A(kθ))v0〉|φ̂(k)|2 dk

≤ Cθs0

∫

|k|≤1/θ

|k|s0 |φ̂(k)|2 dk + Cθ2s

∫

|k|≥1/θ

|k|2s|φ̂(k)|2 dk.
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But because φ is smooth with compact support, φ̂(k) decays more rapidly than any power

of k as |k| → ∞, and it follows that the last integral in the preceding expression vanishes

more rapidly than any power of θ as θ → 0. Therefore

∣∣∣∣
∫ ∞

−∞
〈wθ,Λwθ〉 dx

∣∣∣∣ ≤ Cθs0 ,

for all small values of θ, where C is independent of θ.

On the other hand,

∫ ∞

−∞
N(wθ) dx = θp/2

∫ ∞

−∞
N(w) dx

= θp/2N

(
v0

|v0|
)
|v0|p+2

∫ ∞

−∞
φ(x)p+2 dx = Cθp/2,

where C > 0 is independent of θ.

We conclude that in the expression

E0(wθ) =
∫ ∞

−∞

1
2
〈wθ, Λwθ〉 dx−

∫ ∞

−∞
N(wθ) dx

the second integral on the right-hand side is positive and (since s0 > p/2) goes to zero

more slowly than the first term as θ → 0. It follows that E0(wθ) < 0 for θ sufficiently near

zero. On the other hand, one has Q(wθ) = q for all θ. Therefore Iq must be less than zero,

as claimed.

The conclusion of Theorem 2.2 now follows from Theorem 2.1. ¤

3. Proof of Theorem 2.1.

The proof of Theorem 2.1 proceeds via P. Lions’ method of concentration compactness

[26], and follows the lines of the proof of stability of ground-state solutions of the nonlinear

Schrödinger equation given by Cazenave and Lions in [13].

We begin with the following standard estimate.

Lemma 3.1. Suppose I is an interval in R, p > 0, and s > p/4. Then there exists C > 0

such that for all f ∈ Ys(I),

|f |p+2
Xp+2(I) ≤ C‖f‖p/2s

Ys(I)|f |
p+2−(p/2s)
X2(I) .
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Proof. Let s′ = p
2(p+2) . From the Sobolev embedding theorem, it follows that there exists

a constant C independent of f such that for all f ∈ Ys′(I),

|f |Xp+2(I) ≤ C‖f‖Ys′ (I).

The stated result then follows from the interpolation inequality

‖f‖Ys′ (I) ≤ C‖f‖s′/s
Ys(I)‖f‖

1−(s′/s)
Y0(I) ,

since Y0(I) = X2(I). ¤

Lemma 3.2. For all q > 0, we have Iq > −∞.

Proof. Let f be an arbitrary element of Ys satisfying Q(f) = q; we wish to show that

E0(f) is bounded below by a number which is independent of f .

From assumption (A1) and the definition of σ0, it follows that there exist constants

C3 > 0 and C4 > 0 such that

C3(1 + |k|)2s|v|2 ≤ 〈v, [(σ0 + 1)D + A(k)] v〉 ≤ C4(1 + |k|)2s|v|2

for all k ∈ R and v ∈ C2. Therefore the expression
(∫ ∞

−∞

1
2
〈f(x), Λf(x)〉 dx + Q(f)

)1/2

defines a norm on Ys equivalent to ‖f‖s. In particular, it follows that we can write

E0(f) = E0(f) + Q(f)−Q(f)

=
∫ ∞

−∞

1
2
〈f(x), Λf(x)〉 dx + Q(f)−

∫ ∞

−∞
N(f) dx−Q(f)

≥ C3‖f‖2s − C|f |p+2
p+2 − q,

where C is a positive constant which is independent of f . But by Lemma 3.1 and Young’s

Inequality,

|f |p+2
p+2 ≤ C‖f‖p/2s

s |f |p+2−(p/2s)
2 ≤ ε‖f‖2s + C|f |2+4sp/(4s−p)

2 ,

where ε > 0 can be chosen arbitrarily small, and again C denotes various constants which

may depend on ε but do not depend on f . Combining with the preceding estimate, and

taking ε < C3, we now obtain

E0(f) ≥ −C|f |2+4sp/(4s−p)
2 − q.
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The proof concludes with the observation that |f |2 is dominated by a constant times Q(f),

and hence remains bounded due to the assumption that Q(f) = q. ¤

We define a minimizing sequence for Iq to be any sequence {fn} of functions in Ys

satisfying

Q(fn) = q for all n

and

lim
n→∞

E0(fn) = Iq.

To each minimizing sequence {fn} is associated a sequence of nondecreasing functions

Mn : [0,∞) → [0, q] defined by

Mn(r) = sup
y∈R

∫ y+r

y−r

1
2
〈fn, Dfn〉 dx.

A standard argument shows that any uniformly bounded sequence of nondecreasing func-

tions on [0,∞) must have a subsequence which converges pointwise to a nondecreasing

limit function on [0,∞). Hence {Mn} has such a subsequence, which we denote again by

{Mn}. Let M : [0,∞) → [0, q] be the nondecreasing function to which Mn converges, and

define

α = lim
r→∞

M(r),

so 0 ≤ α ≤ q.

Lemma 3.3. If {fn} is a minimizing sequence for Iq, then there exist constants B > 0

and δ2 > 0 such that

(i) ‖fn‖s ≤ B for all n and

(ii)
∫∞
−∞N(fn) dx ≥ δ2 for all sufficiently large n.

Proof. As was noted in the proof of Lemma 3.2, the quantity
(∫ ∞

−∞

1
2
〈f(x), Λf(x)〉 dx + Q(f)

)1/2

defines a norm on Ys equivalent to ‖f‖s. Therefore

‖fn‖2s ≤ C

(∫ ∞

−∞

1
2
〈fn(x), Λfn(x)〉 dx + Q(fn)

)

≤ C

(
sup

n
E0(fn) + |fn|p+2

p+2 + q

)

≤ C
(
1 + |fn|p+2−(p/2s)

2 ‖fn‖p/2s
s

)
.
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where Lemma 3.1 has been used, and C denotes constants which are independent of f ∈ Ys.

But since Q(fn) = q for all n, then |fn|2 remains bounded and so we have

‖fn‖2s ≤ C
(
1 + ‖fn‖p/2s

s

)
.

Since p/2s < 2, the existence of the bound B follows immediately.

To prove (ii), suppose that such a constant δ2 does not exist. Then

lim inf
n→∞

∫ ∞

−∞
N(fn) dx ≤ 0.

Also, from the definition of Λ it follows that

∫ ∞

−∞
〈fn(x), Λfn(x)〉 dx ≥ 0

for all n. Hence

Iq = lim
n→∞

E0(fn)

= lim
n→∞

(∫ ∞

−∞

1
2
〈fn(x), Λfn(x)〉 dx−

∫ ∞

−∞
N(fn) dx

)

≥ − lim inf
n→∞

∫ ∞

−∞
N(fn) dx ≥ 0,

which contradicts the assumption that Iq < 0. ¤

Lemma 3.4. For all q1, q2 > 0, one has

Iq1+q2 < Iq1 + Iq2 .

Proof. First we claim that for θ > 1 and q > 0,

Iθq < θ Iq.

In fact, let {fn} be a minimizing sequence for Iq, and notice that for all n, Q(
√

θfn) = θq

and hence E0(
√

θfn) ≥ Iθq. It follows that

Iθq ≤ E0(
√

θfn) = θE0(fn) + (θ − θ(p+2)/2)
∫ ∞

−∞
N(fn) dx;
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and taking n →∞ and using Lemma 3.3(ii), we conclude that

Iθq ≤ θIq + (θ − θ(p+2)/2)δ2 < θIq,

as claimed.

Now in case q1 > q2, then from what was just shown it follows that

I(q1+q2) = Iq1(1+q2/q1) < (1 +
q2

q1
)Iq1

< Iq1 +
q2

q1

(
q1

q2
Iq2

)
= Iq1 + Iq2 ;

whereas in the case q1 = q2 we have

I(q1+q2) = I2q1 < 2Iq1 = Iq1 + Iq2 . ¤

The next step in the proof of Theorem 2.1 is to rule out the possibilities that 0 < α < q

and that α = 0. The former of these two possibilities is dealt with in the next three

lemmas, which represent a simplification and generalization of an argument appearing in

Section 4 of [2].

Lemma 3.5. Let

P =
[s

2

]
+ 1,

where the brackets denote the greatest integer function. We can write Λ = Λ1 + (Λ2)2,

where Λ1 and Λ2 are self-adjoint operators on Ys with the following properties:

(i) There exists a constant C > 0 such that if ζ is any function which is in L∞(R)

and has derivative ζ ′ in L∞(R), and f is any function in X2, then

|[Λ1, ζ]f |2 ≤ C|ζ ′|∞|f |2,

where [Λ1, ζ] denotes the commutator Λ1(ζf)− ζ(Λ1f).

(ii) There exists a constant C > 0 such that if ζ is any function which is in L∞(R)

and has derivatives up to order P in L∞(R), and f is any function in X2, then

|[Λ2, ζ]f |2 ≤ C

(
P∑

i=1

∣∣∣∣
diζ

dxi

∣∣∣∣
∞

)
|f |2.
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Proof. First choose a function χ(k) ∈ C∞0 (R) such that χ(k) = 1 for |k| < K, where K is

the constant defined in assumption (A2) above. Define A1(k) = χ(k)(σ0D + A(k)), and

define A2(k) to be the square root of the positive definite matrix (1− χ(k))(σ0D + A(k)).

Since σ0D +A(k) = A1(k)+(A2(k))2, then Λ = Λ1 +Λ2
2, where Λ1 and Λ2 are the Fourier

multiplier operators with symbols A1(k) and A2(k).

Now, for given values of i and j between 1 and n, let (a1)ij(k) be the entry in the ith

row and jth column of A1(k), and let (Λ1)ij denote the scalar Fourier multiplier operator

with symbol (a1)ij(k). Let Λ̃ = (Λ1)ij − (a1)ij(0); then we can write Λ̃ = d
dxT where T is

the operator with symbol

σ(k) =
(a1)ij(k)− (a1)ij(0)

k
.

By assumption (A2), we have that supk∈R |k|m
∣∣∣
(

d
dk

)m
σ(k)

∣∣∣ < ∞ for 0 ≤ m ≤ 4; and it

then follows from Theorem 35 of [15] that

|[T, ζ]f ′|2 ≤ C|ζ ′|∞|f |2,

for some C independent of f ∈ L2(R) and ζ (As stated in [15], Theorem 35 actually

requires estimates on σ for all m ≥ 0, but the proof given there shows that it suffices to

have estimates for 0 ≤ m ≤ 4.) Since

|[(Λ1)ij , ζ]f |2 =
∣∣∣[Λ̃, ζ]f

∣∣∣
2

=
∣∣∣∣T

d

dx
(ζf)− ζTf ′

∣∣∣∣
2

≤ |T (ζ ′f)|2 + |[T, ζ]f ′|2,

and T is bounded on L2, it follows that

|[(Λ1)ij , ζ]f |2 ≤ C|ζ ′|∞|f |2

for all f ∈ L2. Finally, since for f = (f1, . . . , fn) ∈ X2 one has

|[Λ1, ζ]f |2 =

∣∣∣∣∣∣

n∑

i,j=1

[(Λ1)ij , ζ]fj

∣∣∣∣∣∣
2

≤
n∑

i,j=1

|[(Λ1)ij , ζ]fj |2 ,

it follows that (i) holds for Λ1.

Similarly, to prove (ii) it suffices to verify that the same statement holds for all f ∈ L2(R)

if Λ2 is replaced by its ijth entry (Λ2)ij . But this is exactly the content of part 2 of Lemma

4.2 of [2], since (Λ2)ij has the same properties as the operator M2 defined there. ¤
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Lemma 3.6. For every ε > 0, there exist a number N ∈ N and sequences {gN , gN+1, · · · }
and {hN , hN+1, · · · } of functions in Ys such that for every n ≥ N ,

(i) |Q(gn)− α| < ε,

(ii) |Q(hn)− (q − α)| < ε, and

(iii) E0(fn) ≥ E0(gn) + E0(hn)− ε.

Proof. Choose φ ∈ C∞0 with support in [−2, 2] such that φ ≡ 1 on [−1, 1], and let ψ ∈ C∞

be such that φ2 +ψ2 ≡ 1 on R. For each r ∈ R define φr(x) = φ(x/r) and ψr(x) = ψ(x/r).

From the definition of α it follows that for every sufficiently large value of r, one can

find N = N(r) such that for all n ≥ N ,

α− ε < Mn(r) ≤ Mn(2r) < α + ε.

In particular, we can find yn such that
∫ yn+r

yn−r

1
2
〈f, Df〉 dx > α− ε

and ∫ yn+2r

yn−2r

1
2
〈f,Df〉 dx < α + ε.

It follows that if we define gn(x) = φr(x − yn)fn(x) and hn(x) = ψr(x − yn)fn(x), then

(i) and (ii) hold for all n ≥ N(r). We now show that if r is chosen sufficiently large, then

(iii) also holds for all such n, if ε in (iii) is replaced by Cεµ for certain positive numbers C

and µ.

Begin by writing

E0(gn) =
1
2

[∫ ∞

−∞
〈gn, Λ1gn〉 dx +

∫ ∞

−∞
〈Λ2gn, Λ2gn〉 dx

]
−

∫ ∞

−∞
N(gn) dx. (3.1)

The first of the integrals on the right-hand side of (3.1) can be written as
∫ ∞

−∞
〈φrfn, Λ1(φrfn)〉 dx =

∫ ∞

−∞
φ2

r〈fn, Λ1fn〉 dx +
∫ ∞

−∞
〈φrfn, [Λ1, φr]fn〉 dx.

Now by Lemma 3.5 (i),
∣∣∣∣
∫ ∞

−∞
〈φrfn, [Λ1, φr]fn〉 dx

∣∣∣∣ ≤ |φrfn|2 |[Λ1, φr]fn|2
≤ C|φ′r|∞|fn|22.
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But since |φ′r|∞ = |φ′|∞/r, and |fn|2 is bounded independently of n, it follows that
∣∣∣∣
∫ ∞

−∞
〈φrfn, [L, φr]fn〉 dx

∣∣∣∣ ≤ C/r

where the constant C is independent of r, n and ε.

Similarly, writing the second integral on the right-hand side of (3.1) as
∫ ∞

−∞
φ2

r〈Λ2fn, Λ2fn〉 dx + 2
∫ ∞

−∞
φr〈Λ2fn, [Λ2, φr]fn〉 dx + |[Λ2, φr]fn|22 ,

and using Lemma 3.5 (ii) and the fact that Λ2 is a bounded operator from Ys to X2, we

see that ∫ ∞

−∞
〈Λ2gn, Λ2gn〉 dx ≤

∫ ∞

−∞
φ2

r〈Λ2fn,Λ2fn〉 dx + C/r,

where again C is independent of r, n and ε.

Finally, since
∣∣∣∣
∫ ∞

−∞
N(gn)− φ2

r N(fn) dx

∣∣∣∣ =
∣∣∣∣
∫ ∞

−∞
(φp+2

r − φ2
r)N(fn) dx

∣∣∣∣
≤ C(|fn|Xp+2(I1) + |fn|Xp+2(I1))

p+2,

where I1 and I2 denote the intervals [yn − 2r, yn − r] and [yn + r, yn + 2r], it follows from

Lemma 3.1 that
∣∣∣∣
∫ ∞

−∞
N(gn)− φ2

r N(fn) dx

∣∣∣∣ ≤ C‖fn‖p/2s
s

(|fn|X2(I1) + |fn|X2(I2)

)p+2−(p/2s)

≤ Cεµ,

where µ = p + 2− (p/2s) and C is independent of r, n, and ε.

Substituting these inequalities in (3.1) yields

E0(gn) ≤
∫ ∞

−∞
φ2

r

(
1
2
〈fn,Λfn〉 −N(fn)

)
dx + C(1/r + εµ).

The same argument yields the result

E0(hn) ≤
∫ ∞

−∞
ψ2

r

(
1
2
〈fn, Λfn〉 −N(fn)

)
dx + C(1/r + εµ),

and it follows that

E0(gn) + E0(hn) ≤ E(fn) + C(1/r + εµ).
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Choosing r ≥ 1/εµ, we conclude that there exists a constant C, independent of ε, such

that

E(fn) ≥ E(gn) + E(hn)− Cεµ

for all n ≥ N(r).

This proves the Lemma, except that (iii) has been modified by replacing ε by Cεµ. But

since C and µ are independent of ε, we can now apply what has just been proved to ε̃,

where ε̃ is chosen to be less than the minimum of ε and (ε/C)1/µ; it follows that the Lemma

holds as stated. ¤

Lemma 3.7. If 0 < α < q then

Iq ≥ Iα + Iq−α.

Proof. First, we claim that if γ is any real number and f ∈ Y with ‖f‖Y ≤ B and

|Q(f)− γ| ≤ γ/2, then

Iγ ≤ E0(f) + C|Q(f)− γ|,

where C depends only on γ and B. To see this, let f̃ =
√

θf where θ = γ/Q(f). Then

Q(f̃) = γ, and so

Iγ ≤ E0(f̃) = E0(f) + (θ − 1)E0(f) + θ(1− θp/2)
∫ ∞

−∞
N(f) dx

≤ E0(f) + C
(
|1− θ|+ θ|1− θp/2|

)
.

But |Q(f)− γ| ≤ γ/2 implies that θ ≤ 2 and that |1− θp/2| < C|1− θ| < C|Q(f)− γ|, so

the claim has been proved.

The preceding observation together with Lemma 3.6 implies that there exists a sub-

sequence {fnk
} of {fn} and corresponding functions {gnk

} and {hnk
} such that for all

k,

E0(gnk
) ≥ Iα − 1

k

E0(hnk
) ≥ Iq−α − 1

k

E0(fnk
) ≥ E0(gnk

) + E0(hnk
)− 1

k
.
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Thus

E0(fnk
) ≥ Iα + Iq−α − 3

k
,

and the desired result follows by taking the limit of both sides as k →∞. ¤

The next two lemmas are used to dispose of the possibility that α = 0.

Lemma 3.8. Suppose B > 0 and δ > 0 are given. Then there exists δ1 = δ1(B, δ) > 0

such that if f ∈ Ys with ‖f‖s ≤ B and |f |p+2 ≥ δ, then

|f |Xp+2(I) ≥ δ1

for some interval I ⊂ R of length 4.

Proof. Choose χ : R→ [0, 1] smooth with support in [−2, 2] and satisfying
∑
j∈Z

χ(x−j) = 1

for all x ∈ R, and define χj = χ(x− j) for all j ∈ Z. The map T : Ys → l2(Ys) defined by

Tw = {χj w}j∈Z

is bounded (this is clear in the case when s is a non-negative integer, and the case for

general s ≥ 0 then follows by interpolation: see, e.g., Section 5.6 of [8]). Therefore we can

find C0 > 0 such that ∑

j∈Z
‖χj f‖2s ≤ C0‖f‖2s

for all f ∈ Ys.

Now let C1 be a positive number such that
∑
j∈Z

|χ(x− j)|3 ≥ C1 for all x ∈ R, and define

C2 = C0B2

C1
. We claim that for every nonzero f ∈ Ys there exists j0 ∈ Z such that

‖χj0f‖2s ≤ (1 + C2|f |−(p+2)
p+2 )|χj0f |p+2

p+2.

In fact, if no such j0 exists, then one has

‖χjf‖2s > (1 + C2|f |−(p+2)
p+2 )|χjf |p+2

p+2

for every j ∈ Z. But then summing over j leads to

C0B
2 > (1 + C2|f |−(p+2)

p+2 )C1|f |p+2
p+2 = C1|f |p+2

p+2 + C0B
2,
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which is a contradiction.

Since |f |p+2 ≥ δ, it follows from our claim that

‖χj0f‖2s ≤ (1 + C2δ
−(p+2))|χj0f |p+2

p+2.

Now since s > p/4 > p/(2p + 4), from Sobolev’s embedding theorem it follows that

|χj0f |p+2 ≤ |f |p+2 ≤ C3‖f‖s,

with C3 independent of f . Therefore

|χj0f |p+2 ≥ (C2
3 (1 + C2δ

−(p+2)))−1/p,

and hence the Lemma has been proved, with δ1 = (C2
3 (1 + C2δ

−(p+2)))−1/p and I =

[j0 − 2, j0 + 2]. ¤

Lemma 3.9. For every minimizing sequence {fn}, we have α > 0.

Proof. From Lemmas 3.3 and 3.8 we deduce that there exist δ1 > 0 and a sequence of

intervals {In} = {[yn − 2, yn + 2]} such that

|fn|p+2
Xp+2(In) ≥ δ1

for all sufficiently large n. Then Lemma 3.1, together with Lemma 3.3(i), gives

δ1 ≤ CBp/2s |fn|µX2(In) ≤ C

(∫ yn+2

yn−2

〈fn, Dfn〉 dx

)µ/2

for all sufficiently large n, where µ = p + 2− (p/2s) and C is independent of n. Hence

α = lim
r→∞

M(r) ≥ M(2) = lim
n→∞

Mn(2) ≥ 1
2

(
δ1

C

)2/µ

> 0. ¤

Note now that Lemmas 3.4, 3.7, and 3.9 combine to show that α = q. Therefore we can

apply the following result:

Lemma 3.10. Suppose α = q. Then there exists a sequence of real numbers {y1, y2, · · · }
such that the sequence {f̃n} defined by

f̃n(x) = fn(x + yn) for all x ∈ R

has a subsequence converging in Ys norm to a function g ∈ Gq.

We omit the proof of Lemma 3.10, since it differs in only minor details from the proof

of Lemma 2.5 of [2]; and the modifications which are required are obvious.



24

Lemma 3.11. The set Gq is not empty. Moreover, if {fn} is any minimizing sequence

for Iq, then

(i) there exists a sequence {y1, y2, ...} and an element g ∈ Gq such that fn(·+ yn)

has a subsequence converging strongly in Ys to g.

(ii)

lim
n→∞

inf
g∈Gq

y∈R

‖fn(·+ y)− g‖s = 0.

(iii) fn converges to Gq in Ys.

The same conclusions hold for {fn} under the weaker hypothesis that Q(fn) → q and

E0(fn) → Iq as n →∞.

Proof. Lemmas 3.4, 3.7 and 3.9 show that α = q; it then follows from Lemma 3.10 that Gq

is nonempty and that (i) holds for any minimizing sequence {fn}. If, on the other hand,

we assume only that Q(fn) → q as n → ∞, then we still can assert that (i) holds for the

minimizing sequence αnfn, where αn =
√

q/Q(fn). But since αn → 1, the convergence of

a subsequence of αnfn(·+ yn) to g in Ys implies the convergence of the same subsequence

of fn(·+ yn) to g. Thus (i) holds under the weaker hypothesis on {fn}.
To complete the proof it suffices to show that (i) implies (ii) and (iii). But (ii) follows

immediately from (i) and the fact that every subsequence of a minimizing sequence is

itself a minimizing sequence; and (iii) follows from (ii) and the fact that the functionals

E0 and Q (and hence also the set Gq) are invariant under the operation of replacing f by

f(·+ y). ¤

We can now complete the proof of Theorem 2.1. It has already been shown in Lemma

3.11 that Gq is non-empty. It remains therefore to show that the solitary waves in Gq have

wavespeeds greater than σ0, and that the set Gq is stable.

It follows from the definition of Gq and the Lagrange multiplier principle (cf. Theorem

7.7.2 of [28]) that for each g ∈ Gq there exists λ ∈ R such that

δE0(g) = λ δQ(g),
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where the Fréchet derivatives δE0(g) and δQ(g) are given by

δE0(g) = Λg −∇N(g) = σ0Dg + Lg −∇N(g),

δQ(g) = Dg.

Hence g solves (2.2) with c = σ0 − λ; i.e., the wavespeed of the solitary wave g is σ0 − λ.

We wish to show that λ < 0.

Note first that

d

dθ
[E0(θg)]θ=1 =

d

dθ

[
θ2

∫ ∞

−∞

1
2
〈g, Λg〉 dx− θp+2

∫ ∞

−∞
N(g) dx

]

θ=1

=
∫ ∞

−∞
〈g, Λg〉 dx− (p + 2)

∫ ∞

−∞
N(g) dx

= 2E0(g)− p

∫ ∞

−∞
N(g) dx.

But E0(g) = Iq < 0, and
∫∞
−∞N(g) dx > 0 by Lemma 3.3(ii), so

d

dθ
[E0(θg)]θ=1 < 0.

On the other hand, from the definition of the Fréchet derivative we have

d

dθ
[E0(θg)]θ=1 =

∫ ∞

−∞
〈δE0(g),

d

dθ
[θg]θ=1〉 dx

= λ

∫ ∞

−∞
〈δQ(g), g〉 dx = λ

∫ ∞

−∞
〈g, Dg〉 dx;

and since
∫∞
−∞ 〈g, Dg〉 dx > 0 it follows that λ < 0 as claimed.

Now suppose that Gq is not stable. Then there exists a sequence of solutions {hn} of

(2.1) and a sequence of times {tn} such that hn(·, 0) converges to Gq in Ys, but hn(·, tn)

does not converge to Gq in Ys. Since E0 and Q are constants of the motion for (2.1) and are

continuous on Ys, it follows that Q(hn(·, tn)) → q and E0(hn(·, tn)) → Iq as n →∞. Hence

from Lemma 9(iii) it follows that hn(·, tn) converges to Gq in Ys, a contradiction. ¤

4. Applications to model systems for long waves.

a) The Gear-Grimshaw system.

The Gear-Grimshaw system was derived in [20] to model the strong interaction of two

long internal gravity waves in a stratified fluid, where the two waves are assumed to
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correspond to different modes of the linearized equations of motion. Following [11], we

write it as

h1t + h1h1x + a1h2h2x + a2(h1h2)x + h1xxx + a3h2xxx = 0

b1h2t + rh2x + h2h2x + b2a2h1h1x + b2a1(h1h2)x + b2a3h1xxx + h2xxx = 0,
(4.1)

where a1, a2, a3, b1, b2, and r are real constants with b1, b2 positive.

The system (4.1) can be rewritten in the form (2.1) by putting

N(h1, h2) =
1
2

(
h3

1

3
+ a1h1h

2
2 + a2h

2
1h2 +

b−1
2 h3

2

3

)

and

D =
[

1 0
0 b1b

−1
2

]
;

and defining the symbol A(k) of L by

A(k) =
[

k2 a3k
2

a3k
2 b−1

2 k2

]
= k2

[
1 a3

a3 b−1
2

]
.

We verify that (4.1) satisfies the assumptions required by the stability theory of Section

2. First, in [11], it was shown that if b2a
2
3 < 1, then (4.1) is globally well-posed in Yr for

every r ≥ 1. In the case of (4.1), the function N appearing in (2.1) is homogeneous of

degree 3, so we take p = 1. The signs of the eigenvalues of A(k) are independent of k, and

both are positive if and only if b2a
2
3 < 1, so (A3) holds in this case with s = 1. One sees

easily that then σ0 = 0. From the formula for N , we see that no matter what the values

of the parameters ai and bi, one can always find v0 ∈ R2 such that N(v0) > 0, and (2.4)

obviously holds for any v0 ∈ R2, with s0 = 2. Hence from Theorem 2.2 we obtain the

following result.

Theorem 4.1. Suppose that b2a
2
3 < 1. Let E and Q be the invariant functionals associated

with (4.1), as defined in Section 2. Then for each q > 0, the problem of minimizing E

subject to the constraint Q = q has a nonempty solution set Gq, and for each g ∈ Gq, there

exists c > 0 such that g(x − ct) is a solution of (4.1). Moreover, the set Gq is stable in

the sense that for every ε > 0, there exists δ > 0 with the following property: if h0 is any

function in Y1 satisfying

‖h0 − g‖1 < δ
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for some g ∈ Gq, then there exists a global solution h(x, t) of (4.1) with h(x, 0) = h0 and

a map t → g(t) from [0,∞) to Gq such that

‖h(·, t)− g(t)‖1 < ε

for all t ≥ 0.

b) The Liu-Kubota-Ko system.

The Liu, Kubota & Ko system was derived in [27] to model the interaction between

a disturbance h1(x, t) located at an upper pycnocline and another disturbance h2(x, t)

located at a lower pycnocline in a three-layer fluid. It can be written as

h1t − c1h1x + α1h1h1x − γ1(M1h1)x − γ2[(M2h1)x − (Sh2)x] = 0

h2t − c2h2x + α2h2h2x − γ3(M3h2)x − γ4[(M2h2)x − (Sh1)x] = 0. (4.2)

Here c1, c2, α1, α2, γ1, γ2, γ3, γ4 are real constants, with γi positive for i = 1, 2, 3, 4. The

operators M1, M2, M3 are Fourier multiplier operators defined for ζ ∈ H1/2 by

M̂iζ(k) = mi(k)ζ̂(k),

where

mi(k) = k coth(kHi)− 1
Hi

for i = 1, 2, 3; with H1, H2, H3 being positive constants related to the depths of the three

fluid layers. The operator S is also a Fourier multiplier operator,

Ŝζ(k) = n(k)ζ̂(k),

where

n(k) =
k

sinh kH2
.

The system (4.2) can be rewritten in the form of (2.1), with n = 2 and h = (h1, h2), by

putting

N(h) =
1
6
(α1γ4h

3
1, α2γ2h

3
2)
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and

D =
[

γ4 0
0 γ2

]
,

and defining the symbol A(k) of L by

A(k) =
[

γ4(c1 + γ1m1(k) + γ2m2(k)) −γ2γ4n(k)
−γ2γ4n(k) γ2(c2 + γ4m2(k) + γ3m3(k))

]
.

In Theorem 2.3 of [3] it is shown that (4.2) is globally well-posed in Yr for any r ≥ 3/2.

As in the case of (4.1), the functional N is homogeneous of degree 3, so we take p = 1.

The eigenvalues of σD + A(k) are given by (cf. [3])

λ1(k, σ) =
T (k)

2
−

√
T (k)2 − 4d(k)

λ2(k, σ) =
T (k)

2
+

√
T (k)2 − 4d(k),

where T (k) is the trace of σD +A(k) and d(k) is the determinant of σD +A(k). It follows

easily from the properties of mi(k) and n(k) that (A3) (and hence also (A1) and (A2)) is

satisfied with s = 1/2, and that σ0 is the larger of the two roots of the equation

(σ + c1)(σ + c2) =
γ2γ4

H2
2

;

i.e.

σ0 =
1
2

[
−(c1 + c2) +

√
(c1 − c2)2 +

4γ2γ4

H2
2

]
. (4.3)

Moreover, σ0D + A(k) has the eigenvalue 0 at k = 0, so that (2.4) holds with s0 = 1, by

the first remark following Theorem 2.2. Also, N(−h) = −N(h), so that the second remark

following Theorem 2.2 applies. It follows that all the assumptions underlying Theorem 2.2

are satisfied, and we obtain the following result.

Theorem 4.2. Let E and Q be the invariant functionals associated with (4.2), as defined

in Section 2. Then for each q > 0, the problem of minimizing E subject to the constraint

Q = q has a nonempty solution set Gq, and for each g ∈ Gq, there exists c > σ0 such

that g(x − ct) is a solution of (4.2). Moreover, the set Gq is stable in the sense that for

every ε > 0, there exists δ > 0 with the following property: if h0 is any function in Y3/2

satisfying

‖h0 − g‖1/2 < δ
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for some g ∈ Gq, then there exists a global solution h(x, t) of (4.2) with h(x, 0) = h0 and

a map t → g(t) from [0,∞) to Gq such that

‖h(·, t)− g(t)‖1/2 < ε

for all t ≥ 0.

5. Symmetry of Liu-Kubota-Ko solitary waves.

We begin this section with a lemma that establishes a correspondence between solitary-

wave solutions of (4.2) and solutions of a certain nonlinear boundary-value problem for the

Laplacian, posed on the three infinite strips S1, S2, S3 defined as subsets of R2 by

S1 = R× [0,H1],

S2 = R× [−H2, 0],

S3 = R× [−(H2 + H3),−H2].

Lemma 5.1. Let φ = (φ1, φ2) ∈ X2 be such that φ(x − ct) solves (4.2) for some c > σ0,

where σ0 is as defined in (4.3). Then there exist functions ui ∈ C∞(Si), i ∈ {1, 2, 3}, such

that

(i) for i = 1, 2, 3, ∆ui = 0 on Si,

(ii) for i = 1, 2, 3, ui(x, y) → 0 uniformly in y as |x| → ∞,

(iii) u1 = 0 for y = H1,

(iv) u3 = 0 for y = −(H2 + H3),

(v) u1 = u2 = φ1 for y = 0,

(vi) u2 = u3 = φ2 for y = −H2,

(vii)
[
−(c + c1) + γ1

H1
+ γ2

H2

]
φ1 + α1

2 φ2
1 + γ1u1y − γ2u2y = 0 for y = 0,

(viii)
[
−(c + c2) + γ3

H3
+ γ4

H2

]
φ2 + α2

2 φ2
2 + γ4u2y − γ3u3y = 0 for y = −H2.

Proof. As shown in Lemmas 4.2 and 4.3 of [3], if φ ∈ X2 is any solitary-wave solution of

(4.2) with wavespeed c > σ0, then φ must in fact be in Y∞. Therefore, if we define u1 on
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S1, u2 on S2, and u3 on S3 by the formulas

u1(x, y) =
1
2π

∫ ∞

−∞
e−ikx

(
sinh k(H1 − y)

sinh kH1

)
φ̂1(k) dk,

u2(x, y) =
1
2π

∫ ∞

−∞
e−ikx

[(
sinh k(H2 + y)

sinh kH2

)
φ̂1(k)−

(
sinh ky

sinh kH2

)
φ̂2(k)

]
dk,

u3(x, y) =
1
2π

∫ ∞

−∞
e−ikx

(
sinh k(H2 + H3 + y)

sinh k(H2 + H3)

)
φ̂2(k) dk,

it follows from standard arguments (see the proof of Lemma 2 in [5]) that ui ∈ C∞(Si)

and tends to 0 uniformly in y as |x| → ∞, and that the partial derivatives of ui on Si may

be computed by differentiating under the integral. In particular, differentiation under the

integral shows that (i) holds, and also that

u1y

∣∣∣
y=0

= −M1φ1 − 1
H1

φ1,

u2y

∣∣∣
y=0

= −Sφ2 + M2φ1 +
1

H2
φ1,

u2y

∣∣∣
y=−H2

= Sφ1 −M2φ2 − 1
H2

φ2,

u3y

∣∣∣
y=−H2

= M3φ2 +
1

H3
φ2.

Substitution of these expressions in the solitary-wave equation for φ yields (vii) and (viii).

Finally, (iii)–(vi) are obvious from the definitions of the functions ui. ¤

Remark. The converse of Lemma 5.1 holds, in the following sense. For arbitrary φ ∈ Y1,

there are unique harmonic functions ui defined on the interior of Si such that |ui(·, y)|L2

is uniformly bounded in y, and

lim
y↓0

u1 = lim
y↑0

u2 = φ1,

lim
y↓−H2

u2 = lim
y↑−H2

u3 = φ2,

where the limits are taken in the L2 sense. The derivatives uiy are also well-defined as L2

traces on {y = 0} and {y = −H2}. If (vii) and (viii) hold, then φ(x − ct) is a solution of

(4.2).

We will work below not with the functions ui themselves, but instead with functions ūi

which we now proceed to define. The assumption c > σ0 implies that c + c1 and c + c2 are
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positive and satisfy

(c + c1)(c + c2) >
γ2γ4

H2
2

.

Therefore it is possible to find a number θ2 such that 1 + θ2H2 is positive and satisfies

γ4

(c + c2)H2
< 1 + θ2H2 <

(c + c1)H2

γ2
.

Once θ2 has been chosen, we can choose θ1 and θ3 such that 1+θ1H1 and 1+θ2H2 +θ3H3

are positive and satisfy

(1 + θ1H1) <
γ2H1

γ1H2

[
(c + c1)H2

γ2
− (1 + θ2H2)

]
(5.1)

and

(1 + θ2H2 + θ3H3) <
(c + c2)H3

γ3

[
(1 + θ2H2)− γ4

(c + c2)H2

]
. (5.2)

Define

g1(y) = 1 + θ1y for 0 ≤ y ≤ H1,

g2(y) = 1− θ2y, for −H2 ≤ y ≤ 0,

g3(y) = 1 + θ2H2 − θ3(y + H2) for −(H2 + H3) ≤ y ≤ −H2.

Notice that g1(0) = g2(0) and g2(−H2) = g3(−H2), and that each function gi(y) takes

only positive values on its domain. Hence we may define functions ūi on Si for i = 1, 2, 3

by

ui(x, y) = gi(y)ūi(x, y).

Properties (ii), (iii), and (iv) of Lemma 5.1 still hold with ui replaced by ūi, and it is

still true, as in (v) and (vi), that ū1 = ū2 for y = 0 and ū2 = ū3 for y = −H2. Also,

although the functions ūi are no longer harmonic, they do satisfy the elliptic equation

∆ūi +
2g′i(y)
gi(y)

ūiy = 0 (5.3)

on Si. Finally, we see from equations (vii) and (viii) that

Q1ū2 +
α1

2
ū2

2 + γ1ū1y − γ2ū2y = 0 for y = 0 (5.4)
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and

Q2ū2 +
α2

2
ū2

2 + γ4(1 + θ2H2)ū2y − γ3(1 + θ2H2)ū3y = 0 for y = −H2, (5.5)

where
Q1 = −(c + c1) +

γ1

H1
(1 + θ1H1) +

γ2

H2
(1 + θ2H2),

Q2 = −(c + c2)(1 + θ2H2) +
γ4

H2
+

γ3

H3
(1 + θ2H2 + θ3H3).

From (5.1) and (5.2), we see that both Q1 and Q2 are negative. Notice that such was not

necessarily the case for the coefficients of φ1 and φ2 in (vii) and (viii) of Lemma 5.1. This

is the reason for working with ūi instead of ui.

In what follows, we make repeated use of the fact that solutions of (5.3) satisfy a

maximum principle: if Ω is a bounded connected domain in R2, and u ∈ C2(Ω) ∩ C0(Ω̄)

satisfies (5.3) on Ω, then u must achieve its maximum and minimum values over Ω̄ on

the boundary of Ω. Further, if either of these values is attained at any point within Ω,

then u is constant on Ω (see Theorem 3.5 of [22]). On an unbounded domain such as Si,

similar assertions can be made in the presence of additional assumptions on the behavior

of u at infinity. For example, suppose u satisfies (5.3) on Si and u → 0, uniformly in y, as

|x| → ∞. By applying the maximum principle on sets Si ∩ {−R ≤ x ≤ R} as R →∞, we

can deduce that if u takes a negative value anywhere on Si, then the minimum value of u

over Si must be attained at some point on the boundary of Si.

We will also use the following refinements of the maximum principle, which are valid

on any domain Ω ⊂ R2, bounded or unbounded. The Hopf boundary lemma implies that

if u satisfies (5.3) on Ω and attains its minimum value over Ω̄ at a point (x0, y0) on the

boundary of Ω, and there exists a ball in Ω whose boundary contains (x0, y0), then the

normal derivative of u at (x0, y0) is zero only if u is constant on Ω̄ (see Lemma 3.4 of

[22]). There is also a Hopf corner-point lemma [21], which has the following implication

for (5.3). Suppose u ∈ C2(Ω) ∩ C0(Ω̄) satisfies (5.3) on Ω, where Ω is the semi-infinite

strip (−∞, x0) × (y0, y1), and u is non-negative on Ω and tends to 0, uniformly in y as

x → −∞. Let P be a corner point of Ω; i.e., P = (x0, y0) or P = (x0, y1). If u = 0 at P ,

and the (one-sided) derivatives ux, uy, uxx, uxy, and uyy exist and are all equal to 0 at P ,

then u is identically zero on Ω.
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Lemma 5.2. Suppose α1 and α2 are positive. Then ūi ≥ 0 on Si for i = 1, 2, 3.

Proof. Suppose, to the contrary, that for some i, ūi takes a negative value at some point

of Si. We will show that then either (5.4) or (5.5) must fail to hold. Since ūi satisfies (5.3)

on Si and tends to 0 uniformly in y as |x| → ∞, it follows from the maximum principle

that the minimum value of ūi on Si must be attained at some point on the boundary of

Si. Furthermore, since ū1 = 0 for y = H1 and ū3 = 0 for y = −(H2 + H3), this negative

minimum can only be attained on the boundary of S2, where ūi = ū2. Hence ū2 must take

a negative minimum value at some point (x0, y0) on the boundary of S2.

There are now two possibilities: either y0 = 0 or y0 = −H2. In the first case, (x0, 0) is a

minimum value both for ū1 on S1 and for ū2 on S2, so we must have that ū1y(x0, 0) ≥ 0 and

ū2y(x0, 0) ≤ 0. On the other hand, Q1 < 0 and ū2(x0, 0) < 0. Combining these facts, we

conclude that the left-hand side of equation (5.4) is strictly positive, so (5.4) is contradicted.

An exactly similar argument shows that if y0 = −H2, then (5.5) is contradicted. Thus the

proof is complete. ¤

Remark. From Theorem 5.4(ii) below it follows that if α1 and α2 are positive and the

functions ūi are not all identically zero, then φ1(x) and φ2(x) are in fact strictly positive

functions of x (and hence the ūi are strictly positive at all points in their domains except

where y = H1 and y = −(H2 + H3)). This fact is also a direct consequence of the proof

of Lemma 5.1, since if φ1 or φ2 vanishes at some point, then applying the Hopf boundary

lemma to the appropriate ūi at that point yields a contradiction to (5.4) or (5.5). Yet

another proof of the positivity of φ1 and φ2, which does not use Lemma 5.1 at all, is the

following. In Lemmas 4.2 and 4.3 of [3] it is shown that for c > σ0, the operator L + cD

has an inverse (L + cD)−1, defined on all of X2, whose entries are convolution operators

with positive kernels. Now, if α1 and α2 are positive and φ is not identically zero, then

the entries of ∇N(φ) are non-negative and not identically zero. Hence the function (L +

cD)−1(∇N(φ)) is everywhere positive on R. The desired result then follows immediately

upon rewriting the solitary-wave equation (2.2) in the form φ = (L + cD)−1(∇N(φ)).

Now for each µ ∈ R, define wi(x, y, µ) for (x, y) ∈ Si, i = 1, 2, 3, by

wi(x, y, µ) = ūi(2µ− x, y)− ūi(x, y).
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We will examine the behavior of wi on the set

Σi(µ) = {(x, y) ∈ Si : x ≤ µ}.

Lemma 5.3. Suppose α1 and α2 are positive. Then there exists η0 ∈ R such that

(i) for all µ ∈ R, if w2(x, y, µ) attains a minimum value over Σ2(µ) at some point (x0, y0)

in Σ2(µ), then either x0 > η0 or w2(x0, y0, µ) ≥ 0.

(ii) for all µ ≤ η0 and all i ∈ {1, 2, 3}, we have wi(x, y, µ) ≥ 0 for all (x, y) ∈ Σi(µ).

Proof. Let functions B1 : R3 → R and B2 : R3 → R be defined by

B1(p, q, r) = Q1p +
α1

2
p2 + γ1q − γ2r

and

B2(p, q, r) = Q2p +
α2

2
p2 + γ4(1 + θ2H2)q − γ3(1 + θ2H2)r,

so that (5.4) and (5.5) take the form

B1(ū2(x, 0), ū1y(x, 0), ū2y(x, 0)) = 0 for all x ∈ R (5.6)

and

B2(ū2(x,−H2), ū2y(x,−H2), ū3y(x,−H2)) = 0 for all x ∈ R. (5.7)

Since Q1 and Q2 are negative, and ū2 → 0 uniformly in y as x → −∞, we can find η0 such

that if x ≤ η0, then
∂B1

∂p
= Q1 + α1p < 0 at p = ū2(x, 0) (5.8)

and
∂B2

∂p
= Q2 + α2p < 0 at p = ū2(x,−H2). (5.9)

We now prove (i) by contradiction. Suppose x0 ≤ η0 and w2(x0, y0, µ) < 0. Since the

functions wi satisfy the same equation (5.3) on Si as do the functions ūi, and wi → 0 as

x → −∞, we conclude from the maximum principle that (x0, y0) must lie on the boundary

of Σ2(µ). Moreover, since w2(µ, y, µ) = 0 for all y, (x0, y0) must lie on the horizontal part

of the boundary of Σ2(µ), so that either y0 = 0 or y0 = −H2.
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Consider first the case y0 = 0. Since w2(x, y, µ) attains its minimum value on Σ2(µ) at

(x0, 0), we have w2y(x0, 0, µ) ≤ 0, and hence

ū2y(2µ− x0, 0) ≤ ū2y(x0, 0). (5.10)

Also, since w1 = w2 for y = 0, the maximum principle implies that the minimum value of

w1(x, y, µ) on Σ1(µ) is also attained at (x0, 0). Therefore w1y(x0, 0, µ) ≥ 0, and so

ū1y(2µ− x0, 0) ≥ ū1y(x0, 0). (5.11)

On the other hand, since w2(x0, 0, µ) < 0, we have

ū2(2µ− x0, 0) < ū2(x0, 0). (5.12)

Since α1 > 0, it follows from (5.8) and (5.12) that

∂B1

∂p
= Q1 + α1p < 0 for all p ∈ [ū2(2µ− x0, 0), ū2(x, 0)]. (5.13)

Finally, combining (5.10), (5.11), (5.12) and (5.13), and recalling that γ1 and γ2 are posi-

tive, we obtain that

B1(ū2(2µ− x0, 0), ū1y(2µ− x0, 0), ū2y(2µ− x0, 0)) > B1(ū2(x0, 0), ū1y(x0, 0), ū2y(x0, 0)),

contradicting (5.6).

We have shown that in the case y0 = 0, we obtain a contradiction to (5.6). On the other

hand, if y0 = −H2, an exactly similar argument leads to a contradiction of (5.7). Thus

the proof of (i) is complete.

To prove (ii), suppose to the contrary that for some i and some µ ≤ η0, wi(x, y, µ)

takes a negative value on Σi(µ). Then since wi → 0 as x → −∞, the maximum principle

implies that wi(x, y, µ) attains its minimum over Σi(µ) at some point on the boundary

shared by Σi(µ) and Σ2(µ). Hence w2 takes a negative value on Σ2(µ), and so attains a

negative minimum value over Σ2(µ) at some point (x0, y0) in Σ2(µ). Since x0 ≤ µ ≤ η0,

this contradicts (i). ¤

We can now state and prove the main theorem of this section.
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Theorem 5.4. Suppose that α1 and α2 are positive, and the ui are not identically zero.

Then there exists η̄ ∈ R such that

(i) for all i ∈ {1, 2, 3} and all (x, y) ∈ Si,

ui(x, y) = ui(2η̄ − x, y).

(ii) for all i ∈ {1, 2, 3} and all (x, y) ∈ Si such that x < η̄ and −(H2 + H3) < y < H1,

∂ui

∂x
(x, y) > 0.

Proof. Define the number η̄ by

η̄ = sup {η : if µ ≤ η, then wi(x, y, µ) ≥ 0 for all (x, y) ∈ Σi(µ) and all i ∈ {1, 2, 3}} .

Lemma 5.4(ii) shows that η̄ > −∞, and it follows easily from Lemma 5.1(ii) and Lemma

5.2 that η̄ < ∞.

To prove (i), it suffices to show that for each i = 1, 2, 3 we have wi(x, y, η̄) = 0 for all

(x, y) ∈ Σi(η̄).

By the definition of η̄, we can find a sequence {µk} such that µk → η̄ and for each k,

there exists i ∈ {1, 2, 3} for which wi(x, y, µk) takes a negative minimum on Σi(µk). As

noted in the proof of Lemma 5.3, it follows that w2(x, y, µk) must take a negative minimum

value on Σ2(µk), and this value must be achieved at a point (xk, yk) where either yk = 0

or yk = −H2. By passing to a subsequence, we may assume that either yk = 0 for all k, or

yk = −H2 for all k. We will consider the former of these two cases, the proof in the latter

case being exactly similar.

From Lemma 5.3(i) it follows that xk > η0 for all k. Therefore the sequence {xk}
is bounded, so by again passing to a subsequence we may assume that xk converges to

some number x̄ ≤ η̄. Since w2(xk, 0, µk) < 0 for all k, then w2(x̄, 0, η̄) ≤ 0. Hence also

w1(x̄, 0, η̄) ≤ 0. On the other hand, from the definition of η̄ it follows that w1(x, y, η̄) ≥ 0

on Σ1(η̄) and w2(x, y, η̄) ≥ 0 on Σ2(η̄). Therefore

w1(x̄, 0, η̄) = w2(x̄, 0, η̄) = 0, (5.14)
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and it follows that

w1y(x̄, 0, η̄) ≥ 0 (5.15)

and

w2y(x̄, 0, η̄) ≤ 0. (5.16)

We now consider separately the cases when x̄ < η̄ and when x̄ = η̄. Suppose first that

x̄ < η̄. Substitute into (5.4) the values x = 2η̄ − x̄ and x = x̄, and subtract the two

resulting equations, using (5.14). There appears the identity

γ1w1y(x̄, 0, η̄) = γ2w2y(x̄, 0, η̄),

which together with (5.15) and (5.16) yields

w1y(x̄, 0, η̄) = w2y(x̄, 0, η̄) = 0.

Hence, applying the Hopf boundary lemma to w2(x, y, η̄) at the point (x̄, 0), we obtain

that w2(x, y, η̄) is identically zero on Σ2(η̄). It then follows from the maximum principle

that w1(x, y, η̄) is identically zero on Σ1(η̄) and w3(x, y, η̄) is identically zero on Σ3(η̄).

Thus (i) has been proved in case x̄ < η̄, and we may assume henceforth that x̄ = η̄.

We proceed to investigate the derivatives of w2(x, y, η̄) at the point (x, y) = (η̄, 0).

Notice first that since w2(x, y, µk) attains a minimum over Σ2(µk) at (xk, 0), and xk < µk,

we must have w2x(xk, 0, µk) = 0 for all k. Taking the limit as k →∞ then gives

w2x(η̄, 0, η̄) = 0. (5.17)

Since, for any µ and y,

wix(µ, y, µ) = −2ūix(µ, y), (5.18)

then (5.17) implies

ū2x(η̄, 0) = 0. (5.19)

Also, clearly w2(η̄, y, η̄) = 0 for −H2 ≤ y ≤ 0, so

w2y(η̄, 0, η̄) = w2yy(η̄, 0, η̄) = 0. (5.20)
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Since w satisfies (5.3), then (5.20) implies

w2xx(η̄, 0, η̄) = 0. (5.21)

Finally we consider the mixed derivative w2xy(η̄, 0, η̄). Observe that since the minimum

value of w1(x, y, η̄) on Σ1(η̄) is attained at every point (η̄, y) in Σ1(η̄), then w1x(η̄, y, η̄) ≤ 0

for 0 ≤ y ≤ H1. Similarly, we have w2x(η̄, y, η̄) ≤ 0 for −H2 ≤ y ≤ 0. Taking (5.17) into

account, we conclude that w1xy(η̄, 0, η̄) ≤ 0 and w2xy(η̄, 0, η̄) ≥ 0, so that from (5.18) we

obtain

ū1xy(η̄, 0) ≥ 0 (5.22)

and

ū2xy(η̄, 0) ≤ 0. (5.23)

On the other hand, differentiating (5.4) with respect to x and evaluating at x = η̄ using

(5.17), we obtain

γ1ū1xy(η̄, 0) = γ2ū2xy(η̄, 0),

which, together with (5.22) and (5.23), implies

ū1xy(η̄, 0) = ū2xy(η̄, 0) = 0.

In particular, it follows that

w2xy(η̄, 0, η̄) = 0. (5.24)

We have now shown (in (5.14), (5.17), (5.20), (5.21), and (5.24)) that, at the point

(x, y) = (η̄, 0), w2(x, y, η̄) and all its partial derivatives of first and second order are equal

to zero. It therefore follows from the Hopf corner-point lemma that w2(x, y, η̄) must be

zero for all (x, y) in Σ2(η̄). As above, this is enough to conclude that (i) holds. Hence (i)

has now been proved in all cases.

To prove (ii), we first note that if the ui are not identically zero, then there does not

exist any µ < η̄ such that w2(x, y, µ) is identically zero on Σ2(µ). For if there were such a

µ, it would follow that the ui are symmetric about µ as well as η̄, and hence that the ui

are periodic of period µ− η̄, contradicting the fact that ui → 0 as |x| → ∞.
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Now observe that, if it were the case that w2x(µ, 0, µ) = 0 for some µ < η̄, then the same

chain as reasoning as above, starting with (5.17) and concluding with (5.24), would show

that w2(x, y, µ) and all its partial derivatives up to second order are zero at (x, y) = (µ, 0).

The Hopf corner-point lemma would then imply that w2(x, y, µ) is identically zero on

Σ2(µ), contradicting the result of the preceding paragraph. Therefore w2x(µ, 0, µ) 6= 0.

However, since wi(x, y, µ) ≥ 0 on Σi(µ) and wi(µ, y, µ) = 0, we must have

wix(µ, y, µ) ≤ 0 for all (µ, y) ∈ Σi(µ). (5.25)

Hence w2x(µ, 0, µ) < 0, so by (5.18) we have ū2x(µ, 0) > 0. It follows that ū1x(µ, 0) > 0

also. A similar argument shows that ū2x(µ,−H2) = ū3x(µ,−H2) > 0.

It remains to show that ūix(µ, y) > 0 if −(H2 +H3) < y < H1 and y is neither −H2 nor

0. By (5.25), it suffices to show that wix(µ, y, µ) cannot be zero for such y. But if indeed

wix(µ, y, µ) = 0 for some i, then since (µ, y) is on the interior of the vertical boundary

of Σi(µ), the Hopf boundary lemma implies that wi(x, y, µ) is identically zero on Σi(µ).

We know from above that i cannot equal 2, so either i = 1 or i = 3. But in either case,

the fact that wi(x, y, µ) is identically zero on Σi(µ) implies that w2x(x, y, µ) = 0 at one of

the corner points of Σ2(µ), and we are back to the situation of the preceding paragraph.

Hence, in any case, we obtain a contradiction, and the proof of (ii) is complete. ¤

Remark. If φ(x− ct) solves (4.2), then −φ(x− ct) solves (4.2) with α1 and α2 replaced by

−α1 and −α2. Hence it follows from Theorem 5.4 that if α1 and α2 are negative, then the

conclusions of the theorem hold for −φ. We do not yet know an analogue of Theorem 5.4

in the case when α1 and α2 have different signs.

It is possible to extend Theorem 5.4 to cases in which the ui do not tend to zero in both

horizontal directions.

Theorem 5.5. Suppose that α1 and α2 are positive. Suppose also that functions ui ∈
C2(Si) are given which satisfy all the conditions of Lemma 5.1, except that (ii) is replaced

by the requirements that, for some β > 0 and all i ∈ {1, 2, 3}, we have

lim
x→−∞

ui = 0 and lim
x→+∞

ui = β,
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both limits being uniform in y. Then for all i ∈ {1, 2, 3} and all (x, y) ∈ Si such that

−(H2 + H3) < y < H1, we have
∂ui

∂x
(x, y) > 0.

Proof. Define ūi and wi as before. Under the given assumptions on ui, the proof of Lemma

5.2 still goes through, showing that ūi ≥ 0 on Si for i = 1, 2, 3. Also, although it is now

no longer necessarily the case that wi → 0 as x → −∞, it is still true that

lim inf
x→−∞

wi(x, y, µ) ≥ 0,

and it may be easily checked that this is sufficient for the proof of Lemma 5.3 to be carried

out as before. Thus Lemma 5.3 still holds, and in particular we may define η̄ as before

with the assurance that η̄ > −∞.

Now if η̄ < ∞, then the proof of Theorem 5.4(i) shows that the ui are symmetric about

η̄, which contradicts our assumptions about the behavior of ui as x → ±∞. Therefore

we must have η̄ = ∞. The desired result is now obtained by noticing that the proof of

Theorem 5.4(ii) goes through unchanged in the present situation. ¤

Remark. The functions ui described in Theorem 5.5 do not arise from L2 solitary-wave

solutions of (4.2): indeed, since φ1(x) = u1(x, 0) and φ2(x) = u2(x,−H2) are not in L2,

the operator L will not in general be well-defined at φ = (φ1, φ2). On the other hand, if

one were to derive equations modeling bore-like waves at the interfaces of a three-layered

fluid by a procedure analogous to the one used to derive (4.2) for localized waves, then φ

would represent a valid solution to such a system. Thus Theorem 5.5 can be interpreted

as a result for a system of equations modelling internal bores.

Finally we note that the above arguments also yield a symmetry result for solitary-wave

solutions of a scalar equation derived by Kubota, Ko and Dobbs [24] as a model for long

waves in a stratified fluid at the interface between two layers of constant density, one layer

having (non-dimensionalized) depth equal to H1 and the other layer having depth H2.

After a suitable choice of variables, the Kubota-Ko-Dobbs equation may be put in the

form

ht + hhx − β1(M1h)x − β2(M2h)x = 0, (5.26)
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where h : R×R→ R and β1, β2 are positive real numbers. The operators M1 and M2 are

defined as in Section 4b, and in place of (4.3) we now have σ0 = 0. In case H1 = H2, (5.26)

is known as the Intermediate Long Wave (ILW) equation, and has been extensively studied

in the literature devoted to completely integrable equations (cf. [1]). The ILW equation

has, for each c > 0, a solitary-wave solution φ(x− ct) given by an explicit formula in terms

of exponential functions; in particular this formula shows that φ is symmetric about the

point where it attains its maximum value and is strictly decreasing away from that point.

Further, it is known [5] that φ is, up to translation, the unique solitary wave solution of

ILW with wavespeed c. In case H1 6= H2, it is known (see Theorem 3.1 of [3]) that for each

c > 0, (5.26) has at least one solitary-wave solution φ(x − ct) which is symmetric about

its maximum, but it remains an open question whether φ is unique up to translation. The

following result is therefore of interest.

Theorem 5.6. Let φ ∈ L2(R) be such that φ(x− ct) solves (5.26) for some c > 0. Then

there exists η̄ ∈ R such that φ(2η̄ − x) = φ(x) for all x ∈ R and φ′(x) > 0 for all x < η̄.

To prove Theorem 5.6, one first observes that solitary-wave solutions of (5.26) are asso-

ciated with the same kind of elliptic boundary-value problem as specified in Lemma 5.1,

except that now only two strips are involved. More precisely, let S1 and S2 be the infinite

strips in R2 defined by

S1 = R× [0,H1],

S2 = R× [−H2, 0].

Then for φ as in the statement of Theorem 5.6, one finds that there exist functions u1 ∈
C∞(S1) and u2 ∈ C∞(S2) such that

(i) ∆u1 = 0 on S1, and ∆u2 = 0 on S2,

(ii) u1 and u2 tend to 0 uniformly in y as |x| → ∞,

(iii) u1 = 0 for y = H1,

(iv) u2 = 0 for y = −H2,

(v) u1 = u2 = φ for y = 0, and

(vi)
[
−c + β1

H1
+ β2

H2

]
φ + 1

2φ2 + β1u1y − β2u2y = 0 for y = 0.
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Now choose θ1 and θ2 such that 1 + θ1H1 and 1 + θ2H2 are positive numbers, and

Q = −c +
β1

H1
(1 + θ1H1) +

β2

H2
(1 + θ2H2) < 0.

Defining g1, g2 and ū1, ū2 by the same formulas as given above prior to Lemma 5.2, we

find that (vi) implies

Qū2 +
1
2
ū2

2 + β1ū1y − β2ū2y = 0 for y = 0.

From here the proof of Theorem 5.6 proceeds exactly like the proof of Theorem 5.4, and

we can safely omit the details.
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