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where  > 0, � 2 R, and �(�) = 3 seh2(p �=2):These Korteweg-de Vries solitary waves are not run-of-the-mill solitary waves,however. They go by the speial appellation of \soliton" beause they exhibit strongstability properties, like those of partiles. Suppose for example that a solution u(x; t)of (1.1) ontains a soliton u;� at time t = 0, in the sense that ju(x; 0) � u;�(x; 0)j issmall at least for x in a large interval entered at x = �. In general, as time passes,u(x; t) may undergo a ompliated nonlinear evolution, but eventually it will emergewith its identity intat, up to translation. That is, for large values of t there will exist afuntion �(t) suh that ju(x; t)�u;�(t)(x; t)j is small for all x in a large interval enteredat �(t).The senario just desribed gives only a rude idea of the stability properties ofsolitary-wave solutions of (1.1). More preise and re�ned investigations have oupiedresearhers for the past few deades. The �rst rigorous result in this diretion wasproved by Benjamin and Bona in the 1970's [Be, Bo℄. They showed that if u(x; 0) issuÆiently lose to a soliton u;�(x; 0) over the entire real line, or more preisely in thenorm of the Sobolev spae H1(R), then there exists a funtion � : [0;1) ! R suhthat u remains arbitrarily lose to u;�(t) in H1 norm for all times t > 0. Later, Bonaand Soyeur [BoSo℄ observed that a simple argument based on the Impliit FuntionTheorem is suÆient to obtain improved information on the behavior of the funtion�(t): namely, that it an be taken to be a di�erentiable funtion of t, with the propertythat �0(t) remains lose to � for all t > 0. Other authors have used more sophistiatedmethods to obtain detailed information on the asymptoti behavior of �(t) and u(x; t)as t ! 1. It is now known that when u(x; 0) is suÆiently lose to u;�0(x; 0), thenfor large values of t there exist funtions �(t) and �(t) suh thatlimt!1 �(t) = 1;limt!1 �0(t) = �1;and limt!1 �u(x; t)� u�(t);�(t)(x; t)� = 0 for x near ��(t):Furthermore, in some sense these results are the best possible. For details the readeris referred to the papers [MM2, MM3, PW℄.The results disussed in the preeding paragraph all deal with the ase in whihthe initial data of a solution of (1.1) is a small perturbation of a single solitary wave.A more general ase would be one in whih multiple solitary waves of omparable sizeare present. Expliit examples of solutions of (1.1) whih ontain multiple solitarywaves are the \multi-soliton" solutions, �rst identi�ed by Gardner et al. in the 1960's2



[GGKM℄. To denote multi-soliton solutions we ontinue to use the notation u;�, butnow the parameters  = (1; : : : ; n) and � = (�1; : : : ; �n) will be vetors in Rn whoseomponents i and �i determine the speeds and initial loations of n individual solitons.A straightforward analysis of the expliit formula for multi-soliton solutions (f. Lemma3.6 below) shows that for eah i 2 f1; : : : ; ng,limt!�1 (u;�(x; t)� �i(x� it� �i)) = 0and limt!1�u;�(x; t)� �i(x� it� ~�i)� = 0;uniformly in regions where x is omparable in size to it. (Here ~�i, i = 1; : : : ; n, arenumbers whih depend only on  and �.) That is, u;�(x; t) desribes the interationof n solitary waves, eah with its own wavespeed i. At large negative values of tthe solitary waves are well-separated, but as time evolves the faster ones overtake theslower ones and signi�ant interations our. Eventually, for large positive values of t,n solitary waves emerge whih have exatly the same speeds as the ones whih enteredthe interation: in fat, the only long-lasting e�ets of the interation are the phaseshifts represented by replaing �i with ~�i.The question naturally arises whether the behavior exhibited by multi-solitons isstable under small initial perturbations. This question has been addressed by Maddoksand Sahs [MS℄ and, more reently, by Martel, Merle and Tsai [MMT℄. In partiular,Martel et al. prove that the onlusion of Benjamin and Bona's stability result forsingle solitons holds as well for multi-solitons: if a solution u of (1.1) is suÆientlylose in H1-norm to a multi-soliton solution u;� at time t = 0, then there exists� : [0;1) ! Rn suh that u remains arbitrarily lose to u;�(t) in H1 for all time (seeTheorem 2.3 below). Moreover, Martel et al. are able to obtain detailed informationon the asymptoti behavior of �(t). For example, they prove that for large values oftime t, �(t) is a C1 funtion of t, and that limt!1 �0(t) = �1 for some 1 2 Rn whihis lose to . Moreover, as t ! 1, u � u1;�(t) will tend to zero in L2 norm on anyinterval whih propagates to the right at a speed omparable to that of the slowestsoliton omponent of u1;� (f. Corollary 1 of [MMT℄).In proving their results, Martel et al. onentrate on the large-time behavior ofu(x; t); or more spei�ally, on the behavior of u(x; t) for t � T , where T is taken solarge that the numbers f1T; 2T; : : : ; nTg are widely separated. At suh large values oftime, the soliton omponents of u;�, having long eased to interat with eah other, aresteadily propagating without hange of form. Taking t = T as their initial time, Martelet al. use results from [MM1, MM2℄ on the asymptoti behavior of individual solitarywaves to analyze u(x; t) for t � T in the separate regions near eah soliton omponent,under the assumption that u(x; T ) is suÆiently lose to u;�(x; T ). Then this latter3



assumption is removed simply by observing that, aording to standard results on thewell-posedness of the initial-value problem for (1.1), u(x; T ) an be made arbitrarilylose to u;�(x; T ) by taking u(x; 0) suÆiently lose to u;�(x; 0).A drawbak of this approah, however, is that no information is obtained aboutthe funtion �(t) on the time interval [0; T ℄. In fat, it is not even lear whether �(t)an be asserted to be a ontinuous funtion of t on [0; T ℄. This is an undesirable stateof a�airs, beause it is on the time interval [0; T ℄, where all the soliton interationstake plae, that the hief interest of the multi-soliton solution resides.Our main result (Theorem 2.4 below) addresses this issue. We prove that ifu(x; 0) is lose, in an appropriate Sobolev spae, to a multi-soliton pro�le u;�(x; 0)then there exists a C1 funtion  : [0;1)! Rn suh that the orresponding solutionu(x; t) of (1.1) remains lose to u;(t)(x; t) for all time, and suh that 0(t) remainslose to �. Atually, this fat is derived as a onsequene of the stability result ofMartel et al., together with the Impliit Funtion Theorem. Thus the proof proeedsalong the same lines as that used by Bona and Soyeur [BoSo℄ in the single-soliton ase.The stability results just disussed show that solutions of (1.1) with initial datathat is a small H1 perturbation of a multi-soliton will resolve asymptotially intosolitary waves as t ! 1, in domains that move to the right with at least the speedof the slowest solitary wave present. It remains an open question, however, whetherthis asymptoti behavior is still exhibited for solutions with general initial data in H1.That this might be the ase is suggested by the inverse sattering theory for solutions of(1.1); f. the book of Shuur [S℄, where it is shown that smooth initial data with rapiddeay at in�nity give rise to solutions whih behave asymptotially like multi-solitonsolutions. To date, however, the methods of inverse sattering theory have not yieldedresults for more general lasses of solutions.The plan of this paper is as follows. In Setion 2 we state and disuss our mainresult. In Setion 3 some lemmas are established onerning manifolds of n-solitonsolutions in H1, and in Setion 4, the main result is o�ered. An appendix ontains aproof of the stability of n-solitons in higher-order Sobolev spaes.Notation. The notation in fore is standard. For 1 � p < 1, Lp is the usualBanah spae of measurable funtions onR with norm given by jf jp = (R1�1 jf jp dx)1=p.The spae L1 onsists of the measurable, essentially bounded funtions f on R withnorm jf j1 = ess supx2Rjf(x)j. For s 2 R, the L2-based Sobolev spae Hs = Hs(R) isthe set of all tempered distributions f on R whose Fourier transforms f̂ are measurablefuntions on R satisfyingkfk2s = Z 1�1(1 + k2)sjf̂(k)j2 dk <1:If X and Z are Banah spaes then B(X;Z) denotes the spae of all bounded linear4



maps l from X to Z, with normklkB(X;Z) = supkxkX=1 kl(x)kZ ;and C([0; T ℄; X) is the spae of all ontinuous maps u from the interval [0; T ℄ � R intoX, with norm kukC([0;T ℄;X) = supt2[0;T ℄ ku(t)kX:Finally, for matries Y 2 B(Rn;Rn) = Rn2, we sometimes use the normkY k1 = sup1�l;m�n jYlmj:2 Statement of the main resultTo explain the results of the paper in detail, we begin by realling the expliit formulafor multi-solitons given by Hirota [Hi℄. Let n be a given natural number, let � =(�1; : : : ; �n) be a given vetor in Rn, and let  be a given element of the setSn = f = (1; : : : ; n) 2 Rn : i > 0 for 1 � i � n and i 6= j for 1 � i < j � ng:De�ne a funtion of x 2 R by�(n)(x; �; ) = 12 d2dx2 log � (n)(x; �; ); (2.1)where � (n)(x; �; ) = X�2f0;1gn exp nXi=1 �ipi(x + �i) + X1�i<j�n �i�jAij! ; (2.2)with exp(Aij) = �pi �pjpi +pj�2:The outermost sum in (2.2) is taken over all of the 2n possible values of the n-tuple� = (�1; : : : ; �n), where �i is equal to either 0 or 1 for 1 � i � n.The funtion �(n)(x; �; ) is alled an n-soliton pro�le. Eah n-soliton pro�legives rise to a multi-soliton solution u;�(x; t) of (1.1), de�ned byu;�(x; t) = �(n)(x; � � t; ): (2.3)5



In other words, the n-soliton solution u;� propagates in the set of n-soliton pro�lesf�(n)(x; ��; ) : �� 2 Rng, and the evolution of the phase parameter is linear: ��(t) = ��t.For ease of notation, when referring to �(n)(x; �; ) we will often drop one ormore of the arguments x, �, and , as well as the supersript (n), when this will notause onfusion.Sine we want to disuss the stability of multi-solitons in the Sobolev spaes Hs,it is neessary to reall the well-posedness theory for (1.1) in these spaes. Observe�rst that the linear equation vt = vxxx de�nes a unitary evolution operator U(t) onHs for every s 2 R; i.e., for eah t � 0 one an de�ne U(t) : Hs ! Hs by settingU(t)[f ℄ = v(�; t), where v is the solution of vt = vxxx with v(�; 0) = f . In fat, v(�; t) isde�ned as a tempered distribution by v̂(k; t) = eik3tf̂(k), where the irumex denotesthe Fourier transform with respet to x, and k is the dual Fourier transform variable.It follows that v 2 C([0; T ℄; Hs) and vt 2 C([0; T ℄; Hs�3) for all T > 0.Now suppose that s � 1, so that u 2 Hs implies that uux is well-de�ned as anelement of Hs�1. In this ase, de�ne u to be a strong solution in C([0; T ℄; Hs) of (1.1)with initial data u(0) = u0 if, for all t 2 [0; T ℄,u(t) = U(t)[u0℄� Z t0 U(t� �) [u(�)ux(�)℄ d�: (2.4)Note that if u 2 C([0; T ℄; Hs), then the integrand on the right-hand side of (2.4) is aontinuous funtion of � with values in Hs�1, so the integral exists in Hs�1 at least.Also, if u 2 C([0; T ℄; Hs) satis�es (2.4), then as a distribution-valued funtion of t, u isdi�erentiable, and its derivative ut satis�es (1.1) in the sense of tempered distributions.It then follows from (1.1) that ut is in fat in C([0; T ℄; Hs�3).The following well-posedness result is proved in [KPV1℄.Theorem 2.1. Suppose s � 1. For every u0 2 Hs and every T > 0 equation (1.1) hasa unique strong solution u 2 C([0; T ℄; Hs) with initial data u(0) = u0. For this solutionwe have ut 2 C([0; T ℄; Hs�3). Moreover, the map whih takes the initial data u0 to thesolution u is ontinuous from Hs to C([0; T ℄; Hs).Remark 2.2. For s < 1, diÆulties arise in making sense of the produt uux appearingin (1.1). For 0 � s < 1 one an interpret uux as the distributional derivative of theintegrable funtion u2, but when s < 0 not even this interpretation is available. Nev-ertheless, using ingenious arguments whih take advantage of ertain smoothing prop-erties of (1.1), various authors have been able to formulate and prove well-posednessresults in Hs for all s > �3=4. See, for example, [KPV2℄ and [CKSTT℄.In what follows, we will typially use u0 to denote initial data for (1.1) in Hs(s � 1), and u(t) to denote the orresponding solution of (1.1), guaranteed by Theorem2.1 to exist in Hs for all t > 0. 6



We are now ready to state the following stability result for multi-solitons in H1,whih is taken from [MMT℄.Theorem 2.3. Let  2 Sn and �0 2 Rn be given. For every � > 0 there exists Æ > 0suh that if u0 2 H1 and ku0��(n)(�0; )k1 < Æ, then for all t > 0 there exists �(t) 2 Rnsuh that ku(t)� �(n)(�(t); )k1 < �:Our main result is as follows. It represents a generalization of the work of Bonaand Soyeur, to whom the proof is due in ase n = 1 [BoSo℄.Theorem 2.4. Let  2 Sn and �0 2 Rn be given. Then there exists a onstant A withthe following property. For every � > 0, there exists Æ > 0 suh that if u0 2 H1 andku0 � �(n)(�0; )k1 < Æ, then there exists a C1 funtion  : (0;1) ! Rn suh that forevery t > 0, ku(t)� �(n)((t); )k1 < � (2.5)and j0(t) + j < A�: (2.6)Remark 2.5. Theorems 2.3 and 2.4 are still valid if theH1 norm is replaed throughoutby the Hk norm, for any integer k � 1. As has been observed in [BLN℄, this is astraightforward onsequene of the in�nite sequene of onservation laws for (1.1). Fordetails the reader is referred to the Appendix. In this onnetion, it is interestingto note that Merle and Vega [MV℄ have proved stability of single-soliton solutions inH0 = L2.Remark 2.6. It remains an open question whether, for �xed  and �, the number Æin the statement of Theorem 2.3 an be hosen independently of �0. If this is indeedthe ase, then our proof below shows that Æ an also be hosen independently of �0 inTheorem 2.4. See also the omments following the statement of Theorem 2.7 below.The proof of Theorem 2.4 relies on an appliation of the Impliit FuntionTheorem, whih is made possible by the fat that, aording to Theorem 2.3, u(t)is, for eah t > 0, lose enough to a multi-soliton pro�le to be within the domainof a funtion de�ned impliitly near that pro�le. By ontrast, to prove a version ofTheorem 2.4 on a �nite time interval [0; T ℄, Theorem 2.3 would not be neessary, as7



the hypothesis required for our appliation of the Impliit Funtion Theorem would beprovided by the well-posedness theory for (1.1).Alternatively, one ould envisage using the multi-soliton stability theory of Mad-doks and Sahs [MS℄ in plae of Theorem 2.3. However, their stability theory is notsuitable for our purposes, for reasons whih we now briey digress to disuss.The multi-soliton stability theory of [MS℄ is based on the in�nite sequene ofonserved funtionals for (1.1), the �rst four of whih areI1(u) = Z 1�1 u dx;I2(u) = Z 1�1 u2 dx;I3(u) = Z 1�1�u2x � 13u3� dx;I4(u) = Z 1�1�u2xx � 53uu2x + 536u4� dx: (2.7)
(Here, the funtionals Ik (k = 1; 2; : : : ,) have been normalized so that, in eah one, theterm with the highest-order derivative appears with oeÆient 1.) These funtionalsare onserved in the sense that Ik(u(t)) is independent of t whenever u is a strongsolution of (1.1) in Hk (in the sense de�ned before Theorem 2.1). From this invarianeproperty and the asymptoti analysis of multi-solitons, it follows easily (f. [L, MS℄)that Ik(�(n)(�; )) is independent of the phase parameter � 2 Rn. In fat, we haveIk(�(n)(�; )) = (�1)k � 362k � 1� nXi=1 (i)(2k�1)=2: (2.8)The stability properties of multi-solitons are losely related to the variationalproperties of the funtionals Ik. Suppose n 2 N and  2 Sn are given. By (2.8), theset G � Hn de�ned byG = f 2 Hn : Ik( ) = Ik(�(n)(�; )) for 2 � k � n + 2gis independent of � 2 Rn, and if we de�neM = f 2 Hn :  = �(n)(�; ) for some � 2 Rng; (2.9)then M � G:In the ase n = 1 it is easy to see that M = G for all  > 0. For n > 1, however, thequestion of whether M = G appears to be open.The stability result of Maddoks and Sahs [MS℄ is the following.8



Theorem 2.7. Let n � 1 and suppose  2 Sn. For every � > 0, there exists Æ > 0 suhthat if u0 2 Hn, �0 2 Rn, and ku0 � �(n)(�0; )kn < Æ, then for all t > 0,inf 2G ku(t)�  kn < �:Remark 2.8. Reently Neves and Lopes [NL℄ have given an alternate proof of Theorem2.7, using a method whih also leads to a similar result for the Benjamin-Ono equationin the double-soliton ase.Notie that the stability result of Theorem 2.7 is set in Hn, whereas the resultof Theorem 2.3 is set in H1, and is hene stronger (f. Remark 2.5). Also, sine it is notyet known whetherM = G, Theorem 2.7 does not yet give a stability result for the setof multi-soliton pro�les M, and hene annot be used to prove a result like Theorem2.4. If, on the other hand, it ould be proved thatM = G, then a proof of stability ofmulti-solitons (at least in the spae Hn) ould be based purely on onsideration of theonserved funtionals, without reourse to the detailed asymptoti analysis provided in[MMT℄. Moreover, the stability result would have the advantage that, as in Theorem2.7, the number Æ orresponding to a given � ould be hosen independently of �0.3 The embedding of M in H1In this setion we prove several preliminary results whih will be needed for the proofin Setion 4 of the main result. Some of them an be given natural interpretations asstatements about the geometri properties of the map � : Rn ! H1 de�ned by �(�) =�(n)(�; ). Thus Lemma 3.4 implies that � is an immersion, and Lemma 3.11 impliesthat � is one-to-one. Also, sine Theorem 3.1 asserts the existene of a ontinuousmap F whih extends ��1 to a neighborhood UÆ ofM = �(Rn), it follows that � is anembedding; i.e., an immersion whih is a homeomorphism onto its image. An importanttehnial point, whih is ruial to the proof in Setion 4, is that UÆ ontains all theelements of H1 within a distane Æ of M; geometrially speaking, this means that UÆontains a tubular neighborhood of M of uniform width in the diretion \normal" toM. For n 2 N and i 2 f1; : : : ; ng, de�ne�(n)i (x; �; ) = ��(n)��i (x; �; )and �(n)ij = �2�(n)��i��j (x; �; ):9



Similar notation will be used for the funtions de�ned in (2.2). In addition, we oa-sionally use �x to denote the operator of di�erentiation with respet to x, and ��i todenote di�erentiation with respet to �i, and for a multi-index N = (N0; N1; : : : ; Nn),where the Nj are non-negative integers, we de�ne �N to be the operator�N = �N0x �N1�1 �N2�2 : : : �Nn�n :Let n 2 N and  2 Sn be �xed. For eah � 2 Rn, de�ne v� 2 Hn byv�(x) = �(n)(x; �; ): (3.1)Then (2.9) beomes M = fv� : � 2 Rng:For Æ > 0, de�ne UÆ = �u 2 H1 : u 2 BÆ(v�) for some v� 2M	 ;where BÆ(v�) denotes the open ball in H1 with radius Æ and enter at v�.Let G : H1 �Rn ! Rn be de�ned byG(u; �) = �Z u(x)�(n)1 (x; �; ) dx; : : : ; Z u(x)�(n)n (x; �; ) dx� :Putting k = 2 in (2.8), we �nd thatI2(�(n)(x; �; )) = Z 1�1 (�(n)(x; �; ))2 dxis independent of �. Therefore, for eah i 2 f1; : : : ; ng, the derivative with respet to�i vanishes, viz. Z 1�1 �(n)�(n)i dx = 0: (3.2)Hene, for all � 2 Rn, G(v�; �) = 0; (3.3)where 0 denotes the zero vetor in Rn.The main goal of this setion is to prove the following Theorem.10



Theorem 3.1. There exist a number Æ0 > 0 and a C1-map F : UÆ0 7! Rn suh thatfor every u 2 UÆ0 , G(u; F (u)) = 0: (3.4)Remark 3.2. Atually, below we will only need that F is ontinuous on UÆ0 , but it isnot more diÆult to prove that F is C1.To prove Theorem 3.1, we use the Impliit Funtion Theorem, whih entails astudy of G�, the partial derivative of G with respet to �. Observe that G� is the mapfrom H1 �Rn to B(Rn;Rn) given by
G�(u; �) = 26666666664

R1�1 u�11 R1�1 u�12 : : : R1�1 u�1nR1�1 u�21 R1�1 u�22 : : : R1�1 u�2n... ... . . . ...R1�1 u�n1 R1�1 u�n2 : : : R1�1 u�nn
37777777775 ; (3.5)

where �ij = �2�(n)(x; �; )��i��j :The Impliit Funtion Theorem, together with (3.3), guarantees the existeneof a solution F (u) to (3.4) for u in some neighborhood BÆ(v�) of v�, provided that thematrix G�(v�; �) is nonsingular. To prove Theorem 3.1, however, we need to also verifythat Æ an be hosen independently of � 2 Rn. This requires keeping trak of how Ædepends on the size of G and its derivatives. For this purpose, the following version ofthe Impliit Funtion Theorem will be helpful.Theorem 3.3. Let X, Y , and Z be Banah spaes, and suppose (x0; y0) 2 X � Y .Suppose there exist a neighborhood U of x0 in X, a neighborhood V of y0 in Y , anda map G : U � V ! Z whih is ontinuous on U � V and whih has a ontinuousderivative with respet to y, Gy, on U � V . Suppose also that G(x0; y0) = 0 andGy(x0; y0) : Y ! Z has a bounded inverse. Then(i) There exists �0 > 0 with the following property. For every � 2 (0; �0℄, there existsÆ = Æ(�) > 0 suh that BÆ(x0) � U , B�(y0) � V , and for eah x 2 BÆ(x0)there is exatly one point F (x) in B�(y0) suh that G(x; Fx) = 0. The map F isontinuous from BÆ(x0) to B�(y0). 11



(ii) If K1 = kGy(x0; y0)�1kB(Z;Y );and K2 and K3 are onstants suh thatkGy(x; y)�Gy(x0; y0)kB(Y;Z) � K2 (kx� x0kX + ky � y0kY )and kG(x; y0)�G(x0; y0)kZ = kG(x; y0)kZ � K3kx� x0kXfor all x 2 U and all y 2 V , then the number �0 and the funtion Æ(�) in part (i)an be hosen to depend only on K1, K2, and K3.(iii) If, in addition, G is C1 on U � V , then there exists �1 > 0, possibly smaller than�0, suh that for all � 2 (0; �1℄, the funtion F is C1 on BÆ(�)(x0). Furthermore,if G is Ck on U � V for any k � 1, then for all � 2 [0; �1℄, F is Ck on BÆ(�)(x0).(The number �1 and the funtion Æ(�) do not depend on k.)(iv) If K4 = kGx(x0; y0)kB(X;Z)and K5 is a onstant suh thatkGx(x; y)�Gx(x0; y0)kB(X;Z) � K5 (kx� x0kX + ky � y0kY )for all x 2 U and y 2 V , then the number �1 in part (iii) an be hosen to dependonly on the onstants Ki, 1 � i � 5.Parts (i) and (iii) of this theorem are proved in Theorem 15.1 and Corollary15.1 of [D℄. Parts (ii) and (iv) are impliit in the proofs of Theorem 15.1 and Corollary15.1 of [D℄, and an be established by keeping trak of the onstants involved in theseproofs. The details are omitted. (See also [H℄.)From Theorem 3.3, it appears that to prove Theorem 3.1, it will be neessaryto obtain �-independent bounds on the size of G�(v�; �)�1, as well as on the size of Gitself and its derivatives. These bounds will be obtained below in Lemmas 3.4 through3.10.Lemma 3.4. For eah �xed � 2 Rn and  2 Sn, the olletion f�(n)i (x; �; ) : 1 � i � ngforms a linearly independent set of funtions of x.
12



Proof. Suppose there exist onstants �1; : : : ; �n suh that Pni=1 �i�i(x) = 0 for allx 2 R; we wish to show that �i = 0 for i = 1; : : : ; n. Using (2.1) and integrating twiewith respet to x, it is disovered thatnXi=1 �i�i(x) = C1x�(x) + C2�(x); (3.6)where � is Hirota's funtion (2.2), �i denotes ����i , and C1 and C2 are onstants. It isstraightforward to see that the funtions x�(x) and �(x) are linearly independent fromeah other and from the �i, so it follows from (3.6) that C1 = C2 = 0. HenenXi=1 �i�i(x) = 0 (3.7)for all x 2 R.Now observe that eah �i an be written in the form�i(x) = miXj=1 aij exp(bijx); (3.8)where aij and bij are onstants, with bi1 = pi, bij > pi for 2 � j < mi, and ai1 =pi > 0. If at least one of the �i is nonzero, let i0 be suh that i0 = minfi : �i 6= 0g.Then it follows from (3.7) and (3.8) that exp �pi0 x� an be expressed as a linearombination of funtions of the form exp(bx) with b > pi0. This ontradition showsthat eah of the �i must be equal to zero.Lemma 3.5. Suppose n 2 N and  2 Sn are given. Then for every multi-index Nthere exist onstants A = A(; n;N) and B = B(; n;N) suh thatj�N� (n)(x; �; )j � A� (n)(x; �; ) (3.9)and j�N�(n)(x; �; )j � B (3.10)for all x 2 R and � 2 Rn.Proof. The estimate (3.9) follows immediately from the de�nition of � in (2.2). Also,from (2.1), notie that � = 12��� 00 � (� 0)2� 2 �(where primes denote derivatives with respet to x), so (3.10) follows immediatelyin the ase when N = (0; 0; : : : ; 0). A similar argument establishes (3.10) for anyderivative of �. 13



Here is some onvenient notation for dealing with the deomposition of an n-soliton pro�le into a k-soliton and an (n � k)-soliton pro�le. Suppose k is �xed inf1; : : : ; n� 1g. For eah � = (�1; : : : ; �n) 2 Rn and eah  = (1; : : : ; n) 2 Sn, de�ne��(x; �; ) = �(k)(x; (�1; : : : ; �k); (1; : : : ; k)) (3.11)and ���(x; �; ) = �(n�k)(x; (�k+1; : : : ; �n); (k+1; : : : ; n)): (3.12)In partiular, whenever N is suh that Nj 6= 0 for some j 2 fk + 1; : : : ; ng, it must bethe ase that �N�� � 0;and whenever N is suh that Nj 6= 0 for some j 2 f1; : : : ; kg, it is orrespondingly truethat �N��� � 0:The next lemma gives expression to the well-known fat that when the setsf�1; �2; : : : ; �kg and f�k+1; : : : ; �ng are widely separated, �(n) is well approximated by�� + ���.Lemma 3.6. Suppose n 2 N and  2 Sn are given, and letD = minfp1; : : : ;png:Then for every multi-index N there exists a onstant C = C(; n;N) suh that thefollowing is true. Let k 2 f1; : : : ; n � 1g be given, and de�ne �� and ��� as in (3.11)and (3.12). Suppose � = (�1; : : : ; �n) 2 Rn is suh that�1 � �2 � � � � � �n;and de�ne ~�i = (�i + 1pi Pnj=k+1Aij (i = 1; : : : ; k)�i (i = k + 1; : : : ; n): (3.13)Then, it follows that(i) j�N�(n)(x; �; )� �N��(x; ~�; )j � C exp(�D(x + �k+1)) for all x � ��k+1.(ii) j�N���(x; ~�; )j � C exp(�D(x + �k+1)) for all x � ��k+1 .(iii) j�N�(n)(x; �; )� �N���(x; ~�; )j � C exp(D(x+ �k)) for all x � ��k.14



(iv) j�N��(x; ~�; )j � C exp(D(x+ �k)) for all x � ��k.Hene, in partiular,����N�(n)(x; �; )� ��N��(x; ~�; ) + �N���(x; ~�; )���� � 2C exp(�Dp�(x)) (3.14)for all x 2 R, wherep�(x) = maxfjx+ �kj; jx+ �k+1jg = ����x+ ��k+1 + �k2 �����+ ��k+1 � �k2 � : (3.15)Proof. De�ne ~�(x) = � (n)(x) � exp(�L(x)); (3.16)where L(x) = nXi=k+1pi(x + �i) + Xk+1�i<j�nAij: (3.17)Sine L(x) is a linear funtion of x, the equations (2.1) and (3.16) imply that�(n)(x) = 12 d2dx2 log ~� (x): (3.18)Using (2.2), (3.13), and (3.17), we an expand the right-hand side of (3.16) as follows:~� (x) = X��2f0;1gk(exp kXi=1 �ipi(x + ~�i) + X1�i<j�k �i�jAij!�X���2f0;1gn�k exp nXi=k+1(�i � 1)pi(x + �i) +B(�)!9=; ; (3.19)where B(�) = kXi=1 nXj=k+1 �i(�j � 1)Aij + Xk+1�i<j�n(�i�j � 1)Aij;and � = (��; ���) with �� = (�1; : : : ; �k) and ��� = (�k+1; : : : ; �n).Notie �rst that if � � is de�ned by� �(x; �; ) = � (k)(x; (�1; : : : ; �k); (1; : : : ; k))= X�2f0;1gk exp kXi=1 �ipi(x+ �i) + X1�i<j�k �i�jAij! ; (3.20)15



then from (3.19), it follows that for all x 2 R,� �(x; ~�; ) � ~� (x; �; ): (3.21)Assume that x + �k+1 � 0, and onsider the inner sum, indexed by ���, in(3.19). For eah term in this sum, there are two possibilities. Either �i = 1 for alli 2 fk+1; : : : ; ng, in whih ase the value of the orresponding term is just exp(0) = 1;or, �i = 0 for some i 2 fk + 1; : : : ; ng, in whih ase the orresponding term an bebounded above by a onstant times exp(�D(x + �k+1)). It therefore follows that forall x � ��k+1, we havej~�(x; �; )� � �(x; ~�; )j � C� �(x; ~�; ) exp(�D(x + �k+1)):(Here, and in what follows, we use C to denote various onstants whih are independentof x and �; the value of C may di�er from line to line.)Consider next the equation obtained from (3.19) by di�erentiating any numberof times with respet to x or the variables �1, �2, : : : , �n. In the resulting equation,the only terms on the right-hand side whih are not exponentially small are those inwhih ��� = (1; 1; : : : ; 1) and none of the derivatives are applied within the inner sum.Thus, for any multi-index M , the inequalityj�M ~� (x; �; )� �M� �(x; ~�; ))j � C� �(x; ~�; ) exp(�D(x+ �k+1)) (3.22)holds for all x � ��k+1, with a onstant C that depends only on , n, and M .From (3.18), it transpires that�N�(n) = P (~�)~� jN j+2 (3.23)where jN j = N0 + N1 + � � � + Nn and P (~�) is a homogeneous polynomial of orderjN j + 2 in ~� and its derivatives. Similarly from (2.1), (3.11) and (3.20), there followsthe relation ��(x; �; ) = 12 d2dx2 log � �(x; �; );so that �N�� = P (� �)(� �)jN j+2 : (3.24)Write �N�(n) � �N�� = P (~�)� P (� �)~� jN j+2 + P (� �)� 1~� jN j+2 � 1(� �)jN j+2� ; (3.25)16



and onsider the two terms on the right-hand side separately.To estimate the �rst term, express the numerator in the formP (~�)� P (� �) =XM (�M ~� � �M� �)QM(~� ; � �) (3.26)where eah QM(~� ; � �) is a homogeneous polynomial of degree jN j + 1 in ~� , � �, andtheir derivatives. From (3.9), (3.21), (3.22), and (3.26), it follows thatjP (~�)� P (� �)j � C~� jN j+2 exp(�D(x+ �k+1)): (3.27)To estimate the seond term, write����P (� �)� 1~� jN j+2 � 1(� �)jN j+2����� = ����P (� �)(� � � ~�)((� �)jN j+1 + � � �+ ~� jN j+1)(� �~�)jN j+2 ����� C(� �)jN j+2(� � exp(�D(x + �k+1)))(~� jN j+1)(� �~� )jN j+2� C exp(�D(x+ �k+1)) (3.28)where again we have used (3.9), (3.21), and (3.22).Statement (i) of the lemma then follows from (3.25), (3.27), and (3.28).Attention is now turned to part (iii) of the lemma. Begin by rewriting (2.2) inthe form�(x; �; ) = X���2f0;1g(n�k)(exp nXi=k+1 �ipi(x+ �i) + Xk+1�i<j�n �i�jAij! �X��2f0;1gk exp kXi=1 �ipi(x+ �i) + ~B(�)!9=; (3.29)where �� and ��� are de�ned as before and~B(�) = kXi=1 nXj=k+1 �i�jAij + X1�i<j�k �i�jAij:For eah term in the inner sum (indexed by ��) of (3.29), there are two possibilities:either �i = 0 for all i 2 f1; : : : ; kg, in whih ase the orresponding term is exp(0) = 1;or, �i = 1 for some i 2 f1; : : : ; kg, in whih ase the orresponding term is boundedabove by a onstant times exp(D(x+ �k)), provided that x + �k � 0. Therefore if � ��is de�ned by� ��(x; �; ) = � (n�k)(x; (�k+1; : : : ; �n); (k+1; : : : ; n))= X�2f0;1gn�k exp nXi=k+1 �ipi(x+ �i) + Xk+1�i<j�n �i�jAij! ;17



then for all x � ��k, it follows, as in (3.21) and (3.22) that� ��(x; �; ) � �(x; �; ) (3.30)and, for any multi-index M ,j�M�(x; �; )� �M� ��(x; ~�; ))j � C� ��(x) exp(D(x+ �k)): (3.31)The arguments used above to dedue part (i) from (3.21) and (3.22) now allowus to dedue part (iii) from (3.30) and (3.31).Next, observe that from (3.20) it follows easily that for eah multi-indexM suhthat jM j � 1, there exists a onstant C suh that, for all x � ��k,j�M� �(x; �; )j � C exp(D(x+ �k)): (3.32)Sine � �(x; �; ) � 1 for all x, (3.24) and (3.32) together imply statement (iv) of thelemma. The proof of statement (ii) of the lemma is similar: one starts from�N��� = P (~� ��)(~� ��)jN j+2 ;where ~� �� = � �� � exp � nXi=k+1pi(x+ �i))!= X���2f0;1gn�k exp nXi=k+1(�i � 1)pi(x+ �i) + Xk+1�i<j�n �i�jAij! ;(ompare with (3.19)), and uses the estimatej�M ~� ��(x; �; )j � C exp(�D(x + �k+1));whih is valid for all jM j � 1 and all x � ��k+1.Finally, (3.14) follows immediately from (i)-(iv).A related result whih will �nd use below is the following.Lemma 3.7. Let n, , and D be as de�ned in Lemma 3.6. There exists a onstantC = C(; n;N) suh that if � = (�1; : : : ; �n) 2 Rn with �1 � �2 � � � � � �n, then for allx � ��1, j�N�(n)(x; �; )j � C exp(�D(x+ �1)) (3.33)and for all x � ��n, j�N�(n)(x; �; )j � C exp(D(x+ �n)): (3.34)18



Proof. Referene to (2.2) reveals that for any multi-index M , there exists C suh thatfor all x � ��n, j�M�(x; �; )j � C(exp(D(x+ �k)):Sine � � 1, (3.34) then follows from the formula�N�(n) = P (�)� jN j+2 ;in whih P is the same as in (3.23).To prove (3.33), start from �N�(n) = P (~�)~� jN j+2 ;where ~� = � � exp � nXi=1 pi(x + �i)! :As in the proof of part (ii) of Lemma 3.6, we obtain thatj�M ~� (x; �; )j � C(exp(�D(x + �1))for all multi-indies M and all x � ��1; inequality (3.33) follows sine ~� � 1.Lemma 3.8. Suppose n 2 N and  2 Sn are given. For every multi-index N thereexists a onstant ~C = ~C(; n;N) suh that for every � 2 Rn,Z 1�1 supj���j�1 ���N�(n)(x; �; )��! dx � ~C: (3.35)In partiular, Z 1�1 ���N�(n)(x; �; )�� dx � ~C:Proof. Fix N and use indution on n. For n = 1, �(1)(x; �; ) = �(x + �; 0; ) for allx; � 2 R, so the integral on the left-hand side of (3.35) is independent of �. We mayassume therefore that � = 0, and hene the supremum in the integrand is taken overj�j � 1. But if j�j � 1, then from Lemma 3.7, it follows thatj�N�(1)(x; �; )j � (C exp(�D(x� 1)) for all x � 1C exp(D(x + 1)) for all x � �1.19



For the remaining values, �1 � x � 1, (3.10) implies thatj�N�(1)(x; �; )j � B;and hene (3.35) follows.Next, assume the desired onstants ~C(; i; N) have been proved to exist for alli 2 f1; 2; : : : ; n � 1g and  2 Si. On this basis, we now establish the existene of~C(; n;N) for all  2 Sn.Let  2 Sn and � 2 Rn be given; by relabelling the indies, assume that �i � �i+1for 1 � i � n� 1. Moreover, sine�(n)(x; �; ) = �(n)(x + �1; (0; �2 � �1; : : : ; �n � �1); );we may also assume that �1 = 0.Suppose �rst that �k+1 � �k � 2 for all k = 1; : : : ; n � 1; then �n < 2n, and soj� � �j � 1 implies �1 � �1 and �n � 2n + 1. Hene from Lemma 3.7, it is deduedthat j�N�(1)(x; �; )j � (C exp(�D(x� (2n+ 1))) for all x � 2n+ 1C exp(D(x+ 1)) for all x � �1,and, as in the ase when n = 1, this estimate together with (3.10) yields the desiredresult. Now suppose on the ontrary that there exists some k 2 f1; : : : ; n � 1g suhthat �k+1 � �k > 2. If � 2 Rn satis�es j� � �j � 1 it follows that �i < �k+1 for alli 2 f1; : : : ; kg and �i > �k+2 for all i 2 fk + 1; : : : ; ng. Hene, if we de�ne ��(x; �; ),���(x; �; ) and ~� by replaing �i by �i on the right-hand sides of (3.11), (3.12), and(3.13), respetively, then the onlusions of Lemma 3.6 hold with � and ~� replaed by� and ~�.Applying the indution hypothesis, there obtains the estimatesZ 1�1 supj~��~�j�1 ����N��(x; ~�; )���! dx � ~C1and Z 1�1 supj~��~�j�1 ����N���(x; ~�; )���! dx � ~C2:where ~C1 = ~C((1; : : : ; k); k; N) and ~C2 = ~C((k+1; : : : ; n); n� k;N). Moreover, it iseasy to see that sine j���j � 1, the funtion p� de�ned by (3.15) satis�es p�(x) � q(x)for all x 2 R, where q(x) = ����x + ��k+1 + �k2 ����� ;20



and hene R1�1 exp(�Dq(x)) dx = R1�1 exp(�Djuj) du = 2=D. It therefore followsfrom (3.14) thatZ 1�1 supj���j�1 ���N�(n)(x; �; )��! dx � ~C1 + ~C2 + C(; n;N)Dwhere C(; n;N) is as de�ned in Lemma 3.6. The indution is ompleted by de�ning~C(; n;N) to equal ~C1 + ~C2 + C(; n;N)D.Lemma 3.9. Suppose n 2 N and  2 Sn are given. For every multi-index N thereexists C > 0 suh that Z 1�1 supj���j�1 ���N�(n)(x; �; )��!2 dx � C;and in partiular Z 1�1 ���N�(n)(x; �; )��2 dx � C;for all � 2 Rn.Proof. This follows immediately from Lemmas 3.5 and 3.8.Lemma 3.10. Suppose n 2 N and  2 Sn are given. For � 2 Rn, de�ne d(n)(�; ) tobe the determinant of G�(v�; �). There exists � = �(; n) > 0 suh that for all � 2 Rn,��d(n)(�; )�� > �:Proof. First, rewrite the matrix G� in a more onvenient form. Notie that taking thederivative of (3.2) with respet to �j yields, for eah i and j in f1; : : : ; ng, the equationZ 1�1 ��ij dx = � Z 1�1 �i�j dx: (3.36)Therefore, if P (n)(�; ) is de�ned to be the matrix whose (i; j) entry isP (n)ij (�; ) = Z 1�1 �i�j dx; (3.37)then G�(v�; �) = �P (n)(�; ): (3.38)21



Hene, in partiular, jd(n)(�; )j = j detP (n)(�; )j.As in the proof of Lemma 3.8, use indution on n, although here the argumentis a bit more elaborate. First, sine d(1)(�; ) is independent of � 2 R, the desiredonlusion obviously holds for n = 1. Assume that the desired numbers �(; i) havebeen proved to exist for i = 1; 2; : : : ; n� 1 (for all  2 Si); we intend to prove that forall  2 Sn, an appropriate onstant �(; n) exists. Let  2 Sn and � 2 Rn be given; byrelabelling the indies, assume that �i � �i+1 for 1 � i � n � 1. Also, as in the proofof Lemma 3.8, assume that �1=0.Let M =M(�) be de�ned byM = max1�i�n�1(�i+1 � �i);and hoose k 2 f1; : : : ; n� 1g so that �k+1 � �k =M . For this k, let �� and ��� be asin Lemma 3.6. For 1 � l; m � n, de�ne�lm = 8>>><>>>:P (n)lm � R1�1 ��l ��m dx if l; m 2 f1; : : : ; kgP (n)lm � R1�1 ���l ���m dx if l; m 2 fk + 1; : : : ; ngP (n)lm if l 2 f1; : : : ; kg and m 2 fk + 1; : : : ; ngP (n)lm if l 2 fk + 1; : : : ; ng and m 2 f1; : : : ; kg;where P (n)lm is as de�ned in (3.37) and, as usual, the subsripts on �� and ��� denotepartial derivatives.We now laim that the estimatej�lmj � Ce�DM=2 (3.39)holds for all � 2 Rn and for all l; m 2 f1; : : : ; ng, with a onstant C whih is indepen-dent of �. To prove this, onsider �rst the ase when l; m 2 f1; : : : ; kg. From Lemma3.5, we have the estimatej�lmj = ����Z 1�1 ��(n)l � ��l ��(n)m dx+ Z 1�1 ��l ��(n)m � ��m� dx����� C Z 1�1 j�(n)l � ��l j dx+ C Z 1�1 j�(n)m � ��mj dx: (3.40)Using parts (i), (iii), and (iv) of Lemma 3.6, and observing that ���l � 0 leads to the
22



onlusionZ 1�1 j�(n)l � ��l j dx � Z ��k�M=2�1 �j�(n)l � ���l j+ j��l j� dx + Z 1��k�M=2 j�(n)l � ��l j dx� C Z �M=2�1 eDu du+ C Z 1M=2 e�Du du� (C=D)e�DM=2:The same estimate applies of ourse to the seond integral on the right-hand side of(3.40). It follows that (3.39) holds in this ase.In the ase when l; m 2 fk + 1; : : : ; ng, (3.39) follows from a similar argument,this time using the fat that ��l � 0 to writeZ 1�1 j�(n)l � ���l j dx � Z ��k�M=2�1 j�(n)l � ���l j dx+ Z 1��k�M=2 �j�(n)l � ��l j+ j���l j� dx;and then using parts (i), (ii), (iii) of Lemma 3.6. Finally, if l 2 f1; : : : ; kg and m 2fk + 1; : : : ; ng, then by Lemma (3.5), it is the ase thatj�lmj � C Z ��k�M=2�1 j�(n)l j+ C Z 1��k�M=2 j�(n)m j= C Z ��k�M=2�1 j�(n)l � ���l j+ C Z 1��k�M=2 j�(n)m � ��mj:It is therefore onluded from parts (i) and (iii) of Lemma 3.6 that (3.39) holds. Thesame argument obviously applies when the roles of l and m are reversed. Thus (3.39)is proved in all ases.Now the n � n matrix S(n) with entries de�ned by S(n)lm = P (n)lm � �lm an bewritten in blok form asS(n) = �P (k)(��; �) 00 P (n�k)(���; ��)� :In onsequene, detS(n) = �detP (k)(��; �)� �detP (n�k)(���; ��)� ;and so by the indution hypothesisj detS(n)j > �(�; k) � �(��; n� k): (3.41)23



From Lemma 3.9 and (3.39), it is seen that the matrix norms kP (n)k1 andkS(n)k1 are bounded independently of �. Sine the determinant of a matrix is apolynomial funtion of the entries of the matrix, it follows easily from the Mean ValueTheorem that j detP (n) � detS(n)j � CkP (n) � S(n)k1 (3.42)where C depends only on kP (n)k1 and kS(n)k1, and therefore is independent of �.Combining (3.39), (3.41), and (3.42) yields the estimatejd(n)(�; )j = j detP (n)j > �1 � Ce�DM=2 (3.43)where �1 = inf1�k�n�1f�(�; k) � �(��; n� k)g > 0:Choose M0 so large that the right-hand side of (3.43) is greater than �1=2 forM � M0. For any given � 2 Rn, there are two possibilities: either �n > M0n or�n �M0n. Sine �0 = 0, then in the �rst ase, it must be the ase thatM = max1�i�n�1 (�i+1 � �i) � M0;so (3.43) yields jd(n)(�; )j > �1=2:In the seond ase, the vetor � is an element of the subsetK = f� 2 Rn : max1�i�n j�ij � M0ng:Observe, however, that d(n)(�; ) 6= 0 for all � 2 Rn. This follows from Lemma 3.4and the elementary fat that whenever v1; : : : vn are linearly independent vetors in aninner produt spae, then dethvi; vjii;j=1;n 6= 0where h�; �i denotes the inner produt. Therefore, sine K is ompat and jd(n)(�; )j isontinuous and positive everywhere onK, there exists �2 > 0 suh that jd(n)(�; )j > �2for all � 2 K. This ompletes the proof of the Lemma with�(; n) = min(�1=2; �2):
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Next are established a ouple of lemmas whih will be needed to piee togetherthe loal funtions obtained from Theorem 3.3 to obtain a global funtion de�ned ona neighborhood of M. The following notation will be onvenient when we have todeal simultaneously with k-soliton solutions orresponding to di�erent values of k inf1; : : : ; ng. Let  = (1; : : : ; n) 2 Sn be �xed. For eah � = (�1; : : : ; �n) 2 (R[f1g)n,let I� = fi 2 f1; : : : ; ng : �i < 1g and let k = jI�j, the number of elements in I�. Ifk = 0, de�ne v� = 0, otherwise de�nev�(x) = �(k)(x; �#; #)where �# and # are the ordered k-tuples obtained by removing the in�nite om-ponents from � and . Thus, for example, when n = 7 and I� = f1; 4; 6; 7g, thenv� = �(4)(x; (�1; �4; �6; �7); (1; 4; 6; 7)). In the ase when � 2 Rn, this de�nition of v�oinides with that given above in (3.1).Lemma 3.11. Suppose �; ~� 2 (R [ f1g)n. Then v� = v~� only if � = ~�.Proof. For � 2 (R[f1g)n and � 2 f0; 1gn, de�ne a(�; �) by setting a(�; �) = 0 if �i = 1for some i =2 I�, and a(�; �) = 1 otherwise. Write v� in the formv� = 12 d2dx2 log ��(x)where ��(x) = X�2f0;1gn a(�; �) exp nXi=1 �ipi(x+ �i) + X1�i<j�n �i�jAij! ;and use the onvention that terms of the form 0 �1 are equal to zero. If b(�; �) and d�are given by b(�; �) = exp nXi=1 �ipi�i + X1�i<j�n �i�jAij!and d� = nXi=1 �ipi;then ��(x) = X�2f0;1gn a(�; �)b(�; �)ed�x:If v� = v~�, it follows that for all x 2 R,��(x) = �~�(x)epx+q;25



where p and q are onstants. HeneX�2f0;1gn a(�; �)b(�; �)ed�x = X�2f0;1gn a(�; ~�)b(�; ~�)eqe(p+d�)x: (3.44)Sine the funtions erx and esx are linearly independent on R whenever r 6= s, everyexponential term whih appears on the left of (3.44) with a non-zero oeÆient mustalso appear on the right. In partiular, the left side of (3.44) ontains the term e0�xorresponding to � = �0 = (0; 0; : : : ; 0) (notie that a(�0; �) = b(�0; �) = 1, and thatd� > 0 if � 6= �0). Hene, there must exist at least one �1 2 f0; 1gn for whih p+d�1 = 0.But �1 must equal �0, for otherwise d�1 > 0 would imply p < 0, and then the terme(p+d�0 )x = epx appearing on the right-hand side of (3.44) would not orrespond toany term on the left-hand side of (3.44). Therefore, p = �d�0 = 0, and omparingoeÆients of e0�x on both sides of (3.44) then gives q = 0. It is thus demonstratedthat X�2f0;1gn a(�; �)b(�; �)ed�x = X�2f0;1gn a(�; ~�)b(�; ~�)ed�x (3.45)holds for all x 2 R.Now onsider the terms in (3.45) orresponding to � = ei, where ei is the stan-dard basi n-tuple de�ned by (ei)j = Æij. By permuting the indies, it may be assumedthat p1 < � � � < pn. Then, de1 < d� for all � 2 f0; 1gn suh that � 6= �0 and � 6= e1.The identity (3.45) implies a(e1; �)b(e1; �) = a(e1; ~�)b(e1; ~�). From the de�nitions ofa(�; �) and b(�; �), we see that this in turn implies that �1 = ~�1.To �nish, use indution to prove �k = ~�k for all k 2 f1; : : : ; ng. Assume �i = ~�ifor all 1 � i � k� 1, and let r = dek . If d� = r for any � 2 f0; 1gn with � 6= ek, then wemust have �i = 0 for i � k, in whih ase it follows from the indution hypothesis thata(�; �)b(�; �) = a(�; ~�)b(�; ~�). Therefore all the terms on the left of (3.45) whih ontainerx and orrespond to � 6= ek will balane with equal terms on the right of (3.45). Butthen the identity (3.45) implies that the terms orresponding to � = ek must be equalas well, whih implies that �k = ~�k.Lemma 3.12. Suppose n 2 N, let  2 Sn be �xed, and for � 2 (R [ f1g)n de�neI� and �# as before Lemma 3.11. For every � > 0 there exists Æ > 0 suh that if�; ~� 2 (R[f1g)n with jI�j+jI~�j � 1 and kv��v~�k1 < Æ, then I� = I~� and j�#�~�#j < �.Proof. It is required to show that for every � > 0 there exists Æ > 0 suh that if I� 6= I~�,or I� = I~� and j�# � ~�#j � �, then kv� � v~�k1 � Æ. To prove this, we use indution onjI�j+ jI~�j.Suppose �rst that jI�j + jI~�j = 1; then neessarily I� 6= I~�. Without lossof generality, assume that jI~�j = 0, v~� = 0, and jI�j = 1. Sine the set S =26



fkv�k1 : � 2 (R [ f1g)n and jI�j = 1g ontains only a �nite number of positive ele-ments, learly Æ = minS > 0, and sine kv� � v~�k1 = kv�k1 � Æ, the result follows inthis ase.Make the indution hypothesis that for every i 2 f1; : : : ; l� 1g and every � > 0there exists Æi(�) > 0 suh that if jI�j + jI~�j = i, and either I� 6= I~� or I� = I~� andj�# � ~�#j � �, we have kv� � v~�k1 � Æi(�). In partiular, taking ~� = (1; : : : ;1)so that v~� = 0 and jI~�j = 0, it follows from the indution hypothesis that for everyi 2 f1; : : : :l � 1g and every � > 0,kv�k1 = kv� � v~�k1 � Æi(�) (3.46)whenever jI�j = i.Let � > 0 be given and assume jI�j+ jI~�j = l � 1. We aim to show the existeneof the desired Æ > 0 both in ase I� 6= I~� and in ase I� = I~� and j�# � ~�#j � �.Assume �rst that I� = I~� and j�# � ~�#j � �. For ease of notation, write � inplae of �# and ~� in plae of ~�#, so that �; ~� 2 Rm where 2m = l. By subtrating aommon onstant from all omponents of � and ~�, it an be presumed thatminf~�1; : : : ; ~�mg = 0:Let M > 0 be �xed but arbitrary for the moment (a value of M will be hosenlater). To obtain estimates on kv� � v~�k1, several ases are onsidered, aording tothe loation of the omponents of � and ~� with respet to the interval [0;M ℄.Case I. Suppose f~�1; : : : ; ~�mg � [0;M ℄ and f�1; : : : ; �mg � [�M; 2M ℄. De�nethe funtion f(�; ~�) : Rm�Rm ! R by f(�; ~�) = kv� � v~�k1; then f is ontinuous andis positive on f(�; ~�) : j� � ~�j � �g by Lemma 3.11. Sine the setT = f(�; ~�) : f~�1; : : : ; ~�mg � [0;M ℄, f�1; : : : ; �mg � [�M; 2M ℄, and j� � ~�j � �gis ompat in Rm � Rm, there exists Æ0 = Æ0(M) > 0 suh that f(�; ~�) > Æ0 for all(�; ~�) 2 T .Case II. Suppose f~�1; : : : ; ~�mg � [0;M ℄ and �i < �M for some i. By permutingthe indies we may assume that �1 � � � � � �m and �1 < �M . Split the interval [�M; 0℄into m subintervals of equal length M=m. At least one of these subintervals must haveinterior disjoint from the set f�1; : : : ; �mg. Therefore either �m � �M=m, or thereexists k 2 f1; : : : ; m� 1g suh that �k+1� �k �M=m. If �m � �M=m, we obtain fromLemmas 3.7 and 3.9 that there exists a onstant C, whih is independent of � and ~�,suh that kv� � v~�k21 � kv�k21 + kv~�k21 � C exp(�DM=(2m)):It follows that for M suÆiently large,kv� � v~�k1 � 14 (kv�k1 + kv~�k1) � 12 inffkv�k1 : � 2 Rmg � 12Æm(�)27



where (3.46) has been used.If, on the other hand, �k+1 � �k � M=m for some k 2 f1; : : : ; m � 1g, then itfollows from Lemma 3.6 thatkv� � v~�k21 � k��k21 + k��� � v~�k21 � C exp(�DM=(2m))where �� and ��� are as de�ned in (3.11) and (3.12), and C is independent of � and ~�.Hene for M suÆiently large, kv� � v~�k1 � 12k��k1:Sine �� = v��, where ��i = (�i if 1 � i � k1 if k + 1 � i � m,(3.46) then implies that kv� � v~�k1 � 12Æk(�): (3.47)Case III. Suppose f~�1; : : : ; ~�mg � [0;M ℄ and �i > 2M for some i. Again bypermuting the indies, it may be assumed that �1 � � � � � �m and �m > 2M . Splitthe interval [M; 2M ℄ into m subintervals of equal length, at least one of whih musthave interior disjoint from the set f�1; : : : ; �mg. Hene, either �1 �M +M=m, or thereexists k 2 f1; : : : ; m� 1g suh that �k+1 � �k �M=m. The same argument as used inCase II then shows that for M suÆiently large,kv� � v~�k1 � 12 min(Æm(�); Æm�k(�)): (3.48)Case IV. Suppose ~�i > M for some i 2 f1; : : : ; mg. As usual, assume withoutloss of generality that 0 = ~�1 � � � � � ~�m and ~�m > M . Then there exists k 2f1; : : : ; m� 1g suh that ~�k+1 � ~�k > M=m. Split [~�k; ~�k+1℄ into m + 1 subintervals ofequal length. At least one of these subintervals has interior disjoint from f�1; : : : ; �mg.Choose suh a subinterval and denote it by [a; b℄; of ourse, b � a > M=(m(m + 1)).De�ne ��i = �i if �i � a and ��i = 1 otherwise, and de�ne ���i = �i if �i � b and���i =1 otherwise. Similarly, de�ne ~��i = ~�i for 1 � i � k and ~��i =1 otherwise; andde�ne ~���i = ~�i for k + 1 � i � m and ~���i = 1 otherwise. Then from Lemma 3.6, itmay be onluded thatkv~� � v�k21 = kv~�� � v��k21 + kv~��� � v���k21 � C exp(�DM=m(m + 1))28



where C is independent of � and ~�. Hene, for M suÆiently large, we havekv~� � v�k1 � 14 (kv~�� � v��k1 + kv~��� � v���k1) : (3.49)In the urrent situation,1 � jI~��j+ jI��j � k +m � 2m� 1 < l and1 � jI~���j+ jI���j � (m� k) +m � 2m� 1 < l;so the indution hypothesis an be applied to both the terms on the right-hand side of(3.49). If I~�� 6= I�� or I~��� 6= I���, then (3.49) yieldskv~� � v�k1 � 12 � min1�i�l�1 Æi(�)� : (3.50)The remaining possibility is that I~�� = I�� and I~��� = I���. But, in that ase, sinej� � ~�j � �, we must have either j�� � ~��j � �=2 or j��� � ~���j � �=2, and so (3.49)yields kv~� � v�k1 � 14 � min1�i�l�1 Æi(�=2)� : (3.51)Now hoose M so large that all the estimates in Cases II through IV are valid(notie this an be done with an M whose value is independent of � and ~�), and forsuh an M de�ne Æ to be the smallest of Æ0(M) and the numbers on the right-handsides of (3.47), (3.48), (3.50), and (3.51). We then have kv~��v�k1 � Æ whenever I� = I~�and j� � ~�j � �, ompleting the indutive step in this ase.It remains to onsider the possibility that I� 6= I~�. Let m = jI�j and ~m = jI~�j,so that m + ~m = l. By swithing m and ~m if neessary, assume m > 0. Now thearguments used above in Cases I through IV an be repeated unhanged, with theunderstanding that v~� = 0 when ~m = 0, and the replaement of the set T in Case I byT = f(�; ~�) : f~�1; : : : ; ~�mg � [0;M ℄, f�1; : : : ; �mg � [�M; 2M ℄g:(Note in partiular that Case IV an only arise when ~m � 2, and that in Case IV, thesituation wherein I~�� = I�� and I~��� = I��� annot now arise, sine it would ontraditI� 6= I~�.) The indution is omplete and the lemma proved.Proof of Theorem 3.1. From Lemma 3.9 and (3.38), it is known that the entries ofG�(v�; �) are bounded independently of � 2 Rn. Therefore, from Cramer's rule andLemma 3.10, the entries of the inverse matrix G�(v�; �)�1 are also bounded indepen-dently of � 2 Rn. Hene the quantityK1 = sup�2Rn kG�(v�; �)�1kB(Rn;Rn) (3.52)29



is �nite.Now let �0 2 Rn be �xed but arbitrary, and let u0 = v�0 . For all (u; �) 2 H1�Rn,(3.5) implies thatkG�(u; �)�G�(u0; �0)kB(Rn;Rn) � sup1�i;j�n ����Z 1�1 u�ij(�)� Z 1�1 u0�ij(�0)����� sup1�i;j�n (juj2j�ij(�)� �ij(�0)j2 + ju� u0j2j�ij(�0)j2) (3.53)where the L2-norms are taken in the x variable.We laim that j�ij(�)� �ij(�0)j2 �M j� � �0j; (3.54)whereM is independent of �. To prove (3.54), we might as well assume that j���0j � 1,sine j�ij(�)j2 is bounded independently of � by Lemma 3.9. For eah x 2 R, the MeanValue Theorem provides a �x 2 Rn on the line segment between � and �0, suh that�ij(x; �; )� �ij(x; �0; ) = nXk=1 �ijk(x; �x; ) (� � �0)k :It follows thatj�ij(x; �; )� �ij(x; �0; )j � supk supj���0j�1 j�ijk(x; �; )j � j� � �0j;and (3.54) then follows from Lemma 3.9.Now let U be the ball of radius 1 entered at u0 in H1, so that for all u 2 U ,juj2 � 1 + ju0j2 = 1 + j��0j2. The inequalities (3.53), (3.54) and Lemma 3.9 yield thatkG�(u; �)�G�(u0; �0)kB(Rn;Rn) � K2 (ku� u0k1 + j� � �0j)for all (u; �) 2 U � Rn, where the onstant K2 an be taken to be independent of�0 2 Rn. Similarly, we have thatjG(u; �0)j = jG(u; �0)�G(u0; �0)j � ju� u0j2� sup1�i�n j�ij2� � K3ju� u0j2;for all (u; �) 2 U �Rn, where K3 an be hosen independently of �0.Next, observe thatK4 = kGu(u0; �0)kB(H1;Rn) � sup1�i�n j�i(�0)j2;30



whih is uniformly bounded in �0 by Lemma 3.9; and for all  2 H1, it is the ase thatjGu(u; �)[ ℄�Gu(u0; �0)[ ℄j � supi Z 1�1  [�i(�)� �i(�0)℄� j j2�supi j�i(�)� �i(�0)j2� : (3.55)The same argument used to prove (3.54) shows that the right-hand side of (3.55) isbounded by K5k k1j� � �0j, where K5 an be hosen independently of �0. ThereforekGu(u; �)�Gu(u0; �0)kB(H1;Rn) � K5 (ku� u0k1 + j� � �0j)for all u 2 H1 and � 2 Rn.As a onsequene of Theorem 3.3, there exist a number �1 > 0 and a funtionÆ(�) de�ned for � 2 (0; �1℄ suh that, for every � 2 Rn and every u 2 BÆ(�)(v�), thereis a unique point F�(u) 2 B�(�) suh that G(u; F�(u)) = 0. Moreover, sine G(u; �) islearly C1 on H1 �Rn, the map F� : BÆ(�)(v�)! B�(�) is C1.Next, we laim that there exists a number Æ0 > 0 with the property that when-ever �1; �2 2 Rn and u 2 BÆ0(v�1) \ BÆ0(v�2), then F�1(u) = F�2(u). To see this, let~� = 12�1. By Lemma 3.12, there is a ~Æ > 0 suh that if jv�1�v�2 j < ~Æ, then j�1��2j < ~�.De�ne the quantity Æ0 by Æ0 = min�Æ(~�); Æ(�1); 12~Æ	;and suppose u 2 BÆ0(v�1)\BÆ0(v�2). Then u 2 BÆ(�1)(�2), so F�2(u) is the unique pointin B�1(�2) suh that G(u; F�2(u)) = 0. On the other hand, we havejv�1 � v�2 j � jv�1 � uj+ jv�2 � uj < 2Æ0 � ~Æ;so j�1 � �2j < ~�. Moreover, F�1(u) 2 B~�(�1) and henejF�1(u)� �2j � jF�1(u)� �1j+ j�1 � �2j < 2~� = �1:Therefore F�1(u) 2 B�1(�2). But sine G(u; F�1(u)) = 0, and y = F�2(u) is the uniquesolution of G(u; y) = 0 in B�1(�2), it must be the ase that F�1(u) = F�2(u), as desired.It follows from what has just been proved that the maps F� : BÆ0(v�) ! Rnpiee together to form a globally de�ned map on the neighborhood UÆ0 ofM. In otherwords, there is a well-de�ned map F : UÆ0 ! Rn obtained by settingF (u) = F�(u) if u 2 BÆ0(�).Sine eah F� is C1 and satis�es (3.4), the same is true of F .31



4 Proof of StabilityWe prove Theorem (2.4). Without loss of generality, presume that� < �(; n)2C1(; n) ; (4.1)where �(; n) is de�ned in Lemma 3.10, and C1(; n) is the number de�ned below in(4.8). From Lemma 3.9 and the Mean Value Theorem (f. the proof of (3.54)), thereis an � > 0 suh that whenever �;  2 Rn satisfy j� � j < �, then kv� � vk1 < �=2.Let Æ1 = Æ(�), where Æ(�) is the funtion de�ned above in the proof of Theorem 3.1,so that whenever � 2 Rn and u 2 BÆ1(v�), then F (u) 2 B�(�). Finally, let Æ0 be thenumber de�ned in the statement of Theorem 3.1. By Theorem 2.3, there is a Æ > 0suh that if u0 2 H1 and ku0 � v�0k1 < Æ for some �0 2 Rn, then for all t > 0 thereexists �(t) 2 Rn suh that ku(t)� v�(t)k1 < min(Æ0; Æ1; �=2): (4.2)In partiular, u(t) 2 UÆ0 for all t > 0, so by Theorem 3.1 we an de�ne a funtion : (0;1)! Rn by setting (t) = F (u(t)). Also, sine the map t 7! u(t) is ontinuousfrom (0;1) to H1 by Theorem 2.1, and F : UÆ0 ! Rn is ontinuous by Theorem 3.1,then (t) is a ontinuous funtion of t on (0;1).From (4.2) and the de�nition of the funtion F on UÆ0 , it follows that (t) =F�(t)(u(t)) for all t > 0. Moreover, (4.2) implies that u(t) 2 BÆ1(�(t)), or, in otherwords, j(t)� �(t)j < Æ1, and hene that kv�(t) � v(t)k1 < �=2. In onsequene, we seethat ku(t)� v(t)k1 � ku(t)� v�(t)k1 + kv�(t) � v(t)k1 < �=2 + �=2 = �;so proving (2.5).It remains to show that (t) is a C1 funtion and satis�es (2.6). For this purpose,onsider the funtion H : (0;1)�Rn ! Rn de�ned byH(t; �) = �Z 1�1 u(x; t)�(n)1 (x; �; ) dx; � � � ; Z 1�1 u(x; t)�(n)n (x; �; ) dx� :The idea is to apply the Impliit Funtion Theorem to H at the points (t; (t)) whereit is known that H(t; (t)) = G(u(t); F (u(t))) = 0: (4.3)Fix t0 > 0. Observe �rst that if U is any neighborhood of t0 in (0;1), then His C1 on U �Rn. In fat, the derivatives of H with respet to omponents of � learly32



exist up to any order. As for derivatives with respet to t, it is known from Theorem 2.1that u is di�erentiable as a distribution-valued funtion of t with ut 2 C([0; T ℄; H�2).Hene for any funtion  in the Shwarz lass S(R), the ationhu;  i = Z 1�1 u(x; t) (x) dxof u(t) on  will be a di�erentiable funtion of t, with derivativehut;  i = h�uux � uxxx;  i;whih is a ontinuous funtion of t. But sine �i = �(n)i (x; �; ) 2 S(R) for eahi 2 f1; : : : ; ng, it follows that H is ontinuously di�erentiable with respet to t, withthe ith omponent of Ht given byHt(t; �)i = hut; �ii = h�u(t)ux(t)� uxxx(t); �ii: (4.4)Next, it is shown that the partial derivative H�(t0; (t0)) is an invertible mapfrom Rn to Rn. To see this, observe thatH�(t; �) = G�(u(t); �)for all (t; �) 2 (0;1)�Rn, and heneH�(t0; (t0)) = G�(u(t0); (t0)) = G�(v(t0); (t0)) +G(h; v(t0)); (4.5)where h = u(t0)� v(t0). But, we also know that��detG�(v(t0); (t0))�� = ��d(n)((t0); )�� > �(; n) (4.6)by Lemma 3.10, and for all i; j 2 f1; : : : ; ng,��G(h; v(t0))ij�� = ����Z 1�1 h�(n)ij (x; (t0); ) dx���� � jhj2j�ijj2 � C�; (4.7)where C depends only on n and , by Lemma 3.9 and (2.5). Combining (3.42), (4.5),(4.6), and (4.7) (and realling that the matrix norm kG�(v�; �)k1 is bounded indepen-dently of �), it is dedued that there exists a number C1(; n) suh thatj detH�(t0; (t0))j � �(; n)� C1(; n)�: (4.8)From (4.1) it now follows that H�(t0; (t0)) is invertible.It follows from what has just been proved and Theorem 3.3 that there existnumbers � > 0 and Æ > 0 suh that for every t 2 (t0 � Æ; t0 + Æ), there is exatly one33



vetor �(t) 2 B�((t0)) suh that H(t; �(t)) = 0, and the map t 7! �(t) is C1. On theother hand, sine (t) is ontinuous, there exists Æ1 2 (0; Æ) suh that (t) 2 B�((t0)for all t 2 (t0 � Æ1; t0 + Æ1). It then follows from (4.3) and the uniqueness of �(t) that(t) = �(t) for t 2 (t0 � Æ1; t0 + Æ1). Sine �(t) is C1 near t0, this implies that (t) isC1 near t0 as well. Sine t0 was arbitrary, we have proved that (t) is C1 on (0;1).It remains to prove (2.6). Di�erentiating (4.3) with respet to t yieldsHt(t; (t)) +H�(t; (t)) � 0(t) = 0: (4.9)For eah t > 0, de�ne h(x; t) as an element of H1 byh(x; t) = u(x; t)� v(t)(x) = u(x; t)� �(n)(x; (t); ):Then, we have�(uux + uxxx) = �(��x + �xxx + �hx + �xh+ hhx + hxxx); (4.10)where both sides represent distributions in H�2. Substituting (2.3) into (1.1) gives theequation � nXj=1 �jj + ��x + �xxx = 0;and therefore, from (4.10),�(uux + uxxx) = � nXj=1 �jj + �hx + �xh+ hhx + hxxx: (4.11)Using (4.11) and the fat thathhxxx; �ii = � Z 1�1 h(�i)xxx dxin (4.4) yields Ht(t; (t))i = � nXj=1 j �Z 1�1 �i�j dx�+ Ri(t); (4.12)where Ri(t) = Z 1�1(h�x�i + hx��i + hhx�i � h(�i)xxx) dx:34



De�ne M(t) = G�(v(t); (t)), so thatMij = � Z 1�1 �i�j dx;by (3.37) and (3.38). Then (4.12) an be written in vetor form asHt(t; (t)) =M +R: (4.13)Observe that for eah i; j 2 f1; : : : ; ng,H�(t; (t))ij = Z 1�1 u(t)�ij dx = Z 1�1 ��ij dx+ ~Rij(t);where ~Rij(t) = Z 1�1 h�ij dx:From (3.36), we have then that, as matries,H�(t; (t)) =M + ~R: (4.14)Equations (4.9), (4.13), and (4.14) together imply that0 = �(M + ~R)�1(M +R) = �(I +M�1 ~R)�1(+M�1R): (4.15)But sine khk1 < � by (2.5), then Lemmas 3.5, 3.8, and 3.9 imply that jRj � C� andk ~Rk1 < C�, where C is a onstant that depends only on  and n. Moreover, from(3.52) we have that kM�1kB(Rn;Rn) � K1, where K1 depends only on  and n. Theestimate (2.6) therefore follows from (4.15) and elementary onsiderations.A AppendixIn this appendix we prove the statement made in Remark 2.5. The following lemmaregarding the invariant funtionals Ik mentioned in (2.7) is needed. The proof of thelemma is essentially ontained in Setion 3 of [BLN℄.Lemma A.1. Suppose k � 1 is an integer. For all h 2 Hk and � 2 Hk+1, we havejIk+2(�+ h)� Ik+2(�)j � C1 �khkk + khkk+2k � (A.1)and jIk+2(�+ h)� Ik+2(�)j � khk2k � C2 �khkk�1 + khkk+2k�1� ; (A.2)where C1 and C2 depend only on k�kk+1. 35



Following the argument of [BLN℄, we use indution to show that for every � > 0,there exists Æ > 0 suh that if u0 2 Hk, �0 2 Rn, and ku0 � �(n)(�0; )kk < Æ, then forall t > 0, ku(t)� �(n)((t); )kk < �;where  is the same funtion de�ned in Theorem 2.4. Theorem 2.4 already takes areof the ase k = 1, so it suÆes to prove that the statement holds for k, under theassumption that it holds for k � 1.Fix  2 Sn and let � > 0 be given. By Lemma 3.9, there is a uniform upperbound for k�(n)(�; )kk+1 as � ranges over all ofRn. Therefore, we an hoose onstantsC1 and C2 suh that if we set � = �(n)(�; ), the estimates (A.1) and (A.2) in LemmaA.1 hold for all � 2 Rn. Choose � > 0 suh thatC2(� + �k+2) < �2=2: (A.3)By the indution assumption, there is a Æ1 > 0 suh that if ku0 � �(n)(�0; )kk�1 < Æ1,then for all t > 0, ku(t)� �(n)((t); )kk�1 < �: (A.4)Choose Æ2 > 0 suh that C1(Æ2 + Æk+22 ) < �2=2:Finally, de�ne Æ = min(Æ1; Æ2).If ku0 � �(n)(�0; )kk < Æ, then applying (A.1) to � = �(n)(�0; ) and h = u0 � �gives jIk+2(u0)� Ik+2(�(n)(�0; ))j � �2=2:Sine Ik+2 is a onserved funtional for (1.1), and Ik+2(�(n)(�; )) is independent of� 2 Rn, it follows that for all t > 0,jIk+2(u(t))� Ik+2(�(n)((t); ))j � �2=2: (A.5)Now let � = �(n)((t); ) and h = u(t)� �. Sineku0 � �(n)(�0; )kk�1 � ku0 � �(n)(�0; )kk < Æ � Æ1;(A.4) holds. It then follows from (A.2), (A.3), and (A.5) thatkhk2k < �2=2 + �2=2 = �2;as desired.Aknowledgment: The third author is thankful for the hospitality of the Depart-ment of Mathematis at the University of Oklahoma where part of this projet wasarried out. The projet was partially supported by the United States National SieneFoundation. 36
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