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.edunvnguyen�math.purdue.eduAbstra
tStability results for multi-soliton solutions of the Korteweg-de Vries equa-tion are stated and proved. The theory developed here 
ontributes to earlierdis
ussions of this issue by Maddo
ks and Sa
hs, Martel, Merle and Tsai andS
huur.1 Introdu
tionMulti-soliton solutions of the Korteweg-de Vries equation are solutions whi
h representthe intera
tions of multiple solitary waves. In general, the term \solitary wave" is usedto refer to a lo
alized disturban
e whi
h propagates without 
hange in form. In the
ontext of the Korteweg-de Vries equation,ut + uux + uxxx = 0; (1.1)posed for �1 < x <1 and t � 0, a solitary wave is represented by a fun
tion u(x; t)of the real variables x and t whi
h takes the formu(x; t) = �(x� 
t);where 
 is a 
onstant and �(�) is a fun
tion of one variable whose values are smallwhen j�j is large. It is easy to see that the only non-singular solutions of (1.1) of thisform are those given by u
;�(x; t) = �
(x� 
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where 
 > 0, � 2 R, and �
(�) = 3
 se
h2(p
 �=2):These Korteweg-de Vries solitary waves are not run-of-the-mill solitary waves,however. They go by the spe
ial appellation of \soliton" be
ause they exhibit strongstability properties, like those of parti
les. Suppose for example that a solution u(x; t)of (1.1) 
ontains a soliton u
;� at time t = 0, in the sense that ju(x; 0) � u
;�(x; 0)j issmall at least for x in a large interval 
entered at x = �. In general, as time passes,u(x; t) may undergo a 
ompli
ated nonlinear evolution, but eventually it will emergewith its identity inta
t, up to translation. That is, for large values of t there will exist afun
tion �(t) su
h that ju(x; t)�u
;�(t)(x; t)j is small for all x in a large interval 
enteredat �(t).The s
enario just des
ribed gives only a 
rude idea of the stability properties ofsolitary-wave solutions of (1.1). More pre
ise and re�ned investigations have o

upiedresear
hers for the past few de
ades. The �rst rigorous result in this dire
tion wasproved by Benjamin and Bona in the 1970's [Be, Bo℄. They showed that if u(x; 0) issuÆ
iently 
lose to a soliton u
;�(x; 0) over the entire real line, or more pre
isely in thenorm of the Sobolev spa
e H1(R), then there exists a fun
tion � : [0;1) ! R su
hthat u remains arbitrarily 
lose to u
;�(t) in H1 norm for all times t > 0. Later, Bonaand Soyeur [BoSo℄ observed that a simple argument based on the Impli
it Fun
tionTheorem is suÆ
ient to obtain improved information on the behavior of the fun
tion�(t): namely, that it 
an be taken to be a di�erentiable fun
tion of t, with the propertythat �0(t) remains 
lose to �
 for all t > 0. Other authors have used more sophisti
atedmethods to obtain detailed information on the asymptoti
 behavior of �(t) and u(x; t)as t ! 1. It is now known that when u(x; 0) is suÆ
iently 
lose to u
;�0(x; 0), thenfor large values of t there exist fun
tions �
(t) and �(t) su
h thatlimt!1 �
(t) = 
1;limt!1 �0(t) = �
1;and limt!1 �u(x; t)� u�
(t);�(t)(x; t)� = 0 for x near ��(t):Furthermore, in some sense these results are the best possible. For details the readeris referred to the papers [MM2, MM3, PW℄.The results dis
ussed in the pre
eding paragraph all deal with the 
ase in whi
hthe initial data of a solution of (1.1) is a small perturbation of a single solitary wave.A more general 
ase would be one in whi
h multiple solitary waves of 
omparable sizeare present. Expli
it examples of solutions of (1.1) whi
h 
ontain multiple solitarywaves are the \multi-soliton" solutions, �rst identi�ed by Gardner et al. in the 1960's2



[GGKM℄. To denote multi-soliton solutions we 
ontinue to use the notation u
;�, butnow the parameters 
 = (
1; : : : ; 
n) and � = (�1; : : : ; �n) will be ve
tors in Rn whose
omponents 
i and �i determine the speeds and initial lo
ations of n individual solitons.A straightforward analysis of the expli
it formula for multi-soliton solutions (
f. Lemma3.6 below) shows that for ea
h i 2 f1; : : : ; ng,limt!�1 (u
;�(x; t)� �
i(x� 
it� �i)) = 0and limt!1�u
;�(x; t)� �
i(x� 
it� ~�i)� = 0;uniformly in regions where x is 
omparable in size to 
it. (Here ~�i, i = 1; : : : ; n, arenumbers whi
h depend only on 
 and �.) That is, u
;�(x; t) des
ribes the intera
tionof n solitary waves, ea
h with its own wavespeed 
i. At large negative values of tthe solitary waves are well-separated, but as time evolves the faster ones overtake theslower ones and signi�
ant intera
tions o

ur. Eventually, for large positive values of t,n solitary waves emerge whi
h have exa
tly the same speeds as the ones whi
h enteredthe intera
tion: in fa
t, the only long-lasting e�e
ts of the intera
tion are the phaseshifts represented by repla
ing �i with ~�i.The question naturally arises whether the behavior exhibited by multi-solitons isstable under small initial perturbations. This question has been addressed by Maddo
ksand Sa
hs [MS℄ and, more re
ently, by Martel, Merle and Tsai [MMT℄. In parti
ular,Martel et al. prove that the 
on
lusion of Benjamin and Bona's stability result forsingle solitons holds as well for multi-solitons: if a solution u of (1.1) is suÆ
iently
lose in H1-norm to a multi-soliton solution u
;� at time t = 0, then there exists� : [0;1) ! Rn su
h that u remains arbitrarily 
lose to u
;�(t) in H1 for all time (seeTheorem 2.3 below). Moreover, Martel et al. are able to obtain detailed informationon the asymptoti
 behavior of �(t). For example, they prove that for large values oftime t, �(t) is a C1 fun
tion of t, and that limt!1 �0(t) = �
1 for some 
1 2 Rn whi
his 
lose to 
. Moreover, as t ! 1, u � u
1;�(t) will tend to zero in L2 norm on anyinterval whi
h propagates to the right at a speed 
omparable to that of the slowestsoliton 
omponent of u
1;� (
f. Corollary 1 of [MMT℄).In proving their results, Martel et al. 
on
entrate on the large-time behavior ofu(x; t); or more spe
i�
ally, on the behavior of u(x; t) for t � T , where T is taken solarge that the numbers f
1T; 
2T; : : : ; 
nTg are widely separated. At su
h large values oftime, the soliton 
omponents of u
;�, having long 
eased to intera
t with ea
h other, aresteadily propagating without 
hange of form. Taking t = T as their initial time, Martelet al. use results from [MM1, MM2℄ on the asymptoti
 behavior of individual solitarywaves to analyze u(x; t) for t � T in the separate regions near ea
h soliton 
omponent,under the assumption that u(x; T ) is suÆ
iently 
lose to u
;�(x; T ). Then this latter3



assumption is removed simply by observing that, a

ording to standard results on thewell-posedness of the initial-value problem for (1.1), u(x; T ) 
an be made arbitrarily
lose to u
;�(x; T ) by taking u(x; 0) suÆ
iently 
lose to u
;�(x; 0).A drawba
k of this approa
h, however, is that no information is obtained aboutthe fun
tion �(t) on the time interval [0; T ℄. In fa
t, it is not even 
lear whether �(t)
an be asserted to be a 
ontinuous fun
tion of t on [0; T ℄. This is an undesirable stateof a�airs, be
ause it is on the time interval [0; T ℄, where all the soliton intera
tionstake pla
e, that the 
hief interest of the multi-soliton solution resides.Our main result (Theorem 2.4 below) addresses this issue. We prove that ifu(x; 0) is 
lose, in an appropriate Sobolev spa
e, to a multi-soliton pro�le u
;�(x; 0)then there exists a C1 fun
tion 
 : [0;1)! Rn su
h that the 
orresponding solutionu(x; t) of (1.1) remains 
lose to u
;
(t)(x; t) for all time, and su
h that 
0(t) remains
lose to �
. A
tually, this fa
t is derived as a 
onsequen
e of the stability result ofMartel et al., together with the Impli
it Fun
tion Theorem. Thus the proof pro
eedsalong the same lines as that used by Bona and Soyeur [BoSo℄ in the single-soliton 
ase.The stability results just dis
ussed show that solutions of (1.1) with initial datathat is a small H1 perturbation of a multi-soliton will resolve asymptoti
ally intosolitary waves as t ! 1, in domains that move to the right with at least the speedof the slowest solitary wave present. It remains an open question, however, whetherthis asymptoti
 behavior is still exhibited for solutions with general initial data in H1.That this might be the 
ase is suggested by the inverse s
attering theory for solutions of(1.1); 
f. the book of S
huur [S℄, where it is shown that smooth initial data with rapidde
ay at in�nity give rise to solutions whi
h behave asymptoti
ally like multi-solitonsolutions. To date, however, the methods of inverse s
attering theory have not yieldedresults for more general 
lasses of solutions.The plan of this paper is as follows. In Se
tion 2 we state and dis
uss our mainresult. In Se
tion 3 some lemmas are established 
on
erning manifolds of n-solitonsolutions in H1, and in Se
tion 4, the main result is o�ered. An appendix 
ontains aproof of the stability of n-solitons in higher-order Sobolev spa
es.Notation. The notation in for
e is standard. For 1 � p < 1, Lp is the usualBana
h spa
e of measurable fun
tions onR with norm given by jf jp = (R1�1 jf jp dx)1=p.The spa
e L1 
onsists of the measurable, essentially bounded fun
tions f on R withnorm jf j1 = ess supx2Rjf(x)j. For s 2 R, the L2-based Sobolev spa
e Hs = Hs(R) isthe set of all tempered distributions f on R whose Fourier transforms f̂ are measurablefun
tions on R satisfyingkfk2s = Z 1�1(1 + k2)sjf̂(k)j2 dk <1:If X and Z are Bana
h spa
es then B(X;Z) denotes the spa
e of all bounded linear4



maps l from X to Z, with normklkB(X;Z) = supkxkX=1 kl(x)kZ ;and C([0; T ℄; X) is the spa
e of all 
ontinuous maps u from the interval [0; T ℄ � R intoX, with norm kukC([0;T ℄;X) = supt2[0;T ℄ ku(t)kX:Finally, for matri
es Y 2 B(Rn;Rn) = Rn2, we sometimes use the normkY k1 = sup1�l;m�n jYlmj:2 Statement of the main resultTo explain the results of the paper in detail, we begin by re
alling the expli
it formulafor multi-solitons given by Hirota [Hi℄. Let n be a given natural number, let � =(�1; : : : ; �n) be a given ve
tor in Rn, and let 
 be a given element of the setSn = f
 = (
1; : : : ; 
n) 2 Rn : 
i > 0 for 1 � i � n and 
i 6= 
j for 1 � i < j � ng:De�ne a fun
tion of x 2 R by�(n)(x; �; 
) = 12 d2dx2 log � (n)(x; �; 
); (2.1)where � (n)(x; �; 
) = X�2f0;1gn exp nXi=1 �ip
i(x + �i) + X1�i<j�n �i�jAij! ; (2.2)with exp(Aij) = �p
i �p
jp
i +p
j�2:The outermost sum in (2.2) is taken over all of the 2n possible values of the n-tuple� = (�1; : : : ; �n), where �i is equal to either 0 or 1 for 1 � i � n.The fun
tion �(n)(x; �; 
) is 
alled an n-soliton pro�le. Ea
h n-soliton pro�legives rise to a multi-soliton solution u
;�(x; t) of (1.1), de�ned byu
;�(x; t) = �(n)(x; � � 
t; 
): (2.3)5



In other words, the n-soliton solution u
;� propagates in the set of n-soliton pro�lesf�(n)(x; ��; 
) : �� 2 Rng, and the evolution of the phase parameter is linear: ��(t) = ��
t.For ease of notation, when referring to �(n)(x; �; 
) we will often drop one ormore of the arguments x, �, and 
, as well as the supers
ript (n), when this will not
ause 
onfusion.Sin
e we want to dis
uss the stability of multi-solitons in the Sobolev spa
es Hs,it is ne
essary to re
all the well-posedness theory for (1.1) in these spa
es. Observe�rst that the linear equation vt = vxxx de�nes a unitary evolution operator U(t) onHs for every s 2 R; i.e., for ea
h t � 0 one 
an de�ne U(t) : Hs ! Hs by settingU(t)[f ℄ = v(�; t), where v is the solution of vt = vxxx with v(�; 0) = f . In fa
t, v(�; t) isde�ned as a tempered distribution by v̂(k; t) = eik3tf̂(k), where the 
ir
um
ex denotesthe Fourier transform with respe
t to x, and k is the dual Fourier transform variable.It follows that v 2 C([0; T ℄; Hs) and vt 2 C([0; T ℄; Hs�3) for all T > 0.Now suppose that s � 1, so that u 2 Hs implies that uux is well-de�ned as anelement of Hs�1. In this 
ase, de�ne u to be a strong solution in C([0; T ℄; Hs) of (1.1)with initial data u(0) = u0 if, for all t 2 [0; T ℄,u(t) = U(t)[u0℄� Z t0 U(t� �) [u(�)ux(�)℄ d�: (2.4)Note that if u 2 C([0; T ℄; Hs), then the integrand on the right-hand side of (2.4) is a
ontinuous fun
tion of � with values in Hs�1, so the integral exists in Hs�1 at least.Also, if u 2 C([0; T ℄; Hs) satis�es (2.4), then as a distribution-valued fun
tion of t, u isdi�erentiable, and its derivative ut satis�es (1.1) in the sense of tempered distributions.It then follows from (1.1) that ut is in fa
t in C([0; T ℄; Hs�3).The following well-posedness result is proved in [KPV1℄.Theorem 2.1. Suppose s � 1. For every u0 2 Hs and every T > 0 equation (1.1) hasa unique strong solution u 2 C([0; T ℄; Hs) with initial data u(0) = u0. For this solutionwe have ut 2 C([0; T ℄; Hs�3). Moreover, the map whi
h takes the initial data u0 to thesolution u is 
ontinuous from Hs to C([0; T ℄; Hs).Remark 2.2. For s < 1, diÆ
ulties arise in making sense of the produ
t uux appearingin (1.1). For 0 � s < 1 one 
an interpret uux as the distributional derivative of theintegrable fun
tion u2, but when s < 0 not even this interpretation is available. Nev-ertheless, using ingenious arguments whi
h take advantage of 
ertain smoothing prop-erties of (1.1), various authors have been able to formulate and prove well-posednessresults in Hs for all s > �3=4. See, for example, [KPV2℄ and [CKSTT℄.In what follows, we will typi
ally use u0 to denote initial data for (1.1) in Hs(s � 1), and u(t) to denote the 
orresponding solution of (1.1), guaranteed by Theorem2.1 to exist in Hs for all t > 0. 6



We are now ready to state the following stability result for multi-solitons in H1,whi
h is taken from [MMT℄.Theorem 2.3. Let 
 2 Sn and �0 2 Rn be given. For every � > 0 there exists Æ > 0su
h that if u0 2 H1 and ku0��(n)(�0; 
)k1 < Æ, then for all t > 0 there exists �(t) 2 Rnsu
h that ku(t)� �(n)(�(t); 
)k1 < �:Our main result is as follows. It represents a generalization of the work of Bonaand Soyeur, to whom the proof is due in 
ase n = 1 [BoSo℄.Theorem 2.4. Let 
 2 Sn and �0 2 Rn be given. Then there exists a 
onstant A withthe following property. For every � > 0, there exists Æ > 0 su
h that if u0 2 H1 andku0 � �(n)(�0; 
)k1 < Æ, then there exists a C1 fun
tion 
 : (0;1) ! Rn su
h that forevery t > 0, ku(t)� �(n)(
(t); 
)k1 < � (2.5)and j
0(t) + 
j < A�: (2.6)Remark 2.5. Theorems 2.3 and 2.4 are still valid if theH1 norm is repla
ed throughoutby the Hk norm, for any integer k � 1. As has been observed in [BLN℄, this is astraightforward 
onsequen
e of the in�nite sequen
e of 
onservation laws for (1.1). Fordetails the reader is referred to the Appendix. In this 
onne
tion, it is interestingto note that Merle and Vega [MV℄ have proved stability of single-soliton solutions inH0 = L2.Remark 2.6. It remains an open question whether, for �xed 
 and �, the number Æin the statement of Theorem 2.3 
an be 
hosen independently of �0. If this is indeedthe 
ase, then our proof below shows that Æ 
an also be 
hosen independently of �0 inTheorem 2.4. See also the 
omments following the statement of Theorem 2.7 below.The proof of Theorem 2.4 relies on an appli
ation of the Impli
it Fun
tionTheorem, whi
h is made possible by the fa
t that, a

ording to Theorem 2.3, u(t)is, for ea
h t > 0, 
lose enough to a multi-soliton pro�le to be within the domainof a fun
tion de�ned impli
itly near that pro�le. By 
ontrast, to prove a version ofTheorem 2.4 on a �nite time interval [0; T ℄, Theorem 2.3 would not be ne
essary, as7



the hypothesis required for our appli
ation of the Impli
it Fun
tion Theorem would beprovided by the well-posedness theory for (1.1).Alternatively, one 
ould envisage using the multi-soliton stability theory of Mad-do
ks and Sa
hs [MS℄ in pla
e of Theorem 2.3. However, their stability theory is notsuitable for our purposes, for reasons whi
h we now brie
y digress to dis
uss.The multi-soliton stability theory of [MS℄ is based on the in�nite sequen
e of
onserved fun
tionals for (1.1), the �rst four of whi
h areI1(u) = Z 1�1 u dx;I2(u) = Z 1�1 u2 dx;I3(u) = Z 1�1�u2x � 13u3� dx;I4(u) = Z 1�1�u2xx � 53uu2x + 536u4� dx: (2.7)
(Here, the fun
tionals Ik (k = 1; 2; : : : ,) have been normalized so that, in ea
h one, theterm with the highest-order derivative appears with 
oeÆ
ient 1.) These fun
tionalsare 
onserved in the sense that Ik(u(t)) is independent of t whenever u is a strongsolution of (1.1) in Hk (in the sense de�ned before Theorem 2.1). From this invarian
eproperty and the asymptoti
 analysis of multi-solitons, it follows easily (
f. [L, MS℄)that Ik(�(n)(�; 
)) is independent of the phase parameter � 2 Rn. In fa
t, we haveIk(�(n)(�; 
)) = (�1)k � 362k � 1� nXi=1 (
i)(2k�1)=2: (2.8)The stability properties of multi-solitons are 
losely related to the variationalproperties of the fun
tionals Ik. Suppose n 2 N and 
 2 Sn are given. By (2.8), theset G
 � Hn de�ned byG
 = f 2 Hn : Ik( ) = Ik(�(n)(�; 
)) for 2 � k � n + 2gis independent of � 2 Rn, and if we de�neM
 = f 2 Hn :  = �(n)(�; 
) for some � 2 Rng; (2.9)then M
 � G
:In the 
ase n = 1 it is easy to see that M
 = G
 for all 
 > 0. For n > 1, however, thequestion of whether M
 = G
 appears to be open.The stability result of Maddo
ks and Sa
hs [MS℄ is the following.8



Theorem 2.7. Let n � 1 and suppose 
 2 Sn. For every � > 0, there exists Æ > 0 su
hthat if u0 2 Hn, �0 2 Rn, and ku0 � �(n)(�0; 
)kn < Æ, then for all t > 0,inf 2G
 ku(t)�  kn < �:Remark 2.8. Re
ently Neves and Lopes [NL℄ have given an alternate proof of Theorem2.7, using a method whi
h also leads to a similar result for the Benjamin-Ono equationin the double-soliton 
ase.Noti
e that the stability result of Theorem 2.7 is set in Hn, whereas the resultof Theorem 2.3 is set in H1, and is hen
e stronger (
f. Remark 2.5). Also, sin
e it is notyet known whetherM
 = G
, Theorem 2.7 does not yet give a stability result for the setof multi-soliton pro�les M
, and hen
e 
annot be used to prove a result like Theorem2.4. If, on the other hand, it 
ould be proved thatM
 = G
, then a proof of stability ofmulti-solitons (at least in the spa
e Hn) 
ould be based purely on 
onsideration of the
onserved fun
tionals, without re
ourse to the detailed asymptoti
 analysis provided in[MMT℄. Moreover, the stability result would have the advantage that, as in Theorem2.7, the number Æ 
orresponding to a given � 
ould be 
hosen independently of �0.3 The embedding of M
 in H1In this se
tion we prove several preliminary results whi
h will be needed for the proofin Se
tion 4 of the main result. Some of them 
an be given natural interpretations asstatements about the geometri
 properties of the map � : Rn ! H1 de�ned by �(�) =�(n)(�; 
). Thus Lemma 3.4 implies that � is an immersion, and Lemma 3.11 impliesthat � is one-to-one. Also, sin
e Theorem 3.1 asserts the existen
e of a 
ontinuousmap F whi
h extends ��1 to a neighborhood UÆ ofM
 = �(Rn), it follows that � is anembedding; i.e., an immersion whi
h is a homeomorphism onto its image. An importantte
hni
al point, whi
h is 
ru
ial to the proof in Se
tion 4, is that UÆ 
ontains all theelements of H1 within a distan
e Æ of M
; geometri
ally speaking, this means that UÆ
ontains a tubular neighborhood of M
 of uniform width in the dire
tion \normal" toM
. For n 2 N and i 2 f1; : : : ; ng, de�ne�(n)i (x; �; 
) = ��(n)��i (x; �; 
)and �(n)ij = �2�(n)��i��j (x; �; 
):9



Similar notation will be used for the fun
tions de�ned in (2.2). In addition, we o

a-sionally use �x to denote the operator of di�erentiation with respe
t to x, and ��i todenote di�erentiation with respe
t to �i, and for a multi-index N = (N0; N1; : : : ; Nn),where the Nj are non-negative integers, we de�ne �N to be the operator�N = �N0x �N1�1 �N2�2 : : : �Nn�n :Let n 2 N and 
 2 Sn be �xed. For ea
h � 2 Rn, de�ne v� 2 Hn byv�(x) = �(n)(x; �; 
): (3.1)Then (2.9) be
omes M
 = fv� : � 2 Rng:For Æ > 0, de�ne UÆ = �u 2 H1 : u 2 BÆ(v�) for some v� 2M
	 ;where BÆ(v�) denotes the open ball in H1 with radius Æ and 
enter at v�.Let G : H1 �Rn ! Rn be de�ned byG(u; �) = �Z u(x)�(n)1 (x; �; 
) dx; : : : ; Z u(x)�(n)n (x; �; 
) dx� :Putting k = 2 in (2.8), we �nd thatI2(�(n)(x; �; 
)) = Z 1�1 (�(n)(x; �; 
))2 dxis independent of �. Therefore, for ea
h i 2 f1; : : : ; ng, the derivative with respe
t to�i vanishes, viz. Z 1�1 �(n)�(n)i dx = 0: (3.2)Hen
e, for all � 2 Rn, G(v�; �) = 0; (3.3)where 0 denotes the zero ve
tor in Rn.The main goal of this se
tion is to prove the following Theorem.10



Theorem 3.1. There exist a number Æ0 > 0 and a C1-map F : UÆ0 7! Rn su
h thatfor every u 2 UÆ0 , G(u; F (u)) = 0: (3.4)Remark 3.2. A
tually, below we will only need that F is 
ontinuous on UÆ0 , but it isnot more diÆ
ult to prove that F is C1.To prove Theorem 3.1, we use the Impli
it Fun
tion Theorem, whi
h entails astudy of G�, the partial derivative of G with respe
t to �. Observe that G� is the mapfrom H1 �Rn to B(Rn;Rn) given by
G�(u; �) = 26666666664

R1�1 u�11 R1�1 u�12 : : : R1�1 u�1nR1�1 u�21 R1�1 u�22 : : : R1�1 u�2n... ... . . . ...R1�1 u�n1 R1�1 u�n2 : : : R1�1 u�nn
37777777775 ; (3.5)

where �ij = �2�(n)(x; �; 
)��i��j :The Impli
it Fun
tion Theorem, together with (3.3), guarantees the existen
eof a solution F (u) to (3.4) for u in some neighborhood BÆ(v�) of v�, provided that thematrix G�(v�; �) is nonsingular. To prove Theorem 3.1, however, we need to also verifythat Æ 
an be 
hosen independently of � 2 Rn. This requires keeping tra
k of how Ædepends on the size of G and its derivatives. For this purpose, the following version ofthe Impli
it Fun
tion Theorem will be helpful.Theorem 3.3. Let X, Y , and Z be Bana
h spa
es, and suppose (x0; y0) 2 X � Y .Suppose there exist a neighborhood U of x0 in X, a neighborhood V of y0 in Y , anda map G : U � V ! Z whi
h is 
ontinuous on U � V and whi
h has a 
ontinuousderivative with respe
t to y, Gy, on U � V . Suppose also that G(x0; y0) = 0 andGy(x0; y0) : Y ! Z has a bounded inverse. Then(i) There exists �0 > 0 with the following property. For every � 2 (0; �0℄, there existsÆ = Æ(�) > 0 su
h that BÆ(x0) � U , B�(y0) � V , and for ea
h x 2 BÆ(x0)there is exa
tly one point F (x) in B�(y0) su
h that G(x; Fx) = 0. The map F is
ontinuous from BÆ(x0) to B�(y0). 11



(ii) If K1 = kGy(x0; y0)�1kB(Z;Y );and K2 and K3 are 
onstants su
h thatkGy(x; y)�Gy(x0; y0)kB(Y;Z) � K2 (kx� x0kX + ky � y0kY )and kG(x; y0)�G(x0; y0)kZ = kG(x; y0)kZ � K3kx� x0kXfor all x 2 U and all y 2 V , then the number �0 and the fun
tion Æ(�) in part (i)
an be 
hosen to depend only on K1, K2, and K3.(iii) If, in addition, G is C1 on U � V , then there exists �1 > 0, possibly smaller than�0, su
h that for all � 2 (0; �1℄, the fun
tion F is C1 on BÆ(�)(x0). Furthermore,if G is Ck on U � V for any k � 1, then for all � 2 [0; �1℄, F is Ck on BÆ(�)(x0).(The number �1 and the fun
tion Æ(�) do not depend on k.)(iv) If K4 = kGx(x0; y0)kB(X;Z)and K5 is a 
onstant su
h thatkGx(x; y)�Gx(x0; y0)kB(X;Z) � K5 (kx� x0kX + ky � y0kY )for all x 2 U and y 2 V , then the number �1 in part (iii) 
an be 
hosen to dependonly on the 
onstants Ki, 1 � i � 5.Parts (i) and (iii) of this theorem are proved in Theorem 15.1 and Corollary15.1 of [D℄. Parts (ii) and (iv) are impli
it in the proofs of Theorem 15.1 and Corollary15.1 of [D℄, and 
an be established by keeping tra
k of the 
onstants involved in theseproofs. The details are omitted. (See also [H℄.)From Theorem 3.3, it appears that to prove Theorem 3.1, it will be ne
essaryto obtain �-independent bounds on the size of G�(v�; �)�1, as well as on the size of Gitself and its derivatives. These bounds will be obtained below in Lemmas 3.4 through3.10.Lemma 3.4. For ea
h �xed � 2 Rn and 
 2 Sn, the 
olle
tion f�(n)i (x; �; 
) : 1 � i � ngforms a linearly independent set of fun
tions of x.
12



Proof. Suppose there exist 
onstants �1; : : : ; �n su
h that Pni=1 �i�i(x) = 0 for allx 2 R; we wish to show that �i = 0 for i = 1; : : : ; n. Using (2.1) and integrating twi
ewith respe
t to x, it is dis
overed thatnXi=1 �i�i(x) = C1x�(x) + C2�(x); (3.6)where � is Hirota's fun
tion (2.2), �i denotes ����i , and C1 and C2 are 
onstants. It isstraightforward to see that the fun
tions x�(x) and �(x) are linearly independent fromea
h other and from the �i, so it follows from (3.6) that C1 = C2 = 0. Hen
enXi=1 �i�i(x) = 0 (3.7)for all x 2 R.Now observe that ea
h �i 
an be written in the form�i(x) = miXj=1 aij exp(bijx); (3.8)where aij and bij are 
onstants, with bi1 = p
i, bij > p
i for 2 � j < mi, and ai1 =p
i > 0. If at least one of the �i is nonzero, let i0 be su
h that 
i0 = minf
i : �i 6= 0g.Then it follows from (3.7) and (3.8) that exp �p
i0 x� 
an be expressed as a linear
ombination of fun
tions of the form exp(bx) with b > p
i0. This 
ontradi
tion showsthat ea
h of the �i must be equal to zero.Lemma 3.5. Suppose n 2 N and 
 2 Sn are given. Then for every multi-index Nthere exist 
onstants A = A(
; n;N) and B = B(
; n;N) su
h thatj�N� (n)(x; �; 
)j � A� (n)(x; �; 
) (3.9)and j�N�(n)(x; �; 
)j � B (3.10)for all x 2 R and � 2 Rn.Proof. The estimate (3.9) follows immediately from the de�nition of � in (2.2). Also,from (2.1), noti
e that � = 12��� 00 � (� 0)2� 2 �(where primes denote derivatives with respe
t to x), so (3.10) follows immediatelyin the 
ase when N = (0; 0; : : : ; 0). A similar argument establishes (3.10) for anyderivative of �. 13



Here is some 
onvenient notation for dealing with the de
omposition of an n-soliton pro�le into a k-soliton and an (n � k)-soliton pro�le. Suppose k is �xed inf1; : : : ; n� 1g. For ea
h � = (�1; : : : ; �n) 2 Rn and ea
h 
 = (
1; : : : ; 
n) 2 Sn, de�ne��(x; �; 
) = �(k)(x; (�1; : : : ; �k); (
1; : : : ; 
k)) (3.11)and ���(x; �; 
) = �(n�k)(x; (�k+1; : : : ; �n); (
k+1; : : : ; 
n)): (3.12)In parti
ular, whenever N is su
h that Nj 6= 0 for some j 2 fk + 1; : : : ; ng, it must bethe 
ase that �N�� � 0;and whenever N is su
h that Nj 6= 0 for some j 2 f1; : : : ; kg, it is 
orrespondingly truethat �N��� � 0:The next lemma gives expression to the well-known fa
t that when the setsf�1; �2; : : : ; �kg and f�k+1; : : : ; �ng are widely separated, �(n) is well approximated by�� + ���.Lemma 3.6. Suppose n 2 N and 
 2 Sn are given, and letD = minfp
1; : : : ;p
ng:Then for every multi-index N there exists a 
onstant C = C(
; n;N) su
h that thefollowing is true. Let k 2 f1; : : : ; n � 1g be given, and de�ne �� and ��� as in (3.11)and (3.12). Suppose � = (�1; : : : ; �n) 2 Rn is su
h that�1 � �2 � � � � � �n;and de�ne ~�i = (�i + 1p
i Pnj=k+1Aij (i = 1; : : : ; k)�i (i = k + 1; : : : ; n): (3.13)Then, it follows that(i) j�N�(n)(x; �; 
)� �N��(x; ~�; 
)j � C exp(�D(x + �k+1)) for all x � ��k+1.(ii) j�N���(x; ~�; 
)j � C exp(�D(x + �k+1)) for all x � ��k+1 .(iii) j�N�(n)(x; �; 
)� �N���(x; ~�; 
)j � C exp(D(x+ �k)) for all x � ��k.14



(iv) j�N��(x; ~�; 
)j � C exp(D(x+ �k)) for all x � ��k.Hen
e, in parti
ular,����N�(n)(x; �; 
)� ��N��(x; ~�; 
) + �N���(x; ~�; 
)���� � 2C exp(�Dp�(x)) (3.14)for all x 2 R, wherep�(x) = maxfjx+ �kj; jx+ �k+1jg = ����x+ ��k+1 + �k2 �����+ ��k+1 � �k2 � : (3.15)Proof. De�ne ~�(x) = � (n)(x) � exp(�L(x)); (3.16)where L(x) = nXi=k+1p
i(x + �i) + Xk+1�i<j�nAij: (3.17)Sin
e L(x) is a linear fun
tion of x, the equations (2.1) and (3.16) imply that�(n)(x) = 12 d2dx2 log ~� (x): (3.18)Using (2.2), (3.13), and (3.17), we 
an expand the right-hand side of (3.16) as follows:~� (x) = X��2f0;1gk(exp kXi=1 �ip
i(x + ~�i) + X1�i<j�k �i�jAij!�X���2f0;1gn�k exp nXi=k+1(�i � 1)p
i(x + �i) +B(�)!9=; ; (3.19)where B(�) = kXi=1 nXj=k+1 �i(�j � 1)Aij + Xk+1�i<j�n(�i�j � 1)Aij;and � = (��; ���) with �� = (�1; : : : ; �k) and ��� = (�k+1; : : : ; �n).Noti
e �rst that if � � is de�ned by� �(x; �; 
) = � (k)(x; (�1; : : : ; �k); (
1; : : : ; 
k))= X�2f0;1gk exp kXi=1 �ip
i(x+ �i) + X1�i<j�k �i�jAij! ; (3.20)15



then from (3.19), it follows that for all x 2 R,� �(x; ~�; 
) � ~� (x; �; 
): (3.21)Assume that x + �k+1 � 0, and 
onsider the inner sum, indexed by ���, in(3.19). For ea
h term in this sum, there are two possibilities. Either �i = 1 for alli 2 fk+1; : : : ; ng, in whi
h 
ase the value of the 
orresponding term is just exp(0) = 1;or, �i = 0 for some i 2 fk + 1; : : : ; ng, in whi
h 
ase the 
orresponding term 
an bebounded above by a 
onstant times exp(�D(x + �k+1)). It therefore follows that forall x � ��k+1, we havej~�(x; �; 
)� � �(x; ~�; 
)j � C� �(x; ~�; 
) exp(�D(x + �k+1)):(Here, and in what follows, we use C to denote various 
onstants whi
h are independentof x and �; the value of C may di�er from line to line.)Consider next the equation obtained from (3.19) by di�erentiating any numberof times with respe
t to x or the variables �1, �2, : : : , �n. In the resulting equation,the only terms on the right-hand side whi
h are not exponentially small are those inwhi
h ��� = (1; 1; : : : ; 1) and none of the derivatives are applied within the inner sum.Thus, for any multi-index M , the inequalityj�M ~� (x; �; 
)� �M� �(x; ~�; 
))j � C� �(x; ~�; 
) exp(�D(x+ �k+1)) (3.22)holds for all x � ��k+1, with a 
onstant C that depends only on 
, n, and M .From (3.18), it transpires that�N�(n) = P (~�)~� jN j+2 (3.23)where jN j = N0 + N1 + � � � + Nn and P (~�) is a homogeneous polynomial of orderjN j + 2 in ~� and its derivatives. Similarly from (2.1), (3.11) and (3.20), there followsthe relation ��(x; �; 
) = 12 d2dx2 log � �(x; �; 
);so that �N�� = P (� �)(� �)jN j+2 : (3.24)Write �N�(n) � �N�� = P (~�)� P (� �)~� jN j+2 + P (� �)� 1~� jN j+2 � 1(� �)jN j+2� ; (3.25)16



and 
onsider the two terms on the right-hand side separately.To estimate the �rst term, express the numerator in the formP (~�)� P (� �) =XM (�M ~� � �M� �)QM(~� ; � �) (3.26)where ea
h QM(~� ; � �) is a homogeneous polynomial of degree jN j + 1 in ~� , � �, andtheir derivatives. From (3.9), (3.21), (3.22), and (3.26), it follows thatjP (~�)� P (� �)j � C~� jN j+2 exp(�D(x+ �k+1)): (3.27)To estimate the se
ond term, write����P (� �)� 1~� jN j+2 � 1(� �)jN j+2����� = ����P (� �)(� � � ~�)((� �)jN j+1 + � � �+ ~� jN j+1)(� �~�)jN j+2 ����� C(� �)jN j+2(� � exp(�D(x + �k+1)))(~� jN j+1)(� �~� )jN j+2� C exp(�D(x+ �k+1)) (3.28)where again we have used (3.9), (3.21), and (3.22).Statement (i) of the lemma then follows from (3.25), (3.27), and (3.28).Attention is now turned to part (iii) of the lemma. Begin by rewriting (2.2) inthe form�(x; �; 
) = X���2f0;1g(n�k)(exp nXi=k+1 �ip
i(x+ �i) + Xk+1�i<j�n �i�jAij! �X��2f0;1gk exp kXi=1 �ip
i(x+ �i) + ~B(�)!9=; (3.29)where �� and ��� are de�ned as before and~B(�) = kXi=1 nXj=k+1 �i�jAij + X1�i<j�k �i�jAij:For ea
h term in the inner sum (indexed by ��) of (3.29), there are two possibilities:either �i = 0 for all i 2 f1; : : : ; kg, in whi
h 
ase the 
orresponding term is exp(0) = 1;or, �i = 1 for some i 2 f1; : : : ; kg, in whi
h 
ase the 
orresponding term is boundedabove by a 
onstant times exp(D(x+ �k)), provided that x + �k � 0. Therefore if � ��is de�ned by� ��(x; �; 
) = � (n�k)(x; (�k+1; : : : ; �n); (
k+1; : : : ; 
n))= X�2f0;1gn�k exp nXi=k+1 �ip
i(x+ �i) + Xk+1�i<j�n �i�jAij! ;17



then for all x � ��k, it follows, as in (3.21) and (3.22) that� ��(x; �; 
) � �(x; �; 
) (3.30)and, for any multi-index M ,j�M�(x; �; 
)� �M� ��(x; ~�; 
))j � C� ��(x) exp(D(x+ �k)): (3.31)The arguments used above to dedu
e part (i) from (3.21) and (3.22) now allowus to dedu
e part (iii) from (3.30) and (3.31).Next, observe that from (3.20) it follows easily that for ea
h multi-indexM su
hthat jM j � 1, there exists a 
onstant C su
h that, for all x � ��k,j�M� �(x; �; 
)j � C exp(D(x+ �k)): (3.32)Sin
e � �(x; �; 
) � 1 for all x, (3.24) and (3.32) together imply statement (iv) of thelemma. The proof of statement (ii) of the lemma is similar: one starts from�N��� = P (~� ��)(~� ��)jN j+2 ;where ~� �� = � �� � exp � nXi=k+1p
i(x+ �i))!= X���2f0;1gn�k exp nXi=k+1(�i � 1)p
i(x+ �i) + Xk+1�i<j�n �i�jAij! ;(
ompare with (3.19)), and uses the estimatej�M ~� ��(x; �; 
)j � C exp(�D(x + �k+1));whi
h is valid for all jM j � 1 and all x � ��k+1.Finally, (3.14) follows immediately from (i)-(iv).A related result whi
h will �nd use below is the following.Lemma 3.7. Let n, 
, and D be as de�ned in Lemma 3.6. There exists a 
onstantC = C(
; n;N) su
h that if � = (�1; : : : ; �n) 2 Rn with �1 � �2 � � � � � �n, then for allx � ��1, j�N�(n)(x; �; 
)j � C exp(�D(x+ �1)) (3.33)and for all x � ��n, j�N�(n)(x; �; 
)j � C exp(D(x+ �n)): (3.34)18



Proof. Referen
e to (2.2) reveals that for any multi-index M , there exists C su
h thatfor all x � ��n, j�M�(x; �; 
)j � C(exp(D(x+ �k)):Sin
e � � 1, (3.34) then follows from the formula�N�(n) = P (�)� jN j+2 ;in whi
h P is the same as in (3.23).To prove (3.33), start from �N�(n) = P (~�)~� jN j+2 ;where ~� = � � exp � nXi=1 p
i(x + �i)! :As in the proof of part (ii) of Lemma 3.6, we obtain thatj�M ~� (x; �; 
)j � C(exp(�D(x + �1))for all multi-indi
es M and all x � ��1; inequality (3.33) follows sin
e ~� � 1.Lemma 3.8. Suppose n 2 N and 
 2 Sn are given. For every multi-index N thereexists a 
onstant ~C = ~C(
; n;N) su
h that for every � 2 Rn,Z 1�1 supj���j�1 ���N�(n)(x; �; 
)��! dx � ~C: (3.35)In parti
ular, Z 1�1 ���N�(n)(x; �; 
)�� dx � ~C:Proof. Fix N and use indu
tion on n. For n = 1, �(1)(x; �; 
) = �(x + �; 0; 
) for allx; � 2 R, so the integral on the left-hand side of (3.35) is independent of �. We mayassume therefore that � = 0, and hen
e the supremum in the integrand is taken overj�j � 1. But if j�j � 1, then from Lemma 3.7, it follows thatj�N�(1)(x; �; 
)j � (C exp(�D(x� 1)) for all x � 1C exp(D(x + 1)) for all x � �1.19



For the remaining values, �1 � x � 1, (3.10) implies thatj�N�(1)(x; �; 
)j � B;and hen
e (3.35) follows.Next, assume the desired 
onstants ~C(
; i; N) have been proved to exist for alli 2 f1; 2; : : : ; n � 1g and 
 2 Si. On this basis, we now establish the existen
e of~C(
; n;N) for all 
 2 Sn.Let 
 2 Sn and � 2 Rn be given; by relabelling the indi
es, assume that �i � �i+1for 1 � i � n� 1. Moreover, sin
e�(n)(x; �; 
) = �(n)(x + �1; (0; �2 � �1; : : : ; �n � �1); 
);we may also assume that �1 = 0.Suppose �rst that �k+1 � �k � 2 for all k = 1; : : : ; n � 1; then �n < 2n, and soj� � �j � 1 implies �1 � �1 and �n � 2n + 1. Hen
e from Lemma 3.7, it is dedu
edthat j�N�(1)(x; �; 
)j � (C exp(�D(x� (2n+ 1))) for all x � 2n+ 1C exp(D(x+ 1)) for all x � �1,and, as in the 
ase when n = 1, this estimate together with (3.10) yields the desiredresult. Now suppose on the 
ontrary that there exists some k 2 f1; : : : ; n � 1g su
hthat �k+1 � �k > 2. If � 2 Rn satis�es j� � �j � 1 it follows that �i < �k+1 for alli 2 f1; : : : ; kg and �i > �k+2 for all i 2 fk + 1; : : : ; ng. Hen
e, if we de�ne ��(x; �; 
),���(x; �; 
) and ~� by repla
ing �i by �i on the right-hand sides of (3.11), (3.12), and(3.13), respe
tively, then the 
on
lusions of Lemma 3.6 hold with � and ~� repla
ed by� and ~�.Applying the indu
tion hypothesis, there obtains the estimatesZ 1�1 supj~��~�j�1 ����N��(x; ~�; 
)���! dx � ~C1and Z 1�1 supj~��~�j�1 ����N���(x; ~�; 
)���! dx � ~C2:where ~C1 = ~C((
1; : : : ; 
k); k; N) and ~C2 = ~C((
k+1; : : : ; 
n); n� k;N). Moreover, it iseasy to see that sin
e j���j � 1, the fun
tion p� de�ned by (3.15) satis�es p�(x) � q(x)for all x 2 R, where q(x) = ����x + ��k+1 + �k2 ����� ;20



and hen
e R1�1 exp(�Dq(x)) dx = R1�1 exp(�Djuj) du = 2=D. It therefore followsfrom (3.14) thatZ 1�1 supj���j�1 ���N�(n)(x; �; 
)��! dx � ~C1 + ~C2 + C(
; n;N)Dwhere C(
; n;N) is as de�ned in Lemma 3.6. The indu
tion is 
ompleted by de�ning~C(
; n;N) to equal ~C1 + ~C2 + C(
; n;N)D.Lemma 3.9. Suppose n 2 N and 
 2 Sn are given. For every multi-index N thereexists C > 0 su
h that Z 1�1 supj���j�1 ���N�(n)(x; �; 
)��!2 dx � C;and in parti
ular Z 1�1 ���N�(n)(x; �; 
)��2 dx � C;for all � 2 Rn.Proof. This follows immediately from Lemmas 3.5 and 3.8.Lemma 3.10. Suppose n 2 N and 
 2 Sn are given. For � 2 Rn, de�ne d(n)(�; 
) tobe the determinant of G�(v�; �). There exists � = �(
; n) > 0 su
h that for all � 2 Rn,��d(n)(�; 
)�� > �:Proof. First, rewrite the matrix G� in a more 
onvenient form. Noti
e that taking thederivative of (3.2) with respe
t to �j yields, for ea
h i and j in f1; : : : ; ng, the equationZ 1�1 ��ij dx = � Z 1�1 �i�j dx: (3.36)Therefore, if P (n)(�; 
) is de�ned to be the matrix whose (i; j) entry isP (n)ij (�; 
) = Z 1�1 �i�j dx; (3.37)then G�(v�; �) = �P (n)(�; 
): (3.38)21



Hen
e, in parti
ular, jd(n)(�; 
)j = j detP (n)(�; 
)j.As in the proof of Lemma 3.8, use indu
tion on n, although here the argumentis a bit more elaborate. First, sin
e d(1)(�; 
) is independent of � 2 R, the desired
on
lusion obviously holds for n = 1. Assume that the desired numbers �(
; i) havebeen proved to exist for i = 1; 2; : : : ; n� 1 (for all 
 2 Si); we intend to prove that forall 
 2 Sn, an appropriate 
onstant �(
; n) exists. Let 
 2 Sn and � 2 Rn be given; byrelabelling the indi
es, assume that �i � �i+1 for 1 � i � n � 1. Also, as in the proofof Lemma 3.8, assume that �1=0.Let M =M(�) be de�ned byM = max1�i�n�1(�i+1 � �i);and 
hoose k 2 f1; : : : ; n� 1g so that �k+1 � �k =M . For this k, let �� and ��� be asin Lemma 3.6. For 1 � l; m � n, de�ne�lm = 8>>><>>>:P (n)lm � R1�1 ��l ��m dx if l; m 2 f1; : : : ; kgP (n)lm � R1�1 ���l ���m dx if l; m 2 fk + 1; : : : ; ngP (n)lm if l 2 f1; : : : ; kg and m 2 fk + 1; : : : ; ngP (n)lm if l 2 fk + 1; : : : ; ng and m 2 f1; : : : ; kg;where P (n)lm is as de�ned in (3.37) and, as usual, the subs
ripts on �� and ��� denotepartial derivatives.We now 
laim that the estimatej�lmj � Ce�DM=2 (3.39)holds for all � 2 Rn and for all l; m 2 f1; : : : ; ng, with a 
onstant C whi
h is indepen-dent of �. To prove this, 
onsider �rst the 
ase when l; m 2 f1; : : : ; kg. From Lemma3.5, we have the estimatej�lmj = ����Z 1�1 ��(n)l � ��l ��(n)m dx+ Z 1�1 ��l ��(n)m � ��m� dx����� C Z 1�1 j�(n)l � ��l j dx+ C Z 1�1 j�(n)m � ��mj dx: (3.40)Using parts (i), (iii), and (iv) of Lemma 3.6, and observing that ���l � 0 leads to the
22




on
lusionZ 1�1 j�(n)l � ��l j dx � Z ��k�M=2�1 �j�(n)l � ���l j+ j��l j� dx + Z 1��k�M=2 j�(n)l � ��l j dx� C Z �M=2�1 eDu du+ C Z 1M=2 e�Du du� (C=D)e�DM=2:The same estimate applies of 
ourse to the se
ond integral on the right-hand side of(3.40). It follows that (3.39) holds in this 
ase.In the 
ase when l; m 2 fk + 1; : : : ; ng, (3.39) follows from a similar argument,this time using the fa
t that ��l � 0 to writeZ 1�1 j�(n)l � ���l j dx � Z ��k�M=2�1 j�(n)l � ���l j dx+ Z 1��k�M=2 �j�(n)l � ��l j+ j���l j� dx;and then using parts (i), (ii), (iii) of Lemma 3.6. Finally, if l 2 f1; : : : ; kg and m 2fk + 1; : : : ; ng, then by Lemma (3.5), it is the 
ase thatj�lmj � C Z ��k�M=2�1 j�(n)l j+ C Z 1��k�M=2 j�(n)m j= C Z ��k�M=2�1 j�(n)l � ���l j+ C Z 1��k�M=2 j�(n)m � ��mj:It is therefore 
on
luded from parts (i) and (iii) of Lemma 3.6 that (3.39) holds. Thesame argument obviously applies when the roles of l and m are reversed. Thus (3.39)is proved in all 
ases.Now the n � n matrix S(n) with entries de�ned by S(n)lm = P (n)lm � �lm 
an bewritten in blo
k form asS(n) = �P (k)(��; 
�) 00 P (n�k)(���; 
��)� :In 
onsequen
e, detS(n) = �detP (k)(��; 
�)� �detP (n�k)(���; 
��)� ;and so by the indu
tion hypothesisj detS(n)j > �(
�; k) � �(
��; n� k): (3.41)23



From Lemma 3.9 and (3.39), it is seen that the matrix norms kP (n)k1 andkS(n)k1 are bounded independently of �. Sin
e the determinant of a matrix is apolynomial fun
tion of the entries of the matrix, it follows easily from the Mean ValueTheorem that j detP (n) � detS(n)j � CkP (n) � S(n)k1 (3.42)where C depends only on kP (n)k1 and kS(n)k1, and therefore is independent of �.Combining (3.39), (3.41), and (3.42) yields the estimatejd(n)(�; 
)j = j detP (n)j > �1 � Ce�DM=2 (3.43)where �1 = inf1�k�n�1f�(
�; k) � �(
��; n� k)g > 0:Choose M0 so large that the right-hand side of (3.43) is greater than �1=2 forM � M0. For any given � 2 Rn, there are two possibilities: either �n > M0n or�n �M0n. Sin
e �0 = 0, then in the �rst 
ase, it must be the 
ase thatM = max1�i�n�1 (�i+1 � �i) � M0;so (3.43) yields jd(n)(�; 
)j > �1=2:In the se
ond 
ase, the ve
tor � is an element of the subsetK = f� 2 Rn : max1�i�n j�ij � M0ng:Observe, however, that d(n)(�; 
) 6= 0 for all � 2 Rn. This follows from Lemma 3.4and the elementary fa
t that whenever v1; : : : vn are linearly independent ve
tors in aninner produ
t spa
e, then dethvi; vjii;j=1;n 6= 0where h�; �i denotes the inner produ
t. Therefore, sin
e K is 
ompa
t and jd(n)(�; 
)j is
ontinuous and positive everywhere onK, there exists �2 > 0 su
h that jd(n)(�; 
)j > �2for all � 2 K. This 
ompletes the proof of the Lemma with�(
; n) = min(�1=2; �2):
24



Next are established a 
ouple of lemmas whi
h will be needed to pie
e togetherthe lo
al fun
tions obtained from Theorem 3.3 to obtain a global fun
tion de�ned ona neighborhood of M
. The following notation will be 
onvenient when we have todeal simultaneously with k-soliton solutions 
orresponding to di�erent values of k inf1; : : : ; ng. Let 
 = (
1; : : : ; 
n) 2 Sn be �xed. For ea
h � = (�1; : : : ; �n) 2 (R[f1g)n,let I� = fi 2 f1; : : : ; ng : �i < 1g and let k = jI�j, the number of elements in I�. Ifk = 0, de�ne v� = 0, otherwise de�nev�(x) = �(k)(x; �#; 
#)where �# and 
# are the ordered k-tuples obtained by removing the in�nite 
om-ponents from � and 
. Thus, for example, when n = 7 and I� = f1; 4; 6; 7g, thenv� = �(4)(x; (�1; �4; �6; �7); (
1; 
4; 
6; 
7)). In the 
ase when � 2 Rn, this de�nition of v�
oin
ides with that given above in (3.1).Lemma 3.11. Suppose �; ~� 2 (R [ f1g)n. Then v� = v~� only if � = ~�.Proof. For � 2 (R[f1g)n and � 2 f0; 1gn, de�ne a(�; �) by setting a(�; �) = 0 if �i = 1for some i =2 I�, and a(�; �) = 1 otherwise. Write v� in the formv� = 12 d2dx2 log ��(x)where ��(x) = X�2f0;1gn a(�; �) exp nXi=1 �ip
i(x+ �i) + X1�i<j�n �i�jAij! ;and use the 
onvention that terms of the form 0 �1 are equal to zero. If b(�; �) and d�are given by b(�; �) = exp nXi=1 �ip
i�i + X1�i<j�n �i�jAij!and d� = nXi=1 �ip
i;then ��(x) = X�2f0;1gn a(�; �)b(�; �)ed�x:If v� = v~�, it follows that for all x 2 R,��(x) = �~�(x)epx+q;25



where p and q are 
onstants. Hen
eX�2f0;1gn a(�; �)b(�; �)ed�x = X�2f0;1gn a(�; ~�)b(�; ~�)eqe(p+d�)x: (3.44)Sin
e the fun
tions erx and esx are linearly independent on R whenever r 6= s, everyexponential term whi
h appears on the left of (3.44) with a non-zero 
oeÆ
ient mustalso appear on the right. In parti
ular, the left side of (3.44) 
ontains the term e0�x
orresponding to � = �0 = (0; 0; : : : ; 0) (noti
e that a(�0; �) = b(�0; �) = 1, and thatd� > 0 if � 6= �0). Hen
e, there must exist at least one �1 2 f0; 1gn for whi
h p+d�1 = 0.But �1 must equal �0, for otherwise d�1 > 0 would imply p < 0, and then the terme(p+d�0 )x = epx appearing on the right-hand side of (3.44) would not 
orrespond toany term on the left-hand side of (3.44). Therefore, p = �d�0 = 0, and 
omparing
oeÆ
ients of e0�x on both sides of (3.44) then gives q = 0. It is thus demonstratedthat X�2f0;1gn a(�; �)b(�; �)ed�x = X�2f0;1gn a(�; ~�)b(�; ~�)ed�x (3.45)holds for all x 2 R.Now 
onsider the terms in (3.45) 
orresponding to � = ei, where ei is the stan-dard basi
 n-tuple de�ned by (ei)j = Æij. By permuting the indi
es, it may be assumedthat p
1 < � � � < p
n. Then, de1 < d� for all � 2 f0; 1gn su
h that � 6= �0 and � 6= e1.The identity (3.45) implies a(e1; �)b(e1; �) = a(e1; ~�)b(e1; ~�). From the de�nitions ofa(�; �) and b(�; �), we see that this in turn implies that �1 = ~�1.To �nish, use indu
tion to prove �k = ~�k for all k 2 f1; : : : ; ng. Assume �i = ~�ifor all 1 � i � k� 1, and let r = dek . If d� = r for any � 2 f0; 1gn with � 6= ek, then wemust have �i = 0 for i � k, in whi
h 
ase it follows from the indu
tion hypothesis thata(�; �)b(�; �) = a(�; ~�)b(�; ~�). Therefore all the terms on the left of (3.45) whi
h 
ontainerx and 
orrespond to � 6= ek will balan
e with equal terms on the right of (3.45). Butthen the identity (3.45) implies that the terms 
orresponding to � = ek must be equalas well, whi
h implies that �k = ~�k.Lemma 3.12. Suppose n 2 N, let 
 2 Sn be �xed, and for � 2 (R [ f1g)n de�neI� and �# as before Lemma 3.11. For every � > 0 there exists Æ > 0 su
h that if�; ~� 2 (R[f1g)n with jI�j+jI~�j � 1 and kv��v~�k1 < Æ, then I� = I~� and j�#�~�#j < �.Proof. It is required to show that for every � > 0 there exists Æ > 0 su
h that if I� 6= I~�,or I� = I~� and j�# � ~�#j � �, then kv� � v~�k1 � Æ. To prove this, we use indu
tion onjI�j+ jI~�j.Suppose �rst that jI�j + jI~�j = 1; then ne
essarily I� 6= I~�. Without lossof generality, assume that jI~�j = 0, v~� = 0, and jI�j = 1. Sin
e the set S =26



fkv�k1 : � 2 (R [ f1g)n and jI�j = 1g 
ontains only a �nite number of positive ele-ments, 
learly Æ = minS > 0, and sin
e kv� � v~�k1 = kv�k1 � Æ, the result follows inthis 
ase.Make the indu
tion hypothesis that for every i 2 f1; : : : ; l� 1g and every � > 0there exists Æi(�) > 0 su
h that if jI�j + jI~�j = i, and either I� 6= I~� or I� = I~� andj�# � ~�#j � �, we have kv� � v~�k1 � Æi(�). In parti
ular, taking ~� = (1; : : : ;1)so that v~� = 0 and jI~�j = 0, it follows from the indu
tion hypothesis that for everyi 2 f1; : : : :l � 1g and every � > 0,kv�k1 = kv� � v~�k1 � Æi(�) (3.46)whenever jI�j = i.Let � > 0 be given and assume jI�j+ jI~�j = l � 1. We aim to show the existen
eof the desired Æ > 0 both in 
ase I� 6= I~� and in 
ase I� = I~� and j�# � ~�#j � �.Assume �rst that I� = I~� and j�# � ~�#j � �. For ease of notation, write � inpla
e of �# and ~� in pla
e of ~�#, so that �; ~� 2 Rm where 2m = l. By subtra
ting a
ommon 
onstant from all 
omponents of � and ~�, it 
an be presumed thatminf~�1; : : : ; ~�mg = 0:Let M > 0 be �xed but arbitrary for the moment (a value of M will be 
hosenlater). To obtain estimates on kv� � v~�k1, several 
ases are 
onsidered, a

ording tothe lo
ation of the 
omponents of � and ~� with respe
t to the interval [0;M ℄.Case I. Suppose f~�1; : : : ; ~�mg � [0;M ℄ and f�1; : : : ; �mg � [�M; 2M ℄. De�nethe fun
tion f(�; ~�) : Rm�Rm ! R by f(�; ~�) = kv� � v~�k1; then f is 
ontinuous andis positive on f(�; ~�) : j� � ~�j � �g by Lemma 3.11. Sin
e the setT = f(�; ~�) : f~�1; : : : ; ~�mg � [0;M ℄, f�1; : : : ; �mg � [�M; 2M ℄, and j� � ~�j � �gis 
ompa
t in Rm � Rm, there exists Æ0 = Æ0(M) > 0 su
h that f(�; ~�) > Æ0 for all(�; ~�) 2 T .Case II. Suppose f~�1; : : : ; ~�mg � [0;M ℄ and �i < �M for some i. By permutingthe indi
es we may assume that �1 � � � � � �m and �1 < �M . Split the interval [�M; 0℄into m subintervals of equal length M=m. At least one of these subintervals must haveinterior disjoint from the set f�1; : : : ; �mg. Therefore either �m � �M=m, or thereexists k 2 f1; : : : ; m� 1g su
h that �k+1� �k �M=m. If �m � �M=m, we obtain fromLemmas 3.7 and 3.9 that there exists a 
onstant C, whi
h is independent of � and ~�,su
h that kv� � v~�k21 � kv�k21 + kv~�k21 � C exp(�DM=(2m)):It follows that for M suÆ
iently large,kv� � v~�k1 � 14 (kv�k1 + kv~�k1) � 12 inffkv�k1 : � 2 Rmg � 12Æm(�)27



where (3.46) has been used.If, on the other hand, �k+1 � �k � M=m for some k 2 f1; : : : ; m � 1g, then itfollows from Lemma 3.6 thatkv� � v~�k21 � k��k21 + k��� � v~�k21 � C exp(�DM=(2m))where �� and ��� are as de�ned in (3.11) and (3.12), and C is independent of � and ~�.Hen
e for M suÆ
iently large, kv� � v~�k1 � 12k��k1:Sin
e �� = v��, where ��i = (�i if 1 � i � k1 if k + 1 � i � m,(3.46) then implies that kv� � v~�k1 � 12Æk(�): (3.47)Case III. Suppose f~�1; : : : ; ~�mg � [0;M ℄ and �i > 2M for some i. Again bypermuting the indi
es, it may be assumed that �1 � � � � � �m and �m > 2M . Splitthe interval [M; 2M ℄ into m subintervals of equal length, at least one of whi
h musthave interior disjoint from the set f�1; : : : ; �mg. Hen
e, either �1 �M +M=m, or thereexists k 2 f1; : : : ; m� 1g su
h that �k+1 � �k �M=m. The same argument as used inCase II then shows that for M suÆ
iently large,kv� � v~�k1 � 12 min(Æm(�); Æm�k(�)): (3.48)Case IV. Suppose ~�i > M for some i 2 f1; : : : ; mg. As usual, assume withoutloss of generality that 0 = ~�1 � � � � � ~�m and ~�m > M . Then there exists k 2f1; : : : ; m� 1g su
h that ~�k+1 � ~�k > M=m. Split [~�k; ~�k+1℄ into m + 1 subintervals ofequal length. At least one of these subintervals has interior disjoint from f�1; : : : ; �mg.Choose su
h a subinterval and denote it by [a; b℄; of 
ourse, b � a > M=(m(m + 1)).De�ne ��i = �i if �i � a and ��i = 1 otherwise, and de�ne ���i = �i if �i � b and���i =1 otherwise. Similarly, de�ne ~��i = ~�i for 1 � i � k and ~��i =1 otherwise; andde�ne ~���i = ~�i for k + 1 � i � m and ~���i = 1 otherwise. Then from Lemma 3.6, itmay be 
on
luded thatkv~� � v�k21 = kv~�� � v��k21 + kv~��� � v���k21 � C exp(�DM=m(m + 1))28



where C is independent of � and ~�. Hen
e, for M suÆ
iently large, we havekv~� � v�k1 � 14 (kv~�� � v��k1 + kv~��� � v���k1) : (3.49)In the 
urrent situation,1 � jI~��j+ jI��j � k +m � 2m� 1 < l and1 � jI~���j+ jI���j � (m� k) +m � 2m� 1 < l;so the indu
tion hypothesis 
an be applied to both the terms on the right-hand side of(3.49). If I~�� 6= I�� or I~��� 6= I���, then (3.49) yieldskv~� � v�k1 � 12 � min1�i�l�1 Æi(�)� : (3.50)The remaining possibility is that I~�� = I�� and I~��� = I���. But, in that 
ase, sin
ej� � ~�j � �, we must have either j�� � ~��j � �=2 or j��� � ~���j � �=2, and so (3.49)yields kv~� � v�k1 � 14 � min1�i�l�1 Æi(�=2)� : (3.51)Now 
hoose M so large that all the estimates in Cases II through IV are valid(noti
e this 
an be done with an M whose value is independent of � and ~�), and forsu
h an M de�ne Æ to be the smallest of Æ0(M) and the numbers on the right-handsides of (3.47), (3.48), (3.50), and (3.51). We then have kv~��v�k1 � Æ whenever I� = I~�and j� � ~�j � �, 
ompleting the indu
tive step in this 
ase.It remains to 
onsider the possibility that I� 6= I~�. Let m = jI�j and ~m = jI~�j,so that m + ~m = l. By swit
hing m and ~m if ne
essary, assume m > 0. Now thearguments used above in Cases I through IV 
an be repeated un
hanged, with theunderstanding that v~� = 0 when ~m = 0, and the repla
ement of the set T in Case I byT = f(�; ~�) : f~�1; : : : ; ~�mg � [0;M ℄, f�1; : : : ; �mg � [�M; 2M ℄g:(Note in parti
ular that Case IV 
an only arise when ~m � 2, and that in Case IV, thesituation wherein I~�� = I�� and I~��� = I��� 
annot now arise, sin
e it would 
ontradi
tI� 6= I~�.) The indu
tion is 
omplete and the lemma proved.Proof of Theorem 3.1. From Lemma 3.9 and (3.38), it is known that the entries ofG�(v�; �) are bounded independently of � 2 Rn. Therefore, from Cramer's rule andLemma 3.10, the entries of the inverse matrix G�(v�; �)�1 are also bounded indepen-dently of � 2 Rn. Hen
e the quantityK1 = sup�2Rn kG�(v�; �)�1kB(Rn;Rn) (3.52)29



is �nite.Now let �0 2 Rn be �xed but arbitrary, and let u0 = v�0 . For all (u; �) 2 H1�Rn,(3.5) implies thatkG�(u; �)�G�(u0; �0)kB(Rn;Rn) � sup1�i;j�n ����Z 1�1 u�ij(�)� Z 1�1 u0�ij(�0)����� sup1�i;j�n (juj2j�ij(�)� �ij(�0)j2 + ju� u0j2j�ij(�0)j2) (3.53)where the L2-norms are taken in the x variable.We 
laim that j�ij(�)� �ij(�0)j2 �M j� � �0j; (3.54)whereM is independent of �. To prove (3.54), we might as well assume that j���0j � 1,sin
e j�ij(�)j2 is bounded independently of � by Lemma 3.9. For ea
h x 2 R, the MeanValue Theorem provides a �x 2 Rn on the line segment between � and �0, su
h that�ij(x; �; 
)� �ij(x; �0; 
) = nXk=1 �ijk(x; �x; 
) (� � �0)k :It follows thatj�ij(x; �; 
)� �ij(x; �0; 
)j � supk supj���0j�1 j�ijk(x; �; 
)j � j� � �0j;and (3.54) then follows from Lemma 3.9.Now let U be the ball of radius 1 
entered at u0 in H1, so that for all u 2 U ,juj2 � 1 + ju0j2 = 1 + j��0j2. The inequalities (3.53), (3.54) and Lemma 3.9 yield thatkG�(u; �)�G�(u0; �0)kB(Rn;Rn) � K2 (ku� u0k1 + j� � �0j)for all (u; �) 2 U � Rn, where the 
onstant K2 
an be taken to be independent of�0 2 Rn. Similarly, we have thatjG(u; �0)j = jG(u; �0)�G(u0; �0)j � ju� u0j2� sup1�i�n j�ij2� � K3ju� u0j2;for all (u; �) 2 U �Rn, where K3 
an be 
hosen independently of �0.Next, observe thatK4 = kGu(u0; �0)kB(H1;Rn) � sup1�i�n j�i(�0)j2;30



whi
h is uniformly bounded in �0 by Lemma 3.9; and for all  2 H1, it is the 
ase thatjGu(u; �)[ ℄�Gu(u0; �0)[ ℄j � supi Z 1�1  [�i(�)� �i(�0)℄� j j2�supi j�i(�)� �i(�0)j2� : (3.55)The same argument used to prove (3.54) shows that the right-hand side of (3.55) isbounded by K5k k1j� � �0j, where K5 
an be 
hosen independently of �0. ThereforekGu(u; �)�Gu(u0; �0)kB(H1;Rn) � K5 (ku� u0k1 + j� � �0j)for all u 2 H1 and � 2 Rn.As a 
onsequen
e of Theorem 3.3, there exist a number �1 > 0 and a fun
tionÆ(�) de�ned for � 2 (0; �1℄ su
h that, for every � 2 Rn and every u 2 BÆ(�)(v�), thereis a unique point F�(u) 2 B�(�) su
h that G(u; F�(u)) = 0. Moreover, sin
e G(u; �) is
learly C1 on H1 �Rn, the map F� : BÆ(�)(v�)! B�(�) is C1.Next, we 
laim that there exists a number Æ0 > 0 with the property that when-ever �1; �2 2 Rn and u 2 BÆ0(v�1) \ BÆ0(v�2), then F�1(u) = F�2(u). To see this, let~� = 12�1. By Lemma 3.12, there is a ~Æ > 0 su
h that if jv�1�v�2 j < ~Æ, then j�1��2j < ~�.De�ne the quantity Æ0 by Æ0 = min�Æ(~�); Æ(�1); 12~Æ	;and suppose u 2 BÆ0(v�1)\BÆ0(v�2). Then u 2 BÆ(�1)(�2), so F�2(u) is the unique pointin B�1(�2) su
h that G(u; F�2(u)) = 0. On the other hand, we havejv�1 � v�2 j � jv�1 � uj+ jv�2 � uj < 2Æ0 � ~Æ;so j�1 � �2j < ~�. Moreover, F�1(u) 2 B~�(�1) and hen
ejF�1(u)� �2j � jF�1(u)� �1j+ j�1 � �2j < 2~� = �1:Therefore F�1(u) 2 B�1(�2). But sin
e G(u; F�1(u)) = 0, and y = F�2(u) is the uniquesolution of G(u; y) = 0 in B�1(�2), it must be the 
ase that F�1(u) = F�2(u), as desired.It follows from what has just been proved that the maps F� : BÆ0(v�) ! Rnpie
e together to form a globally de�ned map on the neighborhood UÆ0 ofM
. In otherwords, there is a well-de�ned map F : UÆ0 ! Rn obtained by settingF (u) = F�(u) if u 2 BÆ0(�).Sin
e ea
h F� is C1 and satis�es (3.4), the same is true of F .31



4 Proof of StabilityWe prove Theorem (2.4). Without loss of generality, presume that� < �(
; n)2C1(
; n) ; (4.1)where �(
; n) is de�ned in Lemma 3.10, and C1(
; n) is the number de�ned below in(4.8). From Lemma 3.9 and the Mean Value Theorem (
f. the proof of (3.54)), thereis an � > 0 su
h that whenever �; 
 2 Rn satisfy j� � 
j < �, then kv� � v
k1 < �=2.Let Æ1 = Æ(�), where Æ(�) is the fun
tion de�ned above in the proof of Theorem 3.1,so that whenever � 2 Rn and u 2 BÆ1(v�), then F (u) 2 B�(�). Finally, let Æ0 be thenumber de�ned in the statement of Theorem 3.1. By Theorem 2.3, there is a Æ > 0su
h that if u0 2 H1 and ku0 � v�0k1 < Æ for some �0 2 Rn, then for all t > 0 thereexists �(t) 2 Rn su
h that ku(t)� v�(t)k1 < min(Æ0; Æ1; �=2): (4.2)In parti
ular, u(t) 2 UÆ0 for all t > 0, so by Theorem 3.1 we 
an de�ne a fun
tion
 : (0;1)! Rn by setting 
(t) = F (u(t)). Also, sin
e the map t 7! u(t) is 
ontinuousfrom (0;1) to H1 by Theorem 2.1, and F : UÆ0 ! Rn is 
ontinuous by Theorem 3.1,then 
(t) is a 
ontinuous fun
tion of t on (0;1).From (4.2) and the de�nition of the fun
tion F on UÆ0 , it follows that 
(t) =F�(t)(u(t)) for all t > 0. Moreover, (4.2) implies that u(t) 2 BÆ1(�(t)), or, in otherwords, j
(t)� �(t)j < Æ1, and hen
e that kv�(t) � v
(t)k1 < �=2. In 
onsequen
e, we seethat ku(t)� v
(t)k1 � ku(t)� v�(t)k1 + kv�(t) � v
(t)k1 < �=2 + �=2 = �;so proving (2.5).It remains to show that 
(t) is a C1 fun
tion and satis�es (2.6). For this purpose,
onsider the fun
tion H : (0;1)�Rn ! Rn de�ned byH(t; �) = �Z 1�1 u(x; t)�(n)1 (x; �; 
) dx; � � � ; Z 1�1 u(x; t)�(n)n (x; �; 
) dx� :The idea is to apply the Impli
it Fun
tion Theorem to H at the points (t; 
(t)) whereit is known that H(t; 
(t)) = G(u(t); F (u(t))) = 0: (4.3)Fix t0 > 0. Observe �rst that if U is any neighborhood of t0 in (0;1), then His C1 on U �Rn. In fa
t, the derivatives of H with respe
t to 
omponents of � 
learly32



exist up to any order. As for derivatives with respe
t to t, it is known from Theorem 2.1that u is di�erentiable as a distribution-valued fun
tion of t with ut 2 C([0; T ℄; H�2).Hen
e for any fun
tion  in the S
hwarz 
lass S(R), the a
tionhu;  i = Z 1�1 u(x; t) (x) dxof u(t) on  will be a di�erentiable fun
tion of t, with derivativehut;  i = h�uux � uxxx;  i;whi
h is a 
ontinuous fun
tion of t. But sin
e �i = �(n)i (x; �; 
) 2 S(R) for ea
hi 2 f1; : : : ; ng, it follows that H is 
ontinuously di�erentiable with respe
t to t, withthe ith 
omponent of Ht given byHt(t; �)i = hut; �ii = h�u(t)ux(t)� uxxx(t); �ii: (4.4)Next, it is shown that the partial derivative H�(t0; 
(t0)) is an invertible mapfrom Rn to Rn. To see this, observe thatH�(t; �) = G�(u(t); �)for all (t; �) 2 (0;1)�Rn, and hen
eH�(t0; 
(t0)) = G�(u(t0); 
(t0)) = G�(v
(t0); 
(t0)) +G(h; v
(t0)); (4.5)where h = u(t0)� v
(t0). But, we also know that��detG�(v
(t0); 
(t0))�� = ��d(n)(
(t0); 
)�� > �(
; n) (4.6)by Lemma 3.10, and for all i; j 2 f1; : : : ; ng,��G(h; v
(t0))ij�� = ����Z 1�1 h�(n)ij (x; 
(t0); 
) dx���� � jhj2j�ijj2 � C�; (4.7)where C depends only on n and 
, by Lemma 3.9 and (2.5). Combining (3.42), (4.5),(4.6), and (4.7) (and re
alling that the matrix norm kG�(v�; �)k1 is bounded indepen-dently of �), it is dedu
ed that there exists a number C1(
; n) su
h thatj detH�(t0; 
(t0))j � �(
; n)� C1(
; n)�: (4.8)From (4.1) it now follows that H�(t0; 
(t0)) is invertible.It follows from what has just been proved and Theorem 3.3 that there existnumbers � > 0 and Æ > 0 su
h that for every t 2 (t0 � Æ; t0 + Æ), there is exa
tly one33



ve
tor �(t) 2 B�(
(t0)) su
h that H(t; �(t)) = 0, and the map t 7! �(t) is C1. On theother hand, sin
e 
(t) is 
ontinuous, there exists Æ1 2 (0; Æ) su
h that 
(t) 2 B�(
(t0)for all t 2 (t0 � Æ1; t0 + Æ1). It then follows from (4.3) and the uniqueness of �(t) that
(t) = �(t) for t 2 (t0 � Æ1; t0 + Æ1). Sin
e �(t) is C1 near t0, this implies that 
(t) isC1 near t0 as well. Sin
e t0 was arbitrary, we have proved that 
(t) is C1 on (0;1).It remains to prove (2.6). Di�erentiating (4.3) with respe
t to t yieldsHt(t; 
(t)) +H�(t; 
(t)) � 
0(t) = 0: (4.9)For ea
h t > 0, de�ne h(x; t) as an element of H1 byh(x; t) = u(x; t)� v
(t)(x) = u(x; t)� �(n)(x; 
(t); 
):Then, we have�(uux + uxxx) = �(��x + �xxx + �hx + �xh+ hhx + hxxx); (4.10)where both sides represent distributions in H�2. Substituting (2.3) into (1.1) gives theequation � nXj=1 �j
j + ��x + �xxx = 0;and therefore, from (4.10),�(uux + uxxx) = � nXj=1 �j
j + �hx + �xh+ hhx + hxxx: (4.11)Using (4.11) and the fa
t thathhxxx; �ii = � Z 1�1 h(�i)xxx dxin (4.4) yields Ht(t; 
(t))i = � nXj=1 
j �Z 1�1 �i�j dx�+ Ri(t); (4.12)where Ri(t) = Z 1�1(h�x�i + hx��i + hhx�i � h(�i)xxx) dx:34



De�ne M(t) = G�(v
(t); 
(t)), so thatMij = � Z 1�1 �i�j dx;by (3.37) and (3.38). Then (4.12) 
an be written in ve
tor form asHt(t; 
(t)) =M
 +R: (4.13)Observe that for ea
h i; j 2 f1; : : : ; ng,H�(t; 
(t))ij = Z 1�1 u(t)�ij dx = Z 1�1 ��ij dx+ ~Rij(t);where ~Rij(t) = Z 1�1 h�ij dx:From (3.36), we have then that, as matri
es,H�(t; 
(t)) =M + ~R: (4.14)Equations (4.9), (4.13), and (4.14) together imply that
0 = �(M + ~R)�1(M
 +R) = �(I +M�1 ~R)�1(
+M�1R): (4.15)But sin
e khk1 < � by (2.5), then Lemmas 3.5, 3.8, and 3.9 imply that jRj � C� andk ~Rk1 < C�, where C is a 
onstant that depends only on 
 and n. Moreover, from(3.52) we have that kM�1kB(Rn;Rn) � K1, where K1 depends only on 
 and n. Theestimate (2.6) therefore follows from (4.15) and elementary 
onsiderations.A AppendixIn this appendix we prove the statement made in Remark 2.5. The following lemmaregarding the invariant fun
tionals Ik mentioned in (2.7) is needed. The proof of thelemma is essentially 
ontained in Se
tion 3 of [BLN℄.Lemma A.1. Suppose k � 1 is an integer. For all h 2 Hk and � 2 Hk+1, we havejIk+2(�+ h)� Ik+2(�)j � C1 �khkk + khkk+2k � (A.1)and jIk+2(�+ h)� Ik+2(�)j � khk2k � C2 �khkk�1 + khkk+2k�1� ; (A.2)where C1 and C2 depend only on k�kk+1. 35



Following the argument of [BLN℄, we use indu
tion to show that for every � > 0,there exists Æ > 0 su
h that if u0 2 Hk, �0 2 Rn, and ku0 � �(n)(�0; 
)kk < Æ, then forall t > 0, ku(t)� �(n)(
(t); 
)kk < �;where 
 is the same fun
tion de�ned in Theorem 2.4. Theorem 2.4 already takes 
areof the 
ase k = 1, so it suÆ
es to prove that the statement holds for k, under theassumption that it holds for k � 1.Fix 
 2 Sn and let � > 0 be given. By Lemma 3.9, there is a uniform upperbound for k�(n)(�; 
)kk+1 as � ranges over all ofRn. Therefore, we 
an 
hoose 
onstantsC1 and C2 su
h that if we set � = �(n)(�; 
), the estimates (A.1) and (A.2) in LemmaA.1 hold for all � 2 Rn. Choose � > 0 su
h thatC2(� + �k+2) < �2=2: (A.3)By the indu
tion assumption, there is a Æ1 > 0 su
h that if ku0 � �(n)(�0; 
)kk�1 < Æ1,then for all t > 0, ku(t)� �(n)(
(t); 
)kk�1 < �: (A.4)Choose Æ2 > 0 su
h that C1(Æ2 + Æk+22 ) < �2=2:Finally, de�ne Æ = min(Æ1; Æ2).If ku0 � �(n)(�0; 
)kk < Æ, then applying (A.1) to � = �(n)(�0; 
) and h = u0 � �gives jIk+2(u0)� Ik+2(�(n)(�0; 
))j � �2=2:Sin
e Ik+2 is a 
onserved fun
tional for (1.1), and Ik+2(�(n)(�; 
)) is independent of� 2 Rn, it follows that for all t > 0,jIk+2(u(t))� Ik+2(�(n)(
(t); 
))j � �2=2: (A.5)Now let � = �(n)(
(t); 
) and h = u(t)� �. Sin
eku0 � �(n)(�0; 
)kk�1 � ku0 � �(n)(�0; 
)kk < Æ � Æ1;(A.4) holds. It then follows from (A.2), (A.3), and (A.5) thatkhk2k < �2=2 + �2=2 = �2;as desired.A
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