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Abstract
Stability results for multi-soliton solutions of the Korteweg-de Vries equa-
tion are stated and proved. The theory developed here contributes to earlier
discussions of this issue by Maddocks and Sachs, Martel, Merle and Tsai and
Schuur.

1 Introduction

Multi-soliton solutions of the Korteweg-de Vries equation are solutions which represent
the interactions of multiple solitary waves. In general, the term “solitary wave” is used
to refer to a localized disturbance which propagates without change in form. In the
context of the Korteweg-de Vries equation,

Up + Uy + Upgy = 0, (1.1)

posed for —oo < x < oo and ¢ > 0, a solitary wave is represented by a function u(z, t)
of the real variables x and ¢ which takes the form

u(x,t) = ¢(.7} o Ct)a

where ¢ is a constant and ¢(€) is a function of one variable whose values are small
when [£] is large. It is easy to see that the only non-singular solutions of (1.1) of this
form are those given by
Uep(x,t) = go(x — ct +0),
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where ¢ > 0, 0 € R, and
b.(€) = 3¢ sech?(v/c £/2).

These Korteweg-de Vries solitary waves are not run-of-the-mill solitary waves,
however. They go by the special appellation of “soliton” because they exhibit strong
stability properties, like those of particles. Suppose for example that a solution u(z, t)
of (1.1) contains a soliton u.g at time ¢t = 0, in the sense that |u(z,0) — u.g(x,0)| is
small at least for x in a large interval centered at x = 6. In general, as time passes,
u(z,t) may undergo a complicated nonlinear evolution, but eventually it will emerge
with its identity intact, up to translation. That is, for large values of ¢ there will exist a
function #(t) such that [u(x,t) —ucgq)(2,t)| is small for all 2 in a large interval centered
at 0(t).

The scenario just described gives only a crude idea of the stability properties of
solitary-wave solutions of (1.1). More precise and refined investigations have occupied
researchers for the past few decades. The first rigorous result in this direction was
proved by Benjamin and Bona in the 1970’s [Be, Bo|. They showed that if u(z,0) is
sufficiently close to a soliton u.g(z,0) over the entire real line, or more precisely in the
norm of the Sobolev space H'(R), then there exists a function 6 : [0,00) — R such
that u remains arbitrarily close to ucpg«) in H' norm for all times ¢t > 0. Later, Bona
and Soyeur [BoSo| observed that a simple argument based on the Implicit Function
Theorem is sufficient to obtain improved information on the behavior of the function
6(t): namely, that it can be taken to be a differentiable function of ¢, with the property
that '(¢) remains close to —c for all t > 0. Other authors have used more sophisticated
methods to obtain detailed information on the asymptotic behavior of 6(t) and u(z, t)
as t — oo. It is now known that when u(z,0) is sufficiently close to ucg,(z,0), then
for large values of ¢ there exist functions ¢(¢) and 6(t) such that

lim ¢(t) = ¢4,
t—o00

lim 6'(t) = —cy,

t—o0

and
lim (u(x, t) — Uz 000) (x,t)) =0 for x near —0(t).

t—00

Furthermore, in some sense these results are the best possible. For details the reader
is referred to the papers [MM2, MM3, PW].

The results discussed in the preceding paragraph all deal with the case in which
the initial data of a solution of (1.1) is a small perturbation of a single solitary wave.
A more general case would be one in which multiple solitary waves of comparable size
are present. Explicit examples of solutions of (1.1) which contain multiple solitary
waves are the “multi-soliton” solutions, first identified by Gardner et al. in the 1960’s



[GGKM]. To denote multi-soliton solutions we continue to use the notation wu. g, but
now the parameters ¢ = (cy,...,¢,) and 0 = (6y,...,0,) will be vectors in R" whose
components ¢; and #; determine the speeds and initial locations of n individual solitons.
A straightforward analysis of the explicit formula for multi-soliton solutions (cf. Lemma
3.6 below) shows that for each i € {1,...,n},

lHm (ucgp(z,t) — ¢¢; (v — it — 6;)) =0

t——00
and .
tlirglo (’U,C,g(l‘, t) — ¢, (x — it — 92)> =0,
uniformly in regions where x is comparable in size to ¢;t. (Here 9~Z~, 1 =1,...,n, are

numbers which depend only on ¢ and 6.) That is, u.g(z,t) describes the interaction
of n solitary waves, each with its own wavespeed ¢;. At large negative values of ¢
the solitary waves are well-separated, but as time evolves the faster ones overtake the
slower ones and significant interactions occur. Eventually, for large positive values of t,
n solitary waves emerge which have exactly the same speeds as the ones which entered
the interaction: in fact, the only long-lasting effects of the interaction are the phase
shifts represented by replacing #; with 0;.

The question naturally arises whether the behavior exhibited by multi-solitons is
stable under small initial perturbations. This question has been addressed by Maddocks
and Sachs [MS] and, more recently, by Martel, Merle and Tsai [MMT]. In particular,
Martel et al. prove that the conclusion of Benjamin and Bona’s stability result for
single solitons holds as well for multi-solitons: if a solution w of (1.1) is sufficiently
close in H'-norm to a multi-soliton solution ucp at time ¢t = 0, then there exists
0 : [0,00) — R"™ such that u remains arbitrarily close to gy in H' for all time (see
Theorem 2.3 below). Moreover, Martel et al. are able to obtain detailed information
on the asymptotic behavior of 0(¢). For example, they prove that for large values of
time ¢, 0(t) is a C'' function of ¢, and that lim, ., 6'(t) = —c; for some ¢; € R™ which
is close to c. Moreover, as t — 00, u — u, o) Will tend to zero in L? norm on any
interval which propagates to the right at a speed comparable to that of the slowest
soliton component of u,, g (cf. Corollary 1 of [MMT]).

In proving their results, Martel et al. concentrate on the large-time behavior of
u(z,t); or more specifically, on the behavior of u(z,t) for ¢ > T, where T is taken so
large that the numbers {1, ;T .. ., ¢, T} are widely separated. At such large values of
time, the soliton components of u.y, having long ceased to interact with each other, are
steadily propagating without change of form. Taking ¢ = T" as their initial time, Martel
et al. use results from [MM1, MM2] on the asymptotic behavior of individual solitary
waves to analyze u(z,t) for t > T in the separate regions near each soliton component,
under the assumption that w(z,T") is sufficiently close to u.g(x,T"). Then this latter



assumption is removed simply by observing that, according to standard results on the
well-posedness of the initial-value problem for (1.1), u(z,T) can be made arbitrarily
close to ucg(x,T") by taking u(x,0) sufficiently close to u.g(z,0).

A drawback of this approach, however, is that no information is obtained about
the function 6(¢) on the time interval [0,77]. In fact, it is not even clear whether 6(¢)
can be asserted to be a continuous function of ¢ on [0,7]. This is an undesirable state
of affairs, because it is on the time interval [0, 7], where all the soliton interactions
take place, that the chief interest of the multi-soliton solution resides.

Our main result (Theorem 2.4 below) addresses this issue. We prove that if
u(x,0) is close, in an appropriate Sobolev space, to a multi-soliton profile wu.q(x,0)
then there exists a C'' function 7 : [0,00) — R™ such that the corresponding solution
u(w,t) of (1.1) remains close to ucy ) (x,t) for all time, and such that 7'(¢) remains
close to —c. Actually, this fact is derived as a consequence of the stability result of
Martel et al., together with the Implicit Function Theorem. Thus the proof proceeds
along the same lines as that used by Bona and Soyeur [BoSo] in the single-soliton case.

The stability results just discussed show that solutions of (1.1) with initial data
that is a small H' perturbation of a multi-soliton will resolve asymptotically into
solitary waves as t — o0, in domains that move to the right with at least the speed
of the slowest solitary wave present. It remains an open question, however, whether
this asymptotic behavior is still exhibited for solutions with general initial data in H*.
That this might be the case is suggested by the inverse scattering theory for solutions of
(1.1); cf. the book of Schuur [S], where it is shown that smooth initial data with rapid
decay at infinity give rise to solutions which behave asymptotically like multi-soliton
solutions. To date, however, the methods of inverse scattering theory have not yielded
results for more general classes of solutions.

The plan of this paper is as follows. In Section 2 we state and discuss our main
result. In Section 3 some lemmas are established concerning manifolds of n-soliton
solutions in H', and in Section 4, the main result is offered. An appendix contains a
proof of the stability of n-solitons in higher-order Sobolev spaces.

Notation. The notation in force is standard. For 1 < p < oo, L? is the usual
Banach space of measurable functions on R with norm given by | f|, = (/~0_ | f[P dx)*/?.
The space L% consists of the measurable, essentially bounded functions f on R with
norm | f|s = ess supuer|f(z)|. For s € R, the L*-based Sobolev space H* = H*(R) is
the set of all tempered distributions f on R whose Fourier transforms f are measurable
functions on R satisfying

1112 = / (14 B2 [F ()2 dk < oo,

o0

If X and Z are Banach spaces then B(X,Z) denotes the space of all bounded linear



maps [ from X to Z, with norm

lBx,zy = sup [[l(z)]|z;

llzf|x=1

and C([0, 7], X) is the space of all continuous maps u from the interval [0,7] C R into
X, with norm

lulleqorx) = sup [Ju(t)]x.
t€[0,T]

Finally, for matrices Y € B(R",R") = R™, we sometimes use the norm

Yoo = sup  [Yin|-

1<l,m<n

2 Statement of the main result

To explain the results of the paper in detail, we begin by recalling the explicit formula
for multi-solitons given by Hirota [Hi]. Let n be a given natural number, let § =
(01,...,0,) be a given vector in R", and let ¢ be a given element of the set

Sp={c=(c1,...,cn) ER": ¢ >0for1 <i<mnande¢ #c; forl <i<j<n}

Define a function of x € R by

o™ (2;0,¢) = 12@10g7( (36, ¢), (2.1)
where
7 (2:0,¢) = Z exp (Z ein/ci(v +6;) + Z GiGinj> : (2.2)
ee{0,1} i=1 1<i<j<n
with

w:?—w:—j)?
Ve TG

The outermost sum in (2.2) is taken over all of the 2™ possible values of the n-tuple
e = (€1,...,€,), where ¢ is equal to either 0 or 1 for 1 <i < n.

The function ¢™(z;6,¢) is called an n-soliton profile. Each n-soliton profile
gives rise to a multi-soliton solution u.g(x,t) of (1.1), defined by

exp(Ayj) = (

teo(, 1) = 6 (230 — ct, o). (2.3)



In other words, the n-soliton solution u.p propagates in the set of n-soliton profiles
{¢™(z;0,c) : § € R*}, and the evolution of the phase parameter is linear: (t) = 6 —ct.

For ease of notation, when referring to ¢ (z;6,c) we will often drop one or
more of the arguments z, #, and ¢, as well as the superscript (n), when this will not
cause confusion.

Since we want to discuss the stability of multi-solitons in the Sobolev spaces H?,
it is necessary to recall the well-posedness theory for (1.1) in these spaces. Observe
first that the linear equation vy = vy, defines a unitary evolution operator U(t) on
H?® for every s € R; i.e., for each t > 0 one can define U(t) : H® — H® by setting
U(t)[f] = v(-,t), where v is the solution of v; = v, with v(-,0) = f. In fact, v(-,¢) is
defined as a tempered distribution by @(k, ) = e**' f(k), where the circumflex denotes
the Fourier transform with respect to x, and k is the dual Fourier transform variable.
It follows that v € C([0,T], H®) and v, € C([0,T], H*™3) for all T' > 0.

Now suppose that s > 1, so that u € H® implies that uu, is well-defined as an
element of H*~!. In this case, define u to be a strong solution in C'([0, 7], H*) of (1.1)
with initial data u(0) = wuy if, for all ¢ € [0, T7,

u(t) = U(t)[uo] — /0 Ut — 1) [u(r)ug(7)] dr. (2.4)

Note that if u € C([0,7T], H?), then the integrand on the right-hand side of (2.4) is a
continuous function of 7 with values in H°~!, so the integral exists in H*"! at least.
Also, if u € C([0,T], H®) satisfies (2.4), then as a distribution-valued function of ¢, u is
differentiable, and its derivative u, satisfies (1.1) in the sense of tempered distributions.
It then follows from (1.1) that w, is in fact in C'([0,T7], H*™?).

The following well-posedness result is proved in [KPV1].

Theorem 2.1. Suppose s > 1. For every ug € H® and every T > 0 equation (1.1) has
a unique strong solution v € C([0,T], H®) with initial data uw(0) = ug. For this solution
we have uy € C([0,T], H*™3). Moreover, the map which takes the initial data ug to the
solution u is continuous from H® to C([0,T], H?).

Remark 2.2. For s < 1, difficulties arise in making sense of the product uu, appearing
in (1.1). For 0 < s < 1 one can interpret uu, as the distributional derivative of the
integrable function u?, but when s < 0 not even this interpretation is available. Nev-
ertheless, using ingenious arguments which take advantage of certain smoothing prop-
erties of (1.1), various authors have been able to formulate and prove well-posedness
results in H* for all s > —3/4. See, for example, [KPV2] and [CKSTT].

In what follows, we will typically use ug to denote initial data for (1.1) in H*
(s > 1), and u(t) to denote the corresponding solution of (1.1), guaranteed by Theorem
2.1 to exist in H? for all t > 0.



We are now ready to state the following stability result for multi-solitons in H*!,
which is taken from [MMT].

Theorem 2.3. Let ¢ € S, and 0, € R™ be given. For every € > 0 there exists 6 > 0
such that if ug € H' and ||up—¢™ (0, c)||1 < J, then for allt > 0 there exists 0(t) € R"
such that

u(t) — o™ (0(1), ¢)|)r < e.

Our main result is as follows. It represents a generalization of the work of Bona
and Soyeur, to whom the proof is due in case n = 1 [BoSo].

Theorem 2.4. Let c € S, and 0y € R™ be given. Then there exists a constant A with
the following property. For every e > 0, there exists & > 0 such that if ug € H' and
lup — @™ (B, c)|l1 < 6, then there exists a C* function 7 : (0,00) — R™ such that for
every t > 0,

[u(t) = 6™ (y(), )|l <€ (2.5)
and

7' (t) + ¢| < Ae. (2.6)

Remark 2.5. Theorems 2.3 and 2.4 are still valid if the H! norm is replaced throughout
by the H* norm, for any integer & > 1. As has been observed in [BLN], this is a
straightforward consequence of the infinite sequence of conservation laws for (1.1). For
details the reader is referred to the Appendix. In this connection, it is interesting

to note that Merle and Vega [MV] have proved stability of single-soliton solutions in
H° = [~

Remark 2.6. It remains an open question whether, for fixed ¢ and ¢, the number ¢
in the statement of Theorem 2.3 can be chosen independently of #,. If this is indeed
the case, then our proof below shows that ¢ can also be chosen independently of 6, in
Theorem 2.4. See also the comments following the statement of Theorem 2.7 below.

The proof of Theorem 2.4 relies on an application of the Implicit Function
Theorem, which is made possible by the fact that, according to Theorem 2.3, wu(t)
is, for each ¢t > 0, close enough to a multi-soliton profile to be within the domain
of a function defined implicitly near that profile. By contrast, to prove a version of
Theorem 2.4 on a finite time interval [0, 7], Theorem 2.3 would not be necessary, as



the hypothesis required for our application of the Implicit Function Theorem would be
provided by the well-posedness theory for (1.1).

Alternatively, one could envisage using the multi-soliton stability theory of Mad-
docks and Sachs [MS] in place of Theorem 2.3. However, their stability theory is not
suitable for our purposes, for reasons which we now briefly digress to discuss.

The multi-soliton stability theory of [MS] is based on the infinite sequence of
conserved functionals for (1.1), the first four of which are

I(u) = /_OO u dx,

o0

Iy(u) = /_oo u? dz, .

Ig(U) = / <’I,Li — %'Lﬁ) dl‘,

> 5 Y
Iy(u) = /oo <ui$ - guui + %u4> dz.

(Here, the functionals I (kK =1,2,...,) have been normalized so that, in each one, the
term with the highest-order derivative appears with coefficient 1.) These functionals
are conserved in the sense that Ij(u(t)) is independent of ¢t whenever w is a strong
solution of (1.1) in H* (in the sense defined before Theorem 2.1). From this invariance
property and the asymptotic analysis of multi-solitons, it follows easily (cf. [L, MS])
that I;(¢™ (8, c)) is independent of the phase parameter # € R™. In fact, we have

n

(0 0,0) = (1 (522 ) Do 23)

1=1

The stability properties of multi-solitons are closely related to the variational
properties of the functionals I. Suppose n € N and ¢ € S,, are given. By (2.8), the
set G. C H" defined by

G, ={¢ € H": It(¢)) = L(¢™ (8, ¢)) for 2 < k < n + 2}
is independent of # € R", and if we define
M,={y € H": ¢ = ¢"™(8,c) for some § € R"}, (2.9)

then
M, C G,.

In the case n =1 it is easy to see that M, = G, for all ¢ > 0. For n > 1, however, the
question of whether M, = (. appears to be open.
The stability result of Maddocks and Sachs [MS] is the following.

8



Theorem 2.7. Letn > 1 and suppose ¢ € S,,. For every € > 0, there exists 0 > 0 such
that if ug € H", 0y € R", and ||up — ¢ (6, ¢)||,, < 6, then for all t > 0,

inf t) — Y|, <e
af [lu(t) — vl <

Remark 2.8. Recently Neves and Lopes [NL| have given an alternate proof of Theorem
2.7, using a method which also leads to a similar result for the Benjamin-Ono equation
in the double-soliton case.

Notice that the stability result of Theorem 2.7 is set in H", whereas the result
of Theorem 2.3 is set in H', and is hence stronger (cf. Remark 2.5). Also, since it is not
yet known whether M. = G, Theorem 2.7 does not yet give a stability result for the set
of multi-soliton profiles M., and hence cannot be used to prove a result like Theorem
2.4. If, on the other hand, it could be proved that M. = GG, then a proof of stability of
multi-solitons (at least in the space H™) could be based purely on consideration of the
conserved functionals, without recourse to the detailed asymptotic analysis provided in
[MMT]. Moreover, the stability result would have the advantage that, as in Theorem
2.7, the number ¢ corresponding to a given € could be chosen independently of 6.

3 The embedding of M, in H!

In this section we prove several preliminary results which will be needed for the proof
in Section 4 of the main result. Some of them can be given natural interpretations as
statements about the geometric properties of the map 3 : R" — H! defined by 3(f) =
™ (6, c). Thus Lemma 3.4 implies that 3 is an immersion, and Lemma 3.11 implies
that [ is one-to-one. Also, since Theorem 3.1 asserts the existence of a continuous
map F which extends 87! to a neighborhood Us of M, = 3(R™), it follows that 3 is an
embedding; i.e., an immersion which is a homeomorphism onto its image. An important
technical point, which is crucial to the proof in Section 4, is that Us contains all the
elements of H' within a distance & of M,; geometrically speaking, this means that Uy
contains a tubular neighborhood of M, of uniform width in the direction “normal” to
M..
Forn € N and i € {1,...,n}, define

(n)
o (a6, ¢) = 8ggi (z;0,¢)
and
2 1(n)
m _ 079"

9



Similar notation will be used for the functions defined in (2.2). In addition, we occa-
sionally use 0, to denote the operator of differentiation with respect to x, and 0y, to
denote differentiation with respect to 6;, and for a multi-index N = (Ny, Ny, ..., N,),
where the NN; are non-negative integers, we define 9" to be the operator

oY = 85@5@%2 . Géi".
Let n € N and ¢ € S, be fixed. For each # € R", define vy € H" by
vo(z) = ¢ (236, ¢). (3.1)
Then (2.9) becomes
M, ={vy:0 € R"}.
For § > 0, define
Us = {u € H': wu € Bs(vy) for some vy € Mc},

where Bj(vg) denotes the open ball in H! with radius ¢ and center at vy.
Let G : H' x R® — R" be defined by

Glu, 0) = </u(x)¢§”>(g;; 0,0) dx,...,/u(g;)qs;n)(x;e, 0 d:r) |

Putting £ = 2 in (2.8), we find that

L(¢™ (36, ¢)) :/ (¢ (216, ¢))? da
is independent of #. Therefore, for each i € {1,...,n}, the derivative with respect to
; vanishes, viz.
| o a0 (32)
Hence, for all § € R,
G (v, 0) =0, (3.3)

where 0 denotes the zero vector in R".
The main goal of this section is to prove the following Theorem.

10



Theorem 3.1. There ezist a number 69 > 0 and a C*-map F : Us, — R" such that
for every u € Us,,

G(u, F(u)) = 0. (3.4)

Remark 3.2. Actually, below we will only need that F' is continuous on Us,, but it is
not more difficult to prove that F' is C'*°.

To prove Theorem 3.1, we use the Implicit Function Theorem, which entails a
study of Gy, the partial derivative of G with respect to €. Observe that GGy is the map
from H' x R" to B(R",R") given by

—ffooo uP11 ffooo uPry ... ffooo U¢1n_

ffooo uPa1 ffooo uPry ... ffooo uPan,
Go(u,0) = , (3.5)

_ffooo U’¢n1 ffooo U’¢n2 R ffooo U’¢nn_
where
Y0000,

The Implicit Function Theorem, together with (3.3), guarantees the existence
of a solution F'(u) to (3.4) for u in some neighborhood Bj;(vy) of vy, provided that the
matrix Gy(vy, #) is nonsingular. To prove Theorem 3.1, however, we need to also verify
that 0 can be chosen independently of # € R". This requires keeping track of how ¢

depends on the size of G and its derivatives. For this purpose, the following version of
the Implicit Function Theorem will be helpful.

Theorem 3.3. Let X, Y, and Z be Banach spaces, and suppose (zg,yo) € X X Y.
Suppose there exist a neighborhood U of xy in X, a neighborhood V' of yy in Y, and
a map G : U XV — Z which is continuous on U X V and which has a continuous
derivative with respect to y, Gy, on U x V. Suppose also that G(zg,y0) = 0 and
Gy(xo,y0) : Y — Z has a bounded inverse. Then

(i) There exists ng > 0 with the following property. For every n € (0,1], there exists
§ = 6(n) > 0 such that Bs(zy) C U, By(y) C V, and for each x € Bs(xo)
there is exactly one point F(x) in B, (yo) such that G(x, Fx) = 0. The map F is
continuous from Bs(xg) to B, (yo).

11



(i) If
Ki = ||Gy(0, v0) HB(zy):

and Ky and K3 are constants such that
|Gy (2, y) = Gy(wo, o)l Brv,z) < Ko ([|z — 2ol[x + [ly — wolly)

and
|G (2, 90) — G (20, y0)|lz = |G (2, 90)|| 2z < Ksl|lz — 20| x

for allx € U and all y € V, then the number ny and the function 5(n) in part (i)
can be chosen to depend only on K, Ky, and Ks.

(1) If, in addition, G is C* on U x V, then there exists n, > 0, possibly smaller than
o, such that for all n € (0,m1], the function F is C* on Bgy(xo). Furthermore,
if G is C* on U XV for any k > 1, then for all n € [0,m], F is C* on Bsg(xo).
(The number 1, and the function 6(n) do not depend on k.)

(iv) If
K, = ||GI(.CU0,y0)||B(X,Z)

and K5 is a constant such that
G2, y) = G0, Y0) || Bx,2) < K5 ([|r — 20|l x + |y — wolly)

forallx € U and y € V, then the number 1, in part (iii) can be chosen to depend
only on the constants K;, 1 <1 < 5.

Parts (i) and (iii) of this theorem are proved in Theorem 15.1 and Corollary
15.1 of [D]. Parts (ii) and (iv) are implicit in the proofs of Theorem 15.1 and Corollary
15.1 of [D], and can be established by keeping track of the constants involved in these
proofs. The details are omitted. (See also [H].)

From Theorem 3.3, it appears that to prove Theorem 3.1, it will be necessary
to obtain f-independent bounds on the size of Gy(vg,0)™!, as well as on the size of G
itself and its derivatives. These bounds will be obtained below in Lemmas 3.4 through
3.10.

Lemma 3.4. For each fized 0 € R™ and ¢ € S,,, the collection {¢E") (;0,¢) : 1 <i<n}
forms a linearly independent set of functions of x.

12



Proof. Suppose there exist constants as,...,q, such that > "  o;¢;(x) = 0 for all
x € R; we wish to show that a; =0 for i = 1,...,n. Using (2.1) and integrating twice
with respect to x, it is discovered that

Z o (@) = Crar(z) + Cor(x), (3.6)

where 7 is Hirota’s function (2.2), 7; denotes %, and C and C, are constants. It is

straightforward to see that the functions z7(x) and 7(x) are linearly independent from
each other and from the 7;, so it follows from (3.6) that C, = Cy = 0. Hence

Z ;i () =0 (3.7)

for all x € R.
Now observe that each 7; can be written in the form

Tz(l‘) = ZZ aij exp(bijx), (38)

where a;; and b;; are constants, with by = /c;, bj; > \/¢; for 2 < j < m;, and a;; =
V€ > 0. If at least one of the a; is nonzero, let iy be such that ¢;, = min{c; : a; # 0}.
Then it follows from (3.7) and (3.8) that exp (\/¢;, ) can be expressed as a linear
combination of functions of the form exp(bx) with b > /¢;,. This contradiction shows
that each of the a; must be equal to zero. O

Lemma 3.5. Suppose n € N and ¢ € S,, are given. Then for every multi-index N
there exist constants A = A(e,n,N) and B = B(c,n, N) such that

0% 7™ (2,0, )| < AT (30, ¢) (3.9)
and
0N ") (30, ¢)| < B (3.10)
forallz € R and § € R™.
Proof. The estimate (3.9) follows immediately from the definition of 7 in (2.2). Also,
from (2.1), notice that
b= 12 <TT" —2(7')2>

T

(where primes denote derivatives with respect to x), so (3.10) follows immediately
in the case when N = (0,0,...,0). A similar argument establishes (3.10) for any
derivative of ¢. 0
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Here is some convenient notation for dealing with the decomposition of an n-
soliton profile into a k-soliton and an (n — k)-soliton profile. Suppose k is fixed in
{1,...,n—1}. For each 6 = (6y,...,0,) € R" and each ¢ = (¢y,...,¢,) € Sy, define

" (z;0,c¢) = ¢(k)(x; (01, ...,0k), (c1y...,ck)) (3.11)

and

¢ (x;0,¢) = ¢(”’k)(x; (Oks1y--300), (Chr1y -y Cn))e (3.12)

In particular, whenever N is such that N; # 0 for some j € {k+1,...,n}, it must be
the case that
oNo* = 0;

and whenever N is such that N; # 0 for some j € {1,...,k}, it is correspondingly true
that
oN o™ = 0.

The next lemma gives expression to the well-known fact that when the sets
{601,0,,...,0,} and {0kyy,...,0,} are widely separated, ¢{™ is well approximated by
¢* + ¢**‘

Lemma 3.6. Suppose n € N and ¢ € S,, are given, and let
D = min{ /cy,...,\/cn}

Then for every multi-index N there exists a constant C = C(c,n, N) such that the
following is true. Let k € {1,...,n — 1} be given, and define ¢* and ¢** as in (3.11)
and (3.12). Suppose 8 = (0y,...,6,) € R" is such that

0 <0, <--- <0,

and define

T () g _
- {91+\/C_izj:k+1AU (i=1,...,k) (313

0; (i=k+1,...,n).
Then, it follows that
(i) |ON ™ (0, ¢) — N ¢* (30, ¢)| < Cexp(—D(x + Og41)) for all & > —Byy.
(ii) [ON ¢ (20, ¢)| < Cexp(—D(x + Ojp1)) for all & > —0jiy .
(iii) |0~ o™ (230, c) — 0N ¢™*(2;0,c)| < Cexp(D(x + 0r)) for all & < —0y.
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() 0N ¢*(x;0,¢)| < Cexp(D(z + b)) for all x < —6b.

Hence, in particular,

N "™ (0, ¢) — (8N¢*(x; 0,c) + N o™ (a3 0, C)) ‘ < 2C exp(—Dpy(z)) (3.14)

T+ (M) ‘ + <w> . (3.15)

for all x € R, where

po(x) = max{|z + Ok, |z + Opy1|} =

Proof. Define
T(x) = () (x) - exp(—L(x)), (3.16)
where
Liz)= Y Val@+6) + > Ay (3.17)
i=k+1 k+1<i<j<n

Since L(x) is a linear function of z, the equations (2.1) and (3.16) imply that
() i
o\ (z) = 12@1053;7'(:1:). (3.18)

Using (2.2), (3.13), and (3.17), we can expand the right-hand side of (3.16) as follows:

T(z) = Z {exp <Z€z\/6_z(fr+9~z) + Z eieinj> X

e*€{0,1}k =1 1<i<j<k

(3.19)
> exp ( > (e — 1)y/eila +6:) + B(e)) ;
e e{0,1jn—k i=k+1
where i
Ble)=)_ ele;— DA + Y (ae; — 1Ay,
i=1 j=k+1 k+1<i<j<n
and € = (€, ") with €* = (e1,...,€¢) and € = (€11, .., €n)-

Notice first that if 7* is defined by
7—*(]}, 97 C) = T(k>('r7 (017 R 0]6)7 (Cla R Ck))

— Z exp (Z €in/Ci(r +0;) + Z e’ieinj> ’ (3.20)

ec{0,1}* i=1 1<i<j<k

15



then from (3.19), it follows that for all x € R,

" (x;0,¢) < 7(230,¢). (3.21)

Assume that = + 6., > 0, and consider the inner sum, indexed by €, in
(3.19). For each term in this sum, there are two possibilities. Either ¢; = 1 for all
i€ {k+1,...,n}, in which case the value of the corresponding term is just exp(0) = 1;
or, ¢ = 0 for some ¢ € {k+1,...,n}, in which case the corresponding term can be
bounded above by a constant times exp(—D(x + 0;11)). It therefore follows that for
all v > —61, we have

17(2:0,¢) — 7 (2;0,¢)| < C7*(2;0, ¢) exp(—D(x + 1))

(Here, and in what follows, we use C' to denote various constants which are independent
of x and 0; the value of C' may differ from line to line.)

Consider next the equation obtained from (3.19) by differentiating any number
of times with respect to x or the variables 6y, 65, ..., 6,. In the resulting equation,
the only terms on the right-hand side which are not exponentially small are those in
which € = (1,1,...,1) and none of the derivatives are applied within the inner sum.
Thus, for any multi-index M, the inequality

|8M%(x; 0,c) — 8MT*(:U; 9~, o)) < Cr*(x; 9~, c¢) exp(—D(z + 0x41)) (3.22)

holds for all x > —6, with a constant C' that depends only on ¢, n, and M.
From (3.18), it transpires that

P(7)

FIN|+2

N = (3.23)
where |N| = Ny + Ny + --- + N,, and P(7) is a homogeneous polynomial of order
|IN| + 2 in 7 and its derivatives. Similarly from (2.1), (3.11) and (3.20), there follows

the relation )

" (z;0,¢) = 12d— log 7*(x; 0, ¢),

dax?
so that
. Pl)
Write
N — gN g+ = — v + P(17") IV T [y ) (3.25)
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and consider the two terms on the right-hand side separately.
To estimate the first term, express the numerator in the form

P(7)— P(r) =Y _ (07 — 0" 7)Qu(7,7") (3.26)
M
where each Q/(7,7") is a homogeneous polynomial of degree |[N| + 1 in 7, 7%, and
their derivatives. From (3.9), (3.21), (3.22), and (3.26), it follows that
|P(7) — P(7)| < C7N2 exp(—=D(z + k1)) (3.27)
To estimate the second term, write
Pl 1 1 B P(T*)(T* —%)((T*)\NHl_|_..._|_7-\N|+1)
(%) FINFZ T ()N ) | T (r7)IN+2
C(r*)NF2(7* exp(=D(x + Ory1))) (FIVIF1) - (3.28)
(7 NT+2
< Cexp(—=D(z + Ok11))
where again we have used (3.9), (3.21), and (3.22).
Statement (i) of the lemma then follows from (3.25), (3.27), and (3.28).

Attention is now turned to part (iii) of the lemma. Begin by rewriting (2.2) in
the form

T(x;6,¢) = Z {exp ( Z ei/ci(x +6;) + Z Giﬁinj> X

e*e{0,1}(n—k) i=k+1 k+1<i<j<n

<

) (3.29)
Z exp (Z €i/ci(x +6;) +B(e))
ere{0,1}k i—1

where €* and €** are defined as before and

k n
B(e) = Z Z eie; Aij + Z €i€;A;j.

=1 j=k+1 1<i<j<k
For each term in the inner sum (indexed by €*) of (3.29), there are two possibilities:
either ¢, = 0 for all ¢ € {1, ..., k}, in which case the corresponding term is exp(0) = 1;
or, ¢ = 1 for some ¢ € {1,...,k}, in which case the corresponding term is bounded
above by a constant times exp(D(x + 0)), provided that = + 6 < 0. Therefore if 7
is defined by

(20, ¢) = T (@5 (Osrs -, 00), (Costs - oo Cn))
= Z exp ( Z Gl\/C_z(ZU + 01) + Z Qﬁinj> y
ec{0,1}n—k i=k+1 k+1<i<j<n
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then for all x < —6, it follows, as in (3.21) and (3.22) that
T (x;0,¢) < 1(x;0,¢) (3.30)
and, for any multi-index M,
0M7(2;0,¢) — M1 (1,0, ¢))| < CT**(2) exp(D(z + b)). (3.31)

The arguments used above to deduce part (i) from (3.21) and (3.22) now allow
us to deduce part (iii) from (3.30) and (3.31).

Next, observe that from (3.20) it follows easily that for each multi-index M such
that |M| > 1, there exists a constant C' such that, for all x < —6,

10M7* (230, ¢)| < Cexp(D(z + 0y)). (3.32)

Since 7*(x;0,¢) > 1 for all x, (3.24) and (3.32) together imply statement (iv) of the
lemma. The proof of statement (ii) of the lemma is similar: one starts from

P(7*)

(7"1**)|N\+2’

aN¢** —

where

T =71 - exp (_ Z \/C_Z(x + 9’»)

i=k+1
- > e SenEein s ¥ ).
E**E{U,l}n_k 1=k+1 k+1§i<j§n
(compare with (3.19)), and uses the estimate
0M7*(2;0, c)| < Cexp(—=D(x + Ory1)),

which is valid for all [M| > 1 and all x > —0,;.
Finally, (3.14) follows immediately from (i)-(iv). O

A related result which will find use below is the following.

Lemma 3.7. Let n, ¢, and D be as defined in Lemma 3.6. There exists a constant
C =C(c,n,N) such that if 6 = (0y,...,0,) € R" with 6, < 0y < --- <0, then for all
x Z _917

0N ") (30, ¢)| < Cexp(—D(x + 1)) (3.33)
and for all x < —6,,

0N ") (230, ¢)| < C exp(D(x +6,,)). (3.34)
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Proof. Reference to (2.2) reveals that for any multi-index M, there exists C' such that
for all x < —46,,
0™ 7(;0,¢)| < Clexp(D(x +0y)).

Since 7 > 1, (3.34) then follows from the formula

P(r)
Ngpn) — N1/
0T = e
in which P is the same as in (3.23).
To prove (3.33), start from
P(7)
N (n) __
07" = ZIN+2

where
T =7T-exp (—Z\/c_l(x—l-Hz)) .
i=1
As in the proof of part (ii) of Lemma 3.6, we obtain that
|0MF (230, c)| < Clexp(—D(z + 6;))
for all multi-indices M and all x > —#6;; inequality (3.33) follows since 7 > 1. O

Lemma 3.8. Suppose n € N and ¢ € S,, are given. For every multi-index N there
exists a constant C' = C(¢,n, N) such that for every § € R",

/ ( sup ‘8N¢(”)(x;§,c)‘> de < C. (3.35)
—oo \[¢-0|<1
In particular,

/OO ‘8N¢(")(x; 0,c)| dx < C.

Proof. Fix N and use induction on n. For n = 1, ¢V (2;0,¢) = ¢(z + 6;0,¢) for all
x,0 € R, so the integral on the left-hand side of (3.35) is independent of #. We may
assume therefore that # = 0, and hence the supremum in the integrand is taken over
|C| < 1. But if || < 1, then from Lemma 3.7, it follows that

Cexp(—D(z — 1)) for all x > 1

aN (1) - (, <
070 (@ ¢ el < {Cexp(D(;v—l— 1)) for all z < —1.
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For the remaining values, —1 < x < 1, (3.10) implies that
0% 6W (¢, ) < B,

and hence (3.35) follows.

Next, assume the desired constants C(c, i, N) have been proved to exist for all
i € {1,2,...,n—1} and ¢ € S;. On this basis, we now establish the existence of
C(e,n,N) for all ¢ € S,

Let ¢ € S, and # € R" be given; by relabelling the indices, assume that 6; < 6;,,
for 1 <i <n — 1. Moreover, since

¢ (2:0,¢) = ¢ (x +61; (0,05 — b1,...,0, —61),0),

we may also assume that #; = 0.

Suppose first that 0x,1 — 0 < 2 for all k =1,...,n — 1; then 0, < 2n, and so
|¢ — 0 <1 implies ¢; > —1 and ¢, < 2n+ 1. Hence from Lemma 3.7, it is deduced
that

Cexp(—D(zx — (2n+1))) forallz > 2n+1

VW (w;¢,0)] <
o (“C)"{cexpwml)) forall = < =1,

and, as in the case when n = 1, this estimate together with (3.10) yields the desired
result.

Now suppose on the contrary that there exists some k& € {1,...,n — 1} such
that 0x, 1 — 0 > 2. If ( € R™ satisfies |[( — 0] < 1 it follows that (; < (g1 for all
ie{l,....k} and (; > (4o forall i € {k+1,...,n}. Hence, if we define ¢*(z;¢,c),
¢**(x; (,c) and ¢ by replacing 6; by ¢; on the right-hand sides of (3.11), (3.12), and
(3.13), respectively, then the conclusions of Lemma 3.6 hold with # and 0 replaced by
¢ and (.

Applying the induction hypothesis, there obtains the estimates

o0
/ (
-0 \ [(—0|<1
[o¢]
/ (
—oo \[|¢—0I<1

where C; = C((c1, ..., cx), k, N) and Cy = C((Cpp1, - - ., ¢n),n — k, N). Moreover, it is
easy to see that since [(—6| < 1, the function p, defined by (3.15) satisfies p¢(z) > ¢(z)
for all z € R, where

Op+1 + 9k>

o= o (%

20

ON ¢* (x; (~, c) ) de < Cy

and

N ™ (2:¢, ¢) ) dz < Cs.
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and hence [*_ exp(—Dq(z)) dz = [ exp(—Dlu|) du = 2/D. Tt therefore follows
from (3.14) that

/ ( sup ‘8N¢(”)(x;g,c)‘> dx < Cy + Co +C(c,n, N)D
—oo \[¢-0|<1

where C(c,n, N) is as defined in Lemma 3.6. The induction is completed by defining
C(c,n, N) to equal Cy + Cy + C(¢,n, N)D. O

Lemma 3.9. Suppose n € N and ¢ € S, are given. For every multi-index N there
exists C > 0 such that

2
/ ( sup ‘8N¢(")(x; 9,0)‘) dx < C,
—oo \[¢-0|<1

/ 7 10Y9 (230, 0)[F de < C,

and in particular

for all € R™.
Proof. This follows immediately from Lemmas 3.5 and 3.8. U

Lemma 3.10. Suppose n € N and ¢ € S, are given. For 0 € R", define d™ (8, c) to
be the determinant of Gg(vg,0). There exists o = a(c,n) > 0 such that for all § € R",

‘d(”)(H, )] > a.

Proof. First, rewrite the matrix GGy in a more convenient form. Notice that taking the
derivative of (3.2) with respect to ¢; yields, for each ¢ and j in {1,...,n}, the equation

Therefore, if P(™ (0, ¢c) is defined to be the matrix whose (4,7) entry is
PO, c) = / ¢ip; dx, (3.37)
then
Go(vg,0) = —P™ (0, ¢c). (3.38)

21



Hence, in particular, |d™ (0, c)| = |det P(™ (0, c)|.

As in the proof of Lemma 3.8, use induction on n, although here the argument
is a bit more elaborate. First, since dV)(,c) is independent of # € R, the desired
conclusion obviously holds for n = 1. Assume that the desired numbers «(c,7) have
been proved to exist for i =1,2,...,n — 1 (for all ¢ € S;); we intend to prove that for
all ¢ € S,,, an appropriate constant a(c,n) exists. Let ¢ € S, and # € R"™ be given; by
relabelling the indices, assume that 6; < 6;,, for 1 <7 <n — 1. Also, as in the proof
of Lemma 3.8, assume that 6;=0.

Let M = M(0) be defined by

M = max (0i+1 — 91),

1<i<n—1

and choose k € {1,...,n — 1} so that 04, — 0y, = M. For this k, let ¢* and ¢** be as
in Lemma 3.6. For 1 <[, m < n, define

ﬁlm -

P ifre{l,...,k}and me{k+1,...,n}
PZ(TZ ifle{k+1,...,n} and m € {1,...,k},

where Pl(g) is as defined in (3.37) and, as usual, the subscripts on ¢* and ¢ denote

partial derivatives.
We now claim that the estimate

|Bn| < Ce™PM/? (3.39)

holds for all # € R™ and for all [,m € {1,...,n}, with a constant C' which is indepen-
dent of #. To prove this, consider first the case when [,m € {1,...,k}. From Lemma
3.5, we have the estimate

ol = [ (o7 = 01) o o+ [ o1 (04— 7)o

o - (3.40)
sc/|WWWHM+C/|ML¢mm.

Using parts (i), (iii), and (iv) of Lemma 3.6, and observing that ¢;* = 0 leads to the
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conclusion

® ) M ) > (n)
[ oot [ (o - e lotl) dot [ ol - gl da
—00 —00 —0—M/2
—M/2 00
SC/ elu du—i—C’/ e Pu du
—0 M/2

< (C/D)e PM/2,

The same estimate applies of course to the second integral on the right-hand side of
(3.40). It follows that (3.39) holds in this case.

In the case when I[,;m € {k+1,...,n}, (3.39) follows from a similar argument,
this time using the fact that ¢; = 0 to write

gl M - (n)
e —rtaes [ et [ (1 <o+ o) e

00 Or—M/2

and then using parts (i), (ii), (iii) of Lemma 3.6. Finally, if [ € {1,...,k} and m €
{k+1,...,n}, then by Lemma (3.5), it is the case that

—0p—M/2 () ()
Mmsc/ mﬂ+0/ 6]
—0oQ —Hk—M/2

—0k—M/2 ( ) (o0}
=0/ m”—FHC/ 60— g .

() O —M/2

It is therefore concluded from parts (i) and (iii) of Lemma 3.6 that (3.39) holds. The
same argument obviously applies when the roles of [ and m are reversed. Thus (3.39)
is proved in all cases.

Now the n x n matrix S with entries defined by Sl(:q) =P
written in block form as

(n

m) — By can be

P®(9*, ¢¥) 0

(n) _
S 0 P(n—k) (9**, C**)

In consequence,
det S™ = (det P® (0%, c*)) (det PR (9%, c*)),
and so by the induction hypothesis

|det S™| > a(c*, k) - a(c™,n — k). (3.41)
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From Lemma 3.9 and (3.39), it is seen that the matrix norms [|[P™|,, and
|S™||s are bounded independently of #. Since the determinant of a matrix is a
polynomial function of the entries of the matrix, it follows easily from the Mean Value
Theorem that

| det P™ — det S| < C||P™ — SM||, (3.42)

where C' depends only on ||[P™|,, and ||S™||, and therefore is independent of 6.
Combining (3.39), (3.41), and (3.42) yields the estimate

1d™(0,¢)| = |det P™| > oy — Ce™PM/? (3.43)
where

a; = inf {a(c" k) - a(c™,n—k)} > 0.

1<k<n-—1

Choose M) so large that the right-hand side of (3.43) is greater than «,/2 for
My. For any given # € R", there are two possibilities: either 6, > Myn or

M
0, < Myn. Since 6y = 0, then in the first case, it must be the case that

>
<

M = max (01_1_1 — 01) Z Mo,

1<i<n—1

so (3.43) yields
1d™ (0, c)] > a, /2.

In the second case, the vector # is an element of the subset

K ={0 € R": max |0;| < Myn}.
1<i<n

Observe, however, that d™ (,c) # 0 for all § € R". This follows from Lemma 3.4
and the elementary fact that whenever vy, ... v, are linearly independent vectors in an
inner product space, then

det(vi, Uj>i,j:1,n 7§ 0

where (-, -) denotes the inner product. Therefore, since K is compact and |d™ (0, c)| is
continuous and positive everywhere on K, there exists a, > 0 such that |[d™ (6, ¢)| > ay
for all # € K. This completes the proof of the Lemma with

a(c,n) = min(ay /2, as).

24



Next are established a couple of lemmas which will be needed to piece together
the local functions obtained from Theorem 3.3 to obtain a global function defined on
a neighborhood of M.. The following notation will be convenient when we have to
deal simultaneously with k-soliton solutions corresponding to different values of %k in
{1,...,n}. Let ¢ = (c1,...,¢,) € Sy be fixed. For each 0 = (0,,...,0,) € (RU{oo0})",
let Iy = {i € {1,...,n}:0; < oo} and let k = |Iy|, the number of elements in Ip. If
k = 0, define vy = 0, otherwise define

vp(w) = ¢(k)(ff; 9#; C#)

where 0% and ¢ are the ordered k-tuples obtained by removing the infinite com-
ponents from € and ¢. Thus, for example, when n = 7 and I, = {1,4,6,7}, then
vg = ¢ (x; (01, 04,06, 07), (1, ¢4, 6, 7). In the case when 6 € R”, this definition of vy
coincides with that given above in (3.1).

Lemma 3.11. Suppose 0,0 € (RU {oo})". Then vy = v; only if = 0.

Proof. For § € (RU{oo})" and € € {0,1}", define a(e, §) by setting a(e,0) =0if¢; =1
for some i ¢ Iy, and a(e, f) = 1 otherwise. Write vy in the form

d2
v = 12@ log 79(x)

where

m(x)= Y ale0)exp <Zei\/c_i(x+9i)+ > eieinj>,

ec{0,1}" i=1 1<i<j<n

and use the convention that terms of the form 0 - oo are equal to zero. If b(e, #) and d,

are given by
b(e, 0) = exp (Z eiv/citi + Z eieinj>

i=1 1<i<j<n
and
n
de - E €iv/Ci,
i=1
then

Ty(z) = Z ale, 0)b(e, 0)ed®,

ec{0,1}m

If vy = vy, it follows that for all 2 € R,

7o(w) = 75(2)e”
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where p and g are constants. Hence

> ale,0)b(e,0)e*” = > ale,0)b(e, )eteP . (3.44)

ec{0,1}" ec{0,1}"

Since the functions €™ and e®” are linearly independent on R whenever r # s, every
exponential term which appears on the left of (3.44) with a non-zero coefficient must
also appear on the right. In particular, the left side of (3.44) contains the term e%*
corresponding to € = ¢ = (0,0,...,0) (notice that a(ey, ) = b(e,0) = 1, and that
d. > 0if € # €p). Hence, there must exist at least one ¢; € {0, 1}" for which p+d,, = 0.
But €; must equal ¢, for otherwise d., > 0 would imply p < 0, and then the term
elPtdeo)® — P appearing on the right-hand side of (3.44) would not correspond to
any term on the left-hand side of (3.44). Therefore, p = —d,, = 0, and comparing
coefficients of €”* on both sides of (3.44) then gives ¢ = 0. It is thus demonstrated
that

Z ale, 0)b(e, 0)ek” = Z a(e, 0)b(e, f)e? (3.45)

ec{0,1}" ec{0,1}m

holds for all z € R.

Now consider the terms in (3.45) corresponding to € = e;, where ¢; is the stan-
dard basic n-tuple defined by (e;); = ¢;;. By permuting the indices, it may be assumed
that /c; < -+ < ,/¢,. Then, d., < d. for all e € {0,1}" such that € # ¢, and € # e;.
The identity (3.45) implies a(ey,0)b(e1,0) = a(ey,B)b(es,d). From the definitions of
a(e, ) and b(e, f), we see that this in turn implies that 6; = 6.

To finish, use induction to prove 6, = 0, for all k € {1,...,n}. Assume 0; = 0;
forall1 <i<k—1,andlet r =d,,. If d. = r for any € € {0,1}" with € # e, then we
must have ¢; = 0 for + > k, in which case it follows from the induction hypothesis that
a(e, 0)b(e,0) = a(e, B)b(e, §). Therefore all the terms on the left of (3.45) which contain
e’ and correspond to € # ej will balance with equal terms on the right of (3.45). But
then the identity (3.45) implies that the terms corresponding to € = e, must be equal
as well, which implies that 0, = 0. O

Lemma 3.12. Suppose n € N, let ¢ € S,, be fized, and for § € (R U {oo})" define
Iy and 0% as before Lemma 8.11. For every n > 0 there exists 6 > 0 such that if
0,0 € (RU{oo})™ with |Ip|+|I5| > 1 and |Jvg—v4|y < 6, then Iy = I and |07 —67%| < 1.

Proof. 1t is required to show that for every 1 > 0 there exists 6 > 0 such that if I, # Iy,
or Iy = I; and |#% — 6%| > ), then ||Jug — vj|[; > d. To prove this, we use induction on
o] + 11yl

Suppose first that |Is| + |I;] = 1; then necessarily Iy # I;. Without loss
of generality, assume that |I;] = 0, v; = 0, and [[y|] = 1. Since the set S =
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{l|vel|1 : @ € (RU{o0})™ and |Iy| = 1} contains only a finite number of positive ele-
ments, clearly § = minS > 0, and since ||vg — vg||1 = ||vg][1 > 6, the result follows in
this case.

Make the induction hypothesis that for every i € {1,...,l— 1} and every n > 0
there exists 6;(n) > 0 such that if |Iy| + |I;] = 4, and elther Ig # I; or Iy = I; and
0% — 0%] > 1, we have |lvg — vgll, > di(n). In particular, taking 9 = (00 ,...,oo)
so that v; = 0 and |I;| = 0, it follows from the induction hypothesis that for every
ie€{l,....l —1} and every n > 0,

[[vallx = [lve — vglly = 6:(n) (3.46)

whenever |[| = i.
Let 7 > 0 be given and assume |y +|I;| =1 > 1. We aim to show the existence
of the desired § > 0 both in case Iy # I; and in case I, = I; and 0% — 6%| > 1),
Assume first that Iy = I; and |9# — 0%| > n. For ease of notation, write  in
place of ## and 6 in place of 9#, so that 6,0 € R™ where 2m = [. By subtracting a
common constant from all components of § and 6, it can be presumed that

min{6y,...,0,,} = 0.

Let M > 0 be fixed but arbitrary for the moment (a value of M will be chosen
later). To obtain estimates on ||vg — vj||;, several cases are considered, according to
the location of the components of 6 and f with respect to the interval [0, M].

Case 1. Suppose {6,,...,0,} C |0, M] and {0,,...,0,,} C [-M,2M]. Define
the function f(6,0) : R™ x R™ — R by f(0,0) = ||lvg — Ug”l; then f is continuous and
is positive on {(0,0) : |§ — 0] > n} by Lemma 3.11. Since the set

T={0,6): {0,...,6,} C[0,M], {61, ...,00m} C[~M,2M], and |0 — 8] > 5}

is compact in R™ x R™, there exists 6y = dy(M) > 0 such that f(6,0) > d, for all
6,0) €T

Case I1I. Suppose {9~1, ce 0~m} C [0, M] and 6; < —M for some i. By permuting
the indices we may assume that ¢; < --- < 6, and 6; < —M. Split the interval [—M, 0]
into m subintervals of equal length M /m. At least one of these subintervals must have
interior disjoint from the set {6,...,0,,}. Therefore either 6,, < —M/m, or there
exists k € {1,...,m —1} such that 0y, — 0, > M/m. If 0,, < —M/m, we obtain from
Lemmas 3.7 and 3.9 that there exists a constant C', which is independent of # and é,
such that

lvg — v3llt > llvollt + [lvgllt — C exp(=DM/(2m)).

It follows that for M sufficiently large,

inf{[|ugl|1 : 0 € R™} > = 6n(1)

1 1
lvo =gl = 7 (llvolls + llvglh) = 5
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where (3.46) has been used.
If, on the other hand, 01 — 6y > M/m for some k € {1,...,m — 1}, then it
follows from Lemma 3.6 that

lvo — w3lly > l&"[17 + 1™ — vglli — C exp(—DM/(2m))

where ¢* and ¢** are as defined in (3.11) and (3.12), and C is independent of # and 6.
Hence for M sufficiently large,

1
lvo = vglls = Sl s

Since ¢* = vyp«, where
0, if1<i<k
oo ifk4+1<i<m,

(3.46) then implies that
1
lvs = vglls = 5% (n)- (3.47)

Case III. Suppose {9~1, ) ,9~m} C [0, M] and 6; > 2M for some i. Again by
permuting the indices, it may be assumed that ¢, < --- < 6, and 6,, > 2M. Split
the interval [M,2M] into m subintervals of equal length, at least one of which must
have interior disjoint from the set {61, ...,6,,}. Hence, either §; > M + M /m, or there
exists k € {1,...,m — 1} such that 0y, — 0y > M/m. The same argument as used in
Case II then shows that for M sufficiently large,

o0 = vl > 5 min(Gn(n), dne(). (3.45)

Case IV. Suppose 6; > M for some i € {1,...,m}. As usual, assume without
loss of generality that 0 = 9~1 < .- < ém and 9~m > M. Then there exists k €
{1,...,m — 1} such that §k+1 — 0 > M /m. Split [ék, 9~k+1] into m + 1 subintervals of
equal length. At least one of these subintervals has interior disjoint from {6, ...,60,,}.
Choose such a subinterval and denote it by [a, b]; of course, b —a > M/(m(m + 1)).
Define 07 = 0, if 0, < a and 0 = oo otherwise, and define 6;* = 0; if 6, > b and
0:* = oo otherwise. Similarly, define 6 = 6; for 1 < i < k and 87 = oo otherwise; and
define 91** = 9~Z fork+1<¢<mand HN;‘* = o0 otherwise. Then from Lemma 3.6, it
may be concluded that

* — Cexp(—DM/m(m + 1))

||Ué - UG“% - ||U§* — Vg~ % + ||U§** — Ugx*
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where C' is independent of 6 and §. Hence, for M sufficiently large, we have

1
lvg = volls = 7 (llvg. — vor

1+ (|05 — vge- 1) - (3.49)

In the current situation,

1<|Ij|+ Ips] <k+m<2m—-1<1[ and
L <|Ijc| + |Ip=| < (m—k)+m <2m —1 <,

so the induction hypothesis can be applied to both the terms on the right-hand side of
(3.49). If 15. # Ip or Ij.. # Ip-, then (3.49) yields

1
< > = i ) . .
fog vl > 3 (min 6o ) (3.50)
The remaining possibility is that Ij. = Iy and I;.. = Ip. But, in that case, since
|0 — 6] > n, we must have either |§* — 6*| > n/2 or |6** — 0**| > n/2, and so (3.49)
yields

1 .
e = oll > 3 (uin 8072 (5.51)

Now choose M so large that all the estimates in Cases II through IV are valid
(notice this can be done with an M whose value is independent of # and 6), and for
such an M define § to be the smallest of do(M) and the numbers on the right-hand
sides of (3.47), (3.48), (3.50), and (3.51). We then have ||uz—wvy||; > § whenever Iy = I;
and |0 — 0| > 5, completing the inductive step in this case.

It remains to consider the possibility that Iy # I;. Let m = |Iy| and m = |I;|,
so that m + m = [. By switching m and m if necessary, assume m > 0. Now the
arguments used above in Cases [ through IV can be repeated unchanged, with the
understanding that v; = 0 when /m = 0, and the replacement of the set 7" in Case I by

T=1{(0,0): {6,....0,} C[0,M], {0y,...,00} C[-M,2M]}.

(Note in particular that Case IV can only arise when m > 2, and that in Case IV, the
situation wherein I;. = Ip- and Ij.. = Iy~ cannot now arise, since it would contradict
Iy # I;.) The induction is complete and the lemma proved. O

Proof of Theorem 3.1. From Lemma 3.9 and (3.38), it is known that the entries of
Gg(vg,0) are bounded independently of § € R™. Therefore, from Cramer’s rule and
Lemma 3.10, the entries of the inverse matrix Gy(vg, #) ™' are also bounded indepen-
dently of # € R". Hence the quantity

K = sup ||Go(vg, 0) || pwn mr) (3.52)
OcR™
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is finite.
Now let fy € R" be fixed but arbitrary, and let ug = vg,. For all (u,0) € H'xR",

(3.5) implies that
G (1, 0) — Goluo, 80| sr ey < sup / uis (0) — / o 55(0o)

I<ijsn (3.53)
sup  (|ula|@i; (0) — ¢4(0o)]2 + |u — uol2|Pij(6o)l2)
1<z J<n
where the L?-norms are taken in the x variable.
We claim that
95 (0) — di(0o)]2 < M6 — o], (3.54)

where M is independent of 6. To prove (3.54), we might as well assume that |§—6y| < 1,
since |¢;;(0)|2 is bounded independently of # by Lemma 3.9. For each x € R, the Mean
Value Theorem provides a ¢, € R" on the line segment between 6 and 6, such that

¢ij (30, ¢) — i (; 60, ) Z%km, ) (0 — 6y),,.-

It follows that

|04 (30, ¢) = bij(w; 0, )| <sup sup |oyi(; ¢, c)] - [0 = o),
ko 1¢—0o]<1

and (3.54) then follows from Lemma 3.9.
Now let U be the ball of radius 1 centered at ug in H', so that for all u € U,
lula < 1+ |ugla = 1+ |dg,|2. The inequalities (3.53), (3.54) and Lemma 3.9 yield that

|Go(u,0) — Gy(uo, 0o)|| Brr rr) < Ko (JJu — uol|1 + |6 — 6o])

for all (u,0) € U x R", where the constant K, can be taken to be independent of
6y € R". Similarly, we have that

G, 60)] = G, 00) — G, B0)]| < |1t — gl ( sup |¢2|2) < Kyl — uglo,

1<i<n

for all (u,d) € U x R", where K3 can be chosen independently of 6.
Next, observe that

Ky = ||Gy(uo, 00)|| 1 rey < sup [9i(fh)]z,

1<i<n
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which is uniformly bounded in 6, by Lemma 3.9; and for all ¢/ € H!, it is the case that

|Gulu, 0)[)] = Guluo, 0h)[¢]] < sup /OO W [¢i(0) — di(60)]
b (3.55)

< [0 (sup 1649 - 800 )

The same argument used to prove (3.54) shows that the right-hand side of (3.55) is
bounded by Kjl||¢||1|0 — 6o|, where K5 can be chosen independently of 6. Therefore

|Gu(u, ) — Gu(uo, bo) | s rey < K5 ([[u— wol[1 + |0 — o)

for all u € H* and 6 € R™.

As a consequence of Theorem 3.3, there exist a number 7, > 0 and a function
d(n) defined for n € (0,7,] such that, for every § € R™ and every u € By, (vg), there
is a unique point Fy(u) € B,(#) such that G(u, Fy(u)) = 0. Moreover, since G(u, ) is
clearly C* on H' x R", the map Fy : By (vg) — B,(0) is C™.

Next, we claim that there exists a number §; > 0 with the property that when-
ever 6,0, € R™ and u € By, (vg,) N By, (vp,), then Fy (u) = Fp,(u). To see this, let
n= %771. By Lemma 3.12, there is a & > 0 such that if |vp, — vy, | < 9, then |6) —6,] < 7.
Define the quantity ¢y by

5y = win {5(7), (1), %S},

and suppose u € Bs,(vg,) N Bs,(vg,). Then u € Bs,,)(02), so Fy,(u) is the unique point
in By, (62) such that G(u, Fy,(u)) = 0. On the other hand, we have

|vg, — v, | < |vg, — ul + |vg, — u| < 285 <9,
s0 |01 — 62| < 7. Moreover, Fy, (u) € B;(01) and hence
|F01(U’) - 02| < |F91(U) - 01| + |01 — 92| < 2’[7 =n.

Therefore Fy, (u) € By, (62). But since G(u, Fy,(u)) =0, and y = Fp,(u) is the unique
solution of G(u,y) = 0 in By, (), it must be the case that Fy, (u) = Fp,(u), as desired.

It follows from what has just been proved that the maps Fy : Bs,(vp) — R”
piece together to form a globally defined map on the neighborhood Us, of M.. In other
words, there is a well-defined map F': U5, — R" obtained by setting

F(u) = Fg(u) ifu e Bgo(e).

Since each Fy is C*° and satisfies (3.4), the same is true of F. O
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4 Proof of Stability

We prove Theorem (2.4). Without loss of generality, presume that

ac,n)

€ < 2Cilen) (4.1)
where a(c,n) is defined in Lemma 3.10, and C(¢,n) is the number defined below in
(4.8). From Lemma 3.9 and the Mean Value Theorem (cf. the proof of (3.54)), there
is an 7 > 0 such that whenever 0,y € R" satisty |6 — | < 7, then |lvy — v, ||y < €/2.
Let 0, = d(n), where §(n) is the function defined above in the proof of Theorem 3.1,
so that whenever § € R" and u € By, (vg), then F'(u) € B,(6). Finally, let dy be the
number defined in the statement of Theorem 3.1. By Theorem 2.3, there is a 6 > 0
such that if uy € H' and |Jug — vp,||y < d for some 6, € R™, then for all ¢ > 0 there
exists 0(t) € R"™ such that

||u(t) — vgp |1 < min(do, 61,€/2). (4.2)

In particular, u(t) € Uy, for all ¢ > 0, so by Theorem 3.1 we can define a function
7 :(0,00) = R™ by setting v(t) = F(u(t)). Also, since the map ¢ — u(¢) is continuous
from (0,00) to H' by Theorem 2.1, and F : Us, — R" is continuous by Theorem 3.1,
then v(¢) is a continuous function of ¢ on (0, co).

From (4.2) and the definition of the function F on Us,, it follows that v(t) =
Fypy(u(t)) for all ¢ > 0. Moreover, (4.2) implies that u(t) € Bs (6(t)), or, in other
words, |y(t) — 6(t)| < d1, and hence that [|vgy) — vy)|l1 < €/2. In consequence, we see
that

[u(t) = vyl < fJu(@) = volls + lva) — vamlle < €/2+€/2=¢,
so proving (2.5).
It remains to show that v(t) is a C'' function and satisfies (2.6). For this purpose,
consider the function H : (0, 00) x R™ — R™ defined by

0.9}

H(t,0) = </_°o w(z, )" (20, ¢) du, - - - /_

oo o

u(z,t) o™ (z; 0, c) dx) .

The idea is to apply the Implicit Function Theorem to H at the points (¢,y(t)) where
it is known that

H{(t,y(1) = G(u(t), F(u(t))) = 0. (4.3)

Fix ¢ty > 0. Observe first that if U is any neighborhood of ¢ in (0,00), then H
is C! on U x R". In fact, the derivatives of H with respect to components of § clearly
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exist up to any order. As for derivatives with respect to ¢, it is known from Theorem 2.1
that u is differentiable as a distribution-valued function of ¢ with u, € C([0,T], H™?).
Hence for any function ¢ in the Schwarz class S(R), the action

() = [l 00ta) da

o0

of u(t) on 1 will be a differentiable function of ¢, with derivative

(ug, ) = (—Uly — Uggy, V),

which is a continuous function of ¢. But since ¢; = ¢\ (:6,¢) € S(R) for each

i€ {1,...,n}, it follows that H is continuously differentiable with respect to ¢, with
the " component of H; given by

Ht(tv 9)1 = <U't7 ¢z> = <_u(t)u:c(t) - U':c:c:c(t)v ¢z> (44)

Next, it is shown that the partial derivative Hy(tg,v(Zp)) is an invertible map
from R™ to R™. To see this, observe that

Hy(t,0) = Go(u(t), )
for all (¢,0) € (0,00) x R", and hence
Hy(to, v(to)) = Go(ulto),7(t0)) = Go(v3(10),7(t0)) + G (B, vy10)); (4.5)
where h = u(ty) — vy,). But, we also know that
|det Gy (10), ¥(t0))| = ‘d(”)(y(to),c)‘ > a(e,n) (4.6)

by Lemma 3.10, and for all 4,5 € {1,...,n},
‘G(h, U»y(to))ij‘ = ‘/ h¢§?)(x;7(to),c) dz| < |hla|dijl2 < Ck, (4.7)

where C' depends only on n and ¢, by Lemma 3.9 and (2.5). Combining (3.42), (4.5),
(4.6), and (4.7) (and recalling that the matrix norm ||Gg(vy, )|~ is bounded indepen-
dently of #), it is deduced that there exists a number C' (¢, n) such that

| det Hy(to, v(t0))| > alc,n) — Ci(c,n)e. (4.8)

From (4.1) it now follows that Hy(to, (o)) is invertible.
It follows from what has just been proved and Theorem 3.3 that there exist
numbers 7 > 0 and 6 > 0 such that for every ¢t € (¢, — d,ty + 0), there is exactly one
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vector ((t) € B, (y(ty)) such that H(t,((t)) = 0, and the map ¢ — ((¢) is C*. On the

other hand, since y(t) is continuous, there exists §; € (0,9) such that y(t) € B, (y(to)

for all t € (ty — d1,to + 01). It then follows from (4.3) and the uniqueness of ((¢) that

v(t) = ((t) for t € (ty — d1,t0 + 01). Since ((t) is C* near ty, this implies that (¢) is

C! near t; as well. Since ¢y was arbitrary, we have proved that v(t) is C'* on (0, 00).
It remains to prove (2.6). Differentiating (4.3) with respect to t yields

Hy(t,~(t)) + Ho(t,7(2)) - '(£) = 0. (4.9)
For each ¢ > 0, define h(z,t) as an element of H' by
h(z,t) = u(w,t) — vy (2) = u(z, t) — o™ (2;7(t), ).
Then, we have
— (U + Ugga) = —(0Ps + Puwa + Ol + Guh + hhy + hige), (4.10)

where both sides represent distributions in H 2. Substituting (2.3) into (1.1) gives the
equation

- Z ¢jcj + ¢¢x + ¢xxx = 07
j=1

and therefore, from (4.10),

— (Ut + ) = — Y BiC5 + Gha + Goht + Dl + . (4.11)

j=1

Using (4.11) and the fact that

in (4.4) yields

Hy(t (1)) = — Z ; (/Z bid; dx) + Ry, (4.12)

Jj=1

where
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Define M (t) = Gy(vq),7(t)), so that
M;; = —/ ¢i¢; de,
by (3.37) and (3.38). Then (4.12) can be written in vector form as

Hy(t,v(t)) = Mc + R. (4.13)

Observe that for each 7,5 € {1,...,n},

H(t2 (@) = [

—o0

0.9

u(t)g;; de = / dd; dr + Rij(t),

where

Ri;(t) = /_ hoij du.

o0

From (3.36), we have then that, as matrices,
Hy(t,v(t)) = M + R. (4.14)
Equations (4.9), (4.13), and (4.14) together imply that
Y =—(M+R™Mc+R)=—-I+M 'Ry (c+ M 'R). (4.15)

But since ||h||; < € by (2.5), then Lemmas 3.5, 3.8, and 3.9 imply that |R| < Ce and
|R||sc < Ce, where C' is a constant that depends only on ¢ and n. Moreover, from
(3.52) we have that ||[M~'||g®srn) < K, where K; depends only on ¢ and n. The
estimate (2.6) therefore follows from (4.15) and elementary considerations.

A Appendix

In this appendix we prove the statement made in Remark 2.5. The following lemma
regarding the invariant functionals [, mentioned in (2.7) is needed. The proof of the
lemma is essentially contained in Section 3 of [BLN].

Lemma A.1. Suppose k > 1 is an integer. For all h € H* and ¢ € H*', we have

[ i2( + ) = Tiga ()] < Cr (1Bl + [IRI1E?) (A1)

and

i2(¢ + ) = Tia(9)] > (IRl — Co (1Bl + 1215 , (A.2)

where Cy and Cy depend only on ||¢||k+1-
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Following the argument of [BLN], we use induction to show that for every ¢ > 0,
there exists § > 0 such that if uy € H*, 6, € R™, and ||ug — ¢™ (0, ¢)||x < 9, then for
all t > 0,

lu(t) = 6™ (v(1), )l < e,
where 7 is the same function defined in Theorem 2.4. Theorem 2.4 already takes care
of the case k£ = 1, so it suffices to prove that the statement holds for k£, under the
assumption that it holds for k£ — 1.

Fix ¢ € S, and let ¢ > 0 be given. By Lemma 3.9, there is a uniform upper
bound for ||¢™ (6, ¢)||r+1 as @ ranges over all of R™. Therefore, we can choose constants
C, and C, such that if we set ¢ = ¢(™ (0, c), the estimates (A.1) and (A.2) in Lemma
A.1 hold for all # € R". Choose « > 0 such that

Cy(a + a"?) < /2. (A.3)

By the induction assumption, there is a §; > 0 such that if |Jug — ¢™ (6g, ¢)||x—1 < 1,
then for all £ > 0,

lu(t) = 6™ (v(1), )lk-1 < v (A.4)

Choose 99 > 0 such that
C1(0y + 6'2”2) < €*/2.

Finally, define 6 = min(dy, ds).
If |[ug — ¢™ (6, ¢)||x < 6, then applying (A.1) to ¢ = ¢ (6, c) and h = ug — ¢
gives
[Tiy2(uo) — Ty2 (61 (09, ¢))| < €*/2.
Since Iy, is a conserved functional for (1.1), and Iy,2(¢™ (6, ¢)) is independent of
0 € R, it follows that for all ¢ > 0,

[ir2(ult) = Lera (™ (1(1), €))| < €8/2. (A.5)

Now let ¢ = ¢{™ (y(t),c) and h = u(t) — ¢. Since
g — 3™ (00, ¢)|[k—1 < |luog — ™ (6p, ¢) ||k < 6 < 61,
(A.4) holds. It then follows from (A.2), (A.3), and (A.5) that
|n||7 < €2/2 +€2/2 = €,

as desired.
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